
Power-Aware Intrusion Detection in
Mobile Ad Hoc Networks

Sevil Şen, John A. Clark, and Juan E. Tapiador

Department of Computer Science,
University of York, YO10 5DD, UK
{ssen,jac,jet}@cs.york.ac.uk

Abstract. Mobile ad hoc networks (MANETs) are a highly promising
new form of networking. However they are more vulnerable to attacks
than wired networks. In addition, conventional intrusion detection sys-
tems (IDS) are ineffective and inefficient for highly dynamic and resource-
constrained environments. Achieving an effective operational MANET
requires tradeoffs to be made between functional and non-functional cri-
teria. In this paper we show how Genetic Programming (GP) together
with a Multi-Objective Evolutionary Algorithm (MOEA) can be used
to synthesise intrusion detection programs that make optimal tradeoffs
between security criteria and the power they consume.

Key words: Mobile ad hoc networks, intrusion detection, power-aware,
evolutionary computation, genetic programming, multi-objective opti-
mization.

1 Introduction

Intrusion is any set of actions that attempt to compromise the integrity, con-
fidentiality, or availability of a resource [11] and an intrusion detection system
(IDS) is a system for the detection of such intrusions. Since prevention tech-
niques cannot be sufficient and new intrusions continually emerge, IDS is an
indispensable part of a security system. An IDS is introduced to detect possible
violations of a security policy by monitoring system activities and responding to
those that seem intrusive. If we detect the attack once it comes into the network,
a response can be initiated to prevent or minimise the damage to the system. An
IDS also helps prevention techniques improve by providing information about
intrusion techniques.

There have been many approaches proposed for intrusion detection. Intru-
sion detection methods are classified into three main techniques: anomaly-based,
misuse-based, and specification-based. An anomaly-based technique profiles the
symptoms of normal behaviours of the system such as usage frequency of com-
mands, CPU usage for programs, and the like. It detects intrusions as anomalies,
i.e. deviations from the normal behaviours. In the literature, various techniques
have been applied for anomaly detection, e.g. statistical approaches, and artifi-
cial intelligence techniques like data mining and neural networks. Misuse-based



2 Sevil Şen et al.

detection compares known attack signatures with current system activities. It
is generally preferred by commercial IDSs since it is efficient and has a low
false positive rate. Both anomaly-based and misuse-based approaches have their
strengths and weaknesses. Therefore, these techniques are generally employed
together for effective intrusion detection. Specification-based technique is intro-
duced as a promising alternative that combines the strengths of anomaly-based
and misuse-based detection techniques [28], providing detection of known and
unknown attacks with lower false positive rate. In this technique, a set of con-
straints of a program or a protocol are specified and intrusions are detected as
runtime violations of these specifications.

Mobile ad hoc networks (MANETs) are a new type of networking which
combine wireless communications with a high degree of node mobility. They also
provide communication even in the absence of a fixed infrastructure. Because
of the flexibility they provide, MANETs have become a very popular research
topic and have been proposed for use in many areas such as rescue operations,
tactical operations, environmental monitoring, virtual conferences, and the like.
On the other hand they are more vulnerable to attacks than wired networks and
introduce new security risks.

Due to MANETs’ specific features, conventional IDSs cannot be easily ap-
plied to these environments. When an IDS is being designed for these networks,
there are new issues which should be taken into account. Lack of concentration
points, mobility and cooperativeness of nodes, and limited resources are the main
issues. In this paper, we address the intrusion detection problem in MANETs.

1.1 Our Contributions

In this research, we propose a new approach which uses evolutionary computa-
tion techniques to explore the MANETs’ complex design space. Programs are
evolved using the Genetic Programming (GP) technique to detect known attacks
against MANETs and evaluated on simulated networks with varying mobility
and traffic patterns. It is shown that GP effectively detects known attacks, flood-
ing and route disruption attacks, against AODV. However a good intrusion de-
tection system (IDS) on MANETs should also be suited to resource-constrained
environments. That is why we employ Multi Objective Evolutionary Computa-
tion (MOEA) techniques in order to discover trade-offs between non-functional
and functional properties of programs, and optimise these objectives simultane-
ously during evolution. Our main contribution in this paper is to evolve a set of
programs for each attack offering different trade-offs between intrusion detection
ability of evolved programs and their energy usage. Moreover, we investigate if
it is better to evolve separate programs for each attack or one program to detect
both attacks.

The paper is organised as follows. Section 2 presents related work in the area
of evolutionary computation applications on intrusion detection and proposed
IDSs on MANETs. The problem, intrusion detection on MANETs, and the at-
tacks considered in this research are defined in Section 3. Section 4 introduces
the techniques (GP, MOEA) applied to the problem and also demonstrates the



EC 3

performance of intrusion detection programs evolved by using these techniques
on simulated networks. In Section 5 power-aware intrusion detection is presented
with the experimental results. Section 6 concludes the paper by summarising our
main findings and pointing out some avenues for future research.

2 Related Work

Applications of evolutionary computation techniques to intrusion detection use
generally either genetic programming (GP) or genetic algorithms (GA). A recent
research which develops an IDS by using genetic programming is given in [6].
The main idea is to create an automatic intrusion detection algorithm based on
the input features and the functions given. The output program is small, simple,
and uses just a few input features where “most machine learning paradigms (ar-
tificial neural networks, support vector machines (SVM), decision trees) examine
all input features to detect intrusions [6]”. The results of the evaluation show
that the approach is lightweight and effective, satisfying the main goals of an
intrusion detection algorithm. The GP techniques used in that research are com-
pared with some other machine learning techniques (SVM and Decision Trees)
for intrusion detection in [5]. The results show that GP outperforms other tech-
niques and it is a lightweight approach. There are also promising applications of
GAs to intrusion detection [16][14]. Grammatical evolution, another evolution-
ary computation paradigm, has been proposed recently for intrusion detection
in wired networks [32]. It allows the generation of computer programs in an ar-
bitrary language and supports type safety by using a BNF grammar to represent
the problem.

Even though there are many proposed IDSs for wired networks, MANETs
specific features make direct application of these approaches to MANETs impos-
sible. For that reason, researchers have proposed new approaches for intrusion
detection in MANETs for the last decade. One of the most commonly proposed
intrusion detection techniques in MANETs is specification-based intrusion de-
tection, where intrusions are detected as runtime violations of the specifications
of routing protocols. This technique has been applied to a variety of routing pro-
tocols such as AODV and OLSR [27][26]. There are also a few signature-based
IDSs developed for MANETs. One of them, proposed in [29], is based on a state-
ful misuse detection technique and defines state transition programs for known
attacks on AODV. In [29] an IDS is proposed which uses a specification-based
technique for attacks that violate the specifications of AODV directly and an
anomaly-based technique for other kinds of attacks such as DoS. Since wireless
nodes can overhear traffic in their communication range, promiscuous monitor-
ing is also used to detect some kind of attacks such as dropping and modification
attacks on MANETs [18][15][9]. Mobile agents have been suggested as another
way to provide communication between IDS agents [13].

Few artificial intelligence based intrusion detection systems have been pro-
posed to explore the complex spaces associated with MANETs. In the first pro-
posed IDS for MANETs [34] statistical anomaly-based detection is chosen over



4 Sevil Şen et al.

misuse-based detection, since expert rules can detect only known attacks and
the rules cannot easily be updated across a wireless ad hoc network. SVM Light
and RIPPER classifiers are employed and compared in that research. In [25]
Markov-chain based local anomaly detection model is proposed for a zone-Based
IDS architecture where the network is divided into zones based on geographic
partitioning. Another approach which constructs an anomaly-detection model
automatically by extracting the correlations among monitored features is pro-
posed in [12]. Furthermore, they introduced simple rules to determine attack
types and sometimes attackers after detecting an attack using cross-feature anal-
ysis.

There is little research on applying evolutionary computation techniques to
sensor networks and mobile ad hoc networks. In [30] the Distributed Genetic
Programming Framework (DGPF) which automatically discovers distributed
algorithms for given problems is introduced for sensor networks. The election
problem (i.e. finding the maximum) is solved by using this framework and a
multi-objective optimisation technique is employed on this problem to consider
non-functional attributes such as code size, memory size, and transmission count
for this resource-constrained environment. An application of grammatical evolu-
tion to intrusion detection for MANETs is proposed in our previous work [21].
The reader may refer to [8][22] for a detailed review of intrusion detection in
MANETs.

3 Intrusion Detection in MANETs

MANETs by their very nature are more vulnerable to attacks than wired net-
works. The flexibility provided by the open broadcast medium and the coopera-
tiveness of the mobile devices introduces new security risks. Furthermore mobile
nodes generally have different resource and computational capacities, and run
usually on battery power. As part of a security strategy, we should detect these
attacks and take appropriate action. Detection of such intrusions in an efficient
way is the primary focus of this research. The attacks against MANETs con-
sidered in this research are given below. AODV [19], which is one of the most
commonly used on-demand routing protocols for MANETs, is used as an exem-
plar routing protocol.

Route Request Flooding Attack. Network topology changes frequently
in MANETs due to mobility. Moreover link breakages are very common in wire-
less networks. These may make existing routes inactive and cause new routes to
be sought by issuing route request (RREQ) packets. Route request messages are
sent when nodes need a new route in reactive routing protocols such as AODV.
Evidently, mobility may increase the number of route request packets on the
network. In the flooding attack scenario, the attacker exploits this property of
the route discovery mechanism by broadcasting a lot of route request messages
for randomly selected nodes. The attacker aims to consume the resources of the



EC 5

nodes and the network. In our simulation the attacker broadcasts 20 route re-
quest packets in a row as in [19].

Route Disruption Attack. In this attack scenario, the attacker sends route
reply messages (RREP) to the victim node without receiving any route request
messages from that node. Instead of sending route replies for random destina-
tion nodes, the attacker chooses one of its neighbours as a victim and sends
route reply messages (with higher destination sequence number) to this node
for disrupting the active routes in its routing table. Since the attacker is the
victim node’s neighbour, he already knows about the active routes of the victim
through the routing control packets broadcast by him. As stated in [25], one or
few routing control packets could hardly incur severe damage to the system. So,
in the simulation the attacker sends 5-10 route reply packets to the victim in a
time interval.

4 Evolutionary Computation Techniques In Intrusion
Detection

Evolutionary computation provides a framework to create computer programs
automatically. Evolutionary computation techniques are loosely based on the
process of Darwinian survival of the fittest. They start by generating a popula-
tion of individuals (usually randomly) which are candidate solutions for the tar-
get problem. Then, each individual is evaluated and assigned a fitness value that
indicates how well this candidate solves or comes close to solving the problem at
hand. Until a termination criterion is satisfied, new populations are generated
iteratively by using selection, crossover, and mutation operators as in the nat-
ural evolution. These genetic operators are used to provide better solutions in
the new population. Selection provides great opportunity for fitter individuals
to survive. Whilst crossover mimics the exchange of DNA under sexual produc-
tion, mutation mimics natural mutation causing new areas of the design space
to explore.

4.1 Genetic Programming

In this research GP, one of the most employed evolutionary computation tech-
niques in the literature, is employed to detect the flooding and route disruption
attacks described above. Programs are evolved for each attack by this technique
and then evaluated on different networks with varying traffic and mobility pat-
terns.

A problem in GP is defined with the functions, variables and the fitness
function. The set of variables used, which include mobility-related features as
well as packet-related features of a node in the network, is given in Appendix A.
Some of these features give information about mobility directly (such as changes
in the number of neighbours), some of them can be the result of mobility (such



6 Sevil Şen et al.

as added routes in the last period). Packet-related features include the number
of routing protocol control packets sent, received, forwarded by a node in a time
interval. The average hop count feature is used only for the route disruption
attacks. The functions used together with the major GP parameters are given
in Table 1. Population size is the number of individuals in a population in any
generation. Generations defines when (at which generation) the evolution process
stops. Crossover probability shows how likely individuals selected for mating will
exchange elements. Reproduction probability shows how likely an individual will
be copied without any modification to the new generation. Tournament selection
is one of the methods used for selecting individuals for mating. In this method,
a group of individuals is chosen randomly from the population and the best
individual from this group (i.e. the fittest) is selected as parent. Tournament
size defines the number of the individuals in this group. ECJ 18 [2] toolkit is
used for the GP implementation. The parameters not listed here are the default
parameters of the toolkit.

Table 1. GP parameter settings

Objective Find a computer program to detect flooding and
route disruption attacks against MANETs

Function set +,-,*, /, pow, min, max, percent sin, cos, log, ln, sqrt,
abs, exp, ceil, floor, and, or, comparison operators

Terminal set The feature set in Appendix A

Populations Size 100

Generations 1000

Crossover Probability 0.9

Reproduction Probability 0.1

Tournament Size 7

The fitness function is very important in evolutionary computation since it
evaluates how good the individual is. The fitness function used in the experi-
ments is defined below. The detection rate shows the ratio of correctly detected
intrusions to the total intrusions on the network. The false positive rate shows
the ratio of normal activities that are incorrectly marked as intrusions to the
total normal activities on the network. A high false positive rate will cause a
good deal of time to be wasted and will likely destroy confidence in the IDS.

Fitness = detection rate− false positive rate (1)

Each individual in GP is represented by a tree. Here we use strongly-typed
GP, which enforces data type constraints and whose use of genetic functions
and generic data types [17]. In order to evaluate an individual we translate the
individual tree to a C program.

Experimental Results The networks are simulated by ns-2 [3] where mobility
patterns of the nodes on the network are created using BonnMotion [1]. Different



EC 7

network scenarios are created with different mobility levels and traffic loads.
50 nodes are placed in a topology of 1000m by 500m. TCP traffic is used for
communication. The maximum number of connections is set to either 20 or 30 to
simulate different traffic loads. The maximum speed of nodes is set to 20 m/sec
and the pause time between movements is set to 40, 20, and 5 sec to simulate
low, medium, and high mobility respectively. AODV is chosen as the routing
protocol and AODV periodic hello messages are used for local link connectivity.
The simulations run 5000 seconds for training and 2000 seconds for testing.

The algorithm is evolved using the training data collected from a network un-
der medium mobility with 30 TCP connections. The same network with attacks
and without attacks is used together for training to reduce false positives. The
best result of ten runs is chosen for each attack type and evaluated on different
network scenarios.

We evolve separate programs for each attack. Intrusion detection programs
are distributed to each node on the network. Each node gathers the features
every time interval. We assume that attacks are detected by the nodes that the
attacks affect directly. In flooding attacks, the nodes who are flooded by route
request messages detect the attack. In route disruption attacks, the victim node
is assumed to detect malicious change in its routing table. Table 2 shows the
performance of the evolved program (the best individual of ten runs of GP) for
each attack type on networks with varying mobility and traffic patterns.

Table 2. Performance of the Genetic Programming technique on simulated networks

Network Flooding Attack Route Disruption

Scenarios Attack

DR FPR DR FPR

low mobility
low traffic 99.81% 0.34% 100% 0.51%

low mobility
medium traffic 99.24% 1.94% 100% 0.99%

medium mobility
low traffic 99.95% 0.36% 97.06% 0.46%

medium mobility
medium traffic 99.89% 1.88% 100% 0.88%

high mobility
low traffic 99.79% 0.66% 100% 0.52%

high mobility
medium traffic 98.62% 1.83% 100% 0.84%

Some conclusions can be drawn from these figures. Apparently, route disrup-
tion attacks seem to be easier to detect than flooding attacks. In all cases but
one the detection rate (DR) is 100% and the false positive rate (FPR) is less
than 1%. Note that in the case with medium mobility and low traffic perfect
detection is not reached, but the FPR is low (0.46%). It seems reasonable to
suppose that a 100% DR can be achieved with a small increase in the FDR. The



8 Sevil Şen et al.

results for flooding attacks are slightly “worse”, attaining in almost all cases
detection rates higher than a 99% while keeping the FPR reasonably low. Note
that in both attacks the main difficulty seems to come from the traffic load:
regardless of the mobility patern, the FPR for medium traffic is higher than for
low traffic. This is a common characteristic of any detection technique which
does not achieve a perfect detection, as the higher the traffic to be analysed, the
higher the FPR.

4.2 Multi-Objective Optimisation (MOO)

Multi-Objective Optimisation (MOO) aims to optimise two or more, often con-
flicting objectives simultaneously. The solution to multi-objective optimisation
generally is not unique. It is the set of optimal solutions called the Pareto set.
In Pareto efficiency, an objective vector x is said to dominate another objec-
tive vector y (x Â y) if no criterion of x is no greater than the corresponding
component of y and at least one criterion is less (lesser values are preferable).

x Â y : if xi ≤ yi for each i and xj < yj for some j (2)

The Pareto front compromises the solutions that are not dominated by any other
individuals. In other words, it includes the optimal solutions (non-dominated)
which represent different trade-offs among the objectives.

Multi-Objective Evolutionary Computation. Multi-objective evolutionary
computation (MOEA) allows us to combine multi-objective optimisation with
evolutionary search. In our research, we explore the trade-offs between the de-
tection and false positive rate of evolved programs by using MOEA techniques.
We might not discover the optimal solutions for both metrics by using the fit-
ness function described in the equation (1). The fitness of an individual can be
high due to high detection rate or low false positive rate, or both. For example,
the fitness of a program with 90% DR and 2% FPR is the same with a pro-
gram which has 100% DR and 12% FPR. Therefore, the fitness of an individual
(evolved program) is represented by two separate objectives here: detection rate
and false positive rate. We aim to discover a set of optimal solutions between
the objectives detection rate and false positive rate of evolved programs by using
MOEA techniques.

SPEA2 [35] is one of the most popular MOEA algorithms. An implementation
of SPEA2 which is an extension to ECJ [2] is utilised in this research. Figure 1
shows the Pareto fronts for each attack, which demonstrate the optimal solutions
at the end of 500 generations. Each chart shows [1-DR] versus FPR which are the
metrics we want to minimise simultaneously. There is a clear trade-off between
DR and FPR: while FPR decreases, DR decreases too.

5 Power-Aware Intrusion Detection in MANETs

Nodes on MANETs can vary from hand held devices such as PDAs, cell phones,
and the like, to laptops that have different resource and computational capaci-



EC 9

Fig. 1. Trade-offs between detection rate & false positive rate for each attack

ties. Moreover they usually run on battery power. The variety of mobile nodes
generally with scarce resources affects proper working of intrusion detection sys-
tems running on these nodes. For instance, IDS agents might not be able to
process every packet/alert due to limited resources. This is why efficiency is as
important as effectiveness for intrusion detection in mobile networks. In the case
of sensor networks, the power issue may become acute.

The proposed intrusion detection approaches for MANETs in the literature
generally put the emphasis on IDS architecture which distributes functional tasks
among nodes. Hence the resources used for IDS on the network are distributed
as well. A hierarchical architecture is used by many proposed approaches. The
network is divided into groups such as clusters, zones where some nodes (cluster
heads, interzone nodes) have more responsibility than other nodes in the group.
From the point of view of intrusion detection, each node in the cluster carries
out local detection while cluster heads carry out global detection. While cluster
heads are chosen based on some criteria such as connectivity, energy remaining,
and the like in some approaches [24][13], other approaches make such choices
randomly for security reasons [7][33]. Moreover, central management points are
used in some approaches to do computationally intensive tasks like data mining
[23].

In this research, we investigate evolving intrusion detection programs which
also take into consideration the capability of nodes running these programs.
We explore trade-offs between functional and non-functional properties of pro-
grams by using multi-objective evolutionary computation. Since power is one of
the most crucial resources on mobile networks, both classification accuracy and
energy consumption of programs are considered as objectives.

The Framework We employ multi-objective evolutionary computation tech-
niques to optimise the following three objectives in our experiments: detection
rate, false positive rate, and energy consumption of the program. To evaluate a
program’s energy consumption, we need to simulate the execution of the pro-
gram. For that reason we use Wattch [10] which is a framework for analysing and
optimising microprocessor power dissipation for specific architectures. Wattch
integrates its power models with the SimpleScalar architectural simulator [4].



10 Sevil Şen et al.

This new simulator utilising SimpleScalar and Wattch is called Sim-Wattch. We
have made our power evaluations on Simple Scalar’s PISA architecture.

Once again the ECJ implementation of SPEA2 algorithm is used to carry
out multi-objective optimisation. In SPEA2, each individual in a population is
represented by a tree structure. To analyse the energy consumption of an indi-
vidual, we convert each individual to a C program and write to a file. In the
transformation process from a tree to a C program, the functions used by the
individuals and not included in the standard C library (e.g. percent function)
are defined as macros. After the C file is created, it is compiled and run on the
Sim-Wattch in order to simulate the execution of the program on PISA archi-
tecture and estimate the energy consumption of it. The energy consumption of
the program together with its classification accuracy (the detection rate and the
false positive rate) are assigned as the objectives of the individual. The individ-
ual takes place in the evolution process and survives in subsequent generations
based on its performance on these objectives. The fitness function components
are defined below. We aim to maximise these three objectives simultaneously.

f1 = detection rate (3)
f2 = 1− false positive rate (4)
f3 = 1/energy consumption (5)

5.1 Experimental Results

Firstly we evolve programs to detect flooding and route disruption attacks on
MANETs by using GP. The same GP parameters given in Table 1 are used.
Only classification accuracy (1-(DR-FPR)) is targeted at this point. The best
individuals of ten runs with their energy consumptions are given in Figure 2.
This figure shows that while classification accuracy is high, energy consumption
of the program gets higher as well for flooding attacks. On the other hand, this
relation is not quite as straightforward for route disruption attacks. Analysing
the best individuals evolved for route disruption attack shows that it is a simple
attack and can be detected by small programs which generally have a tendency
to consume lower energy. These experiments demonstrate that different trade-
offs can be made between classification accuracy and energy consumption of
the programs, and encourage us to find the acceptable trade-offs between these
objectives using multi-objective optimisation. Furthermore, since the size of the
programs can affect their energy consumption, we conduct experiments to evolve
programs with different tree depths (17, 5). Tree depth defines the maximum size
of the individuals (trees) evolved in GP. The effect of program size on evolved
programs’ detection ability and energy consumption can also be seen in Figure
2. Program size forces the programs to be smaller which can presumably result
in less energy consumption. The programs evolved for route disruption attack
with the same detection ability but lower energy consumption can be seen in
the figure. The results are more dramatic for the flooding attack. It is seen how
a good performance on detection of the attack can also be achieved with small-



EC 11

Fig. 2. Classification accuracy and energy consumption of the optimal evolved pro-
grams

sized programs. Nevertheless programs with bigger program size and accordingly
higher energy consumption show a slightly better performance detection ability.

Another effect on the size of the individuals in GP is bloat. Bloat is a phe-
nomenon whereby the size of individuals in a GP population increases dramati-
cally over the duration of a run, largely due to redundant code [20]. The effect of
bloat has also been noticed in our experiments where there are individuals with
the same fitness but with different sizes due to code redundancy, which tends
to evolve programs with higher energy consumption. Fortunately, ”the archiving
in SPEA2 is effectively elitist, and counteracts the emergence of bloat in GP,
because a larger individual will only survive if it makes an improvement over the
existing archive in at least one objective” [31]. This feature is very important in
our experiments since it supports our goal to evolve small-sized programs, and
programs with low energy consumption presumably.

In the second part of our experiments, we evolve programs for flooding and
route disruption attacks separately by using multi-objective evolutionary com-
putation. The parameters used are the same as in Table 1 except the population
size (150) and SPEA2 archive size (100). Figure 3 shows the optimal solutions
found for each attack at the end of 1000 generations. The circle points show the
Pareto front. In the case of flooding attacks, Pareto front moves towards higher
energy consumption for higher detection rate and lower false positive rate. It has
been observed that it is the false positive rate that is most clearly affected by en-
ergy consumption. Allowing an increase in false positive rate causes decrease in
energy consumption. For route disruption attacks, programs closer to optimum
solution which have higher detection ability and lower energy consumption are
achieved by using MOEA techniques. Moreover we have compared the energy
consumption of programs which have highly-accurate detection ability with that
of the programs evolved using GP in Figure 2. It is observed that programs
with lower energy consumption stand out in the results obtained by MOEA
techniques. Particularly for flooding attacks energy consumption is significantly
reduced. Lastly we evolve programs to detect flooding and route disruption at-
tacks together by using MOEA techniques. We aim to investigate if it is better
to evolve one program to detect both attacks or evolve two programs each with
half the resource usage. Figure 4 shows the 3D-Pareto front for the three objec-



12 Sevil Şen et al.

Fig. 3. 3D-Pareto front for detection of each attack with the three objectives: detection
rate, false positive rate and energy consumption

tives. The results demonstrate that a detection program for both attacks can be
more energy-efficient than two programs which detect these attacks separately,
it does not show high classification accuracy as much as two programs do sepa-
rately. There is a trade-off to be made based on the requirements of the MANET
application used. In the results of five runs, there is no program evolved for de-
tecting both attacks which simultaneously has detection rate and false positive
rate (1-FPR) more than 94%. Table 3 shows some example programs evolved
using MOEA. (There are many other programs on the Pareto front which have
different trade-offs.)

Fig. 4. 3D-Pareto front for detection both attacks with the three objectives: detection
rate, false positive rate and energy consumption



EC 13

Table 3. Example programs evolved by MOEA for each attack

Attack
Type

Evolved Program DR FPR Energy
Usage

Flooding (frw aodvPs * frw aodvPs) > 98.65% 1.23% 65.42
(4log(neighbours) + 5updated routes)

Route ((2updated routes - 2recv aodvPs 100% 0.63% 43.05
Disruption + active routes) * recv rrepPs > (recv aodvPs

+ updated routes)

Both (((updated routes * init aodvPs) 93.29% 4.65% 50.14
≤ frw rreqPs) && (init rrepPs 6= recv rrepPs)
&& (exp(updated routes) 6= recv rrepPs))
‖ (updated routes < frw rreqPs)

6 Conclusions and Future Work

We have evolved programs using GP to detect known flooding and route dis-
ruption attacks against AODV and have evaluated them on simulated networks
with varying mobility and traffic levels. We used both single fitness functions
and multiple fitness functions. We have shown how in some circumstances a
multiple objective approach provides a more effective means of searching the
tradeoff space. Our work is unusual in that we trade off security performance
(detection and false positive rates) against resources (power). It is likely that for
some types of networks (e.g. sensor networks) the ability to make good tradeoffs
will be particularly important. Our techniques can be used to generate solu-
tion sets with the best (or near best) tradeoffs possible. A final choice between
solutions making different tradeoffs rests with the designer. The inherent com-
plexity of MANET operations makes it difficult to see how IDS programs with
optimal tradeoffs could be obtained by standard system development practices.
An optimisation based approach seems a natural and effective candidate for the
problem we seek to solve. We recommend the use of GP and MOEA for further
consideration by the IDS and MANET research communities.

References

1. Bonnmotion: A mobility scenario generation and analysis tool.
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/.

2. Ecj18: A java-based evolutionary computation research system.
http://cs.gmu.edu/ eclab/projects/ecj/.

3. Ns-2: The network simulator. http://www.isi.edu/nsnam/ns.
4. Simplescalar. http://www.simplescalar.com/.
5. A. Abraham and C. Grosan. Evolving intrusion detection systems. In Genetic

Systems Programming: Theory and Experiences, volume 13, pages 57–79. Springer,
2006.

6. A. Abraham, C. Grosan, and C. Martiv-Vide. Evolutionary design of intrusion
detection programs. Int. Journal of Network Security, 4:328–339, 2007.



14 Sevil Şen et al.

7. Y. an Huang, W. Fan, W. Lee, and P. S. Yu. Cross-feature analysis for detection
ad-hoc routing anomalies. In In Proceedings of the 23rd International Conference
on Distributed Computing Systems (ICDCS).

8. T. Anantvalee and J. Wu. A Survey on Intrusion Detection in Mobile Ad Hoc
Networks, chapter 7, pages 159–180. Springer, 2007.

9. F. Anjum and R. Talpade. Lipad: lightweight packet drop detection for ad hoc
networks. In 60th IEEE Vehicular Technology Conference Proceedings, pages 1233–
1237. IEEE, 2004.

10. D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimizations. In In Proceedings of the 27th International
Symposiyum on Computer Architecture (ISCA-27), 2000.

11. D. Denning. An intrusion detection model. IEEE Transactions on Software Engi-
neering, 13(2):222–232, 1987.

12. Y. Huang and W. Lee. A cooperative intrusion detection system for ad hoc net-
works. In In Proc. of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks, 2003.

13. O. Kachirski and R. Guha. Effective intrusion detection usign multiple sensors in
wireless ad hoc networks. In Proceedings of the 36th IEEE International Conference
on System Sciences, 2003.

14. Y. Liu, K. Chen, X. Liao, and W. Zhang. A genetic clustering method for intrusion
detection. Pattern Recognition, 37, 2004.

15. S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in
mobile ad hoc networks. In In Proc. of ACM Int. Conf. on Mobile Computing and
Networking (MOBICOM), pages 255–265, 2000.

16. L. Me. Gassata, a genetic algorithm as an alternative tool for security audit trails
analysis. In In Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID’98), 1998.

17. D. J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3:199–230, 1995.

18. J. Parker, J. Undercoffer, J. Pinkston, and A. Joshi. On intrusion detection and
response for mobile ad hoc networks. In 23th IEEE Int. Performance Computing
and Communications Conference Proceedings, 2004.

19. C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In 2nd IEEE
Workshop on Mobile Computer Systems and Applications Proceedings, pages 90–
100, 1999.

20. C. Ryan, J. Colline, and M. O’Neill. Grammatical evolution: Evolving programs
for an arbitrary language. In 1st European Workshop on Genetic Programming
Proceedings, LNCS 1391, pages 83–95. Springer, 1998.

21. S. Sen and J. A. Clark. A grammatical evolution approach to intrusion detection
on mobile ad hoc networks. In In Proc. of Second ACM Conference on Wireless
Network Security (WiSec’09), 2009.

22. S. Sen and J. A. Clark. Intrusion Detection in Mobile Ad Hoc Networks, chapter 17,
pages 427–454. Springer, 2009.

23. A. Smith. An examination of an intrusion detection architecture for wireless ad hoc
networks. In Proceedings of the 5th National Colloquium for Information System
Security Education, 2001.

24. D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko,
R. Balupari, C.-Y. Tseng, and T. Bowen. A general cooperative intrusion detection
architecture for manets. In In Proceedings of the 3rd International Workshop on
Information Assurance, pages 57–70, 2005.



EC 15

25. B. Sun, K. Wu, and U. Pooch. Zone-based intrusion detection for mobile ad hoc
networks. Int. Journal of Ad Hoc and Sensor Wireless Networks, 2(3), 2003.

26. C. Tseng, S.-H. Wang, W. Lee, C. Ko, and K. Lewitt. Demem: Distributed evidence
driven message exchange intrusion detection model for manet. In In Proceedings
of the 9th International Symposium on Recent Advances in Intrusion Detection
(RAID’06), pages 249–271. Springer, 2006.

27. C.-Y. Tseng, P. Balasubramayan, C. Ko, R. Limprasittiporn, J. Rowe, and K. Le-
witt. A specification-based intrusion detection system for aodv. In In Proceedings
of the ACM Workshop on Security in Ad Hoc and Sensor Networks (SASN), 2003.

28. P. Uppuluri and R. Sekar. Experiences with specification-based intrusion detection.
In In Proc. of the Recent Advances in Intrusion Detection (RAID’01), LNCS 2212,
pages 172–189. Springer, 2001.

29. G. Vigna, S. Gwalani, K. Srinivasan, E. M. Belding-Royer, and R. A. Kemmerer.
An intrusion detection tool for aodv-based ad hoc wireless networks. In Proceedings
of the 20th Annual Computer Security Applications Conference (ACSAC’04), pages
16–27, Washington, DC, USA, 2004. IEEE Computer Society.

30. T. Weise. Genetic programming for sensor networks. Technical report, 2006.
31. D. R. White, J. Clark, J. Jacob, and S. Poulding. Evolving software in the pres-

ence of resource constraints. In In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’08). Springer, 2008.

32. D. Wilson and D. Kaur. Knowledge extraction from kdd’99 intrusion data using
grammatical evolution. WSEAS Transactions on Information Science and Appli-
cations, 4:237–244, February 2007.

33. P. Yi, Y. Zhong, and S. Zhang. A novel intrusion detection method for mobile ad
hoc networks. In In Proceedings of Advances in Grid Computing (EGC’05), LNCS
3470.

34. Y. Zhang, W. Lee, and Y. an Huang. Intrusion detection techniques for mobile
wireless networks. Wireless Networks Journal (ACM WINET), 2(5), September
2003.

35. E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength pareto
evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technol-
ogy.



16 Sevil Şen et al.

A The Features

Features Explanation

neighbours no. of neighbours
added neighbours no. of added neighbours
removed neighbours no. of removed neighbours
active routes no. of active routes
repaired routes no. of routes under repair
invalidated routes no. of invalidated routes
addedroutes disc no. of added routes by route discovery mechanism
addedroutes notice no. of added routes by overhearing
updated routes no. of updated routes (modifying hop count, sequence number)
added repairedroutesno. of added routes under repair
invroutes timeout no. of invalidated routes due to expiry
invroutes other no. of invalidated routes due to other reasons
avg hopcount average no. of hop counts of active routes
recv rreqPs no. of received route request packets destined to this node
recvF rreqPs no. of received route request packets to be forwarded by this node
send rreqPs no. of broadcasted route request packets from this node
frw rreqPs no. of forwarded route request packets from this node
recv rrepPs no. of received route reply packets destined to this node
recvF rrepPs no. of received route reply packets to be forwarded by this node
send rrepPs no. of initiated route reply packets from this node
frw rrepPs no. of forwarded route reply packets from this node
recvB rerrPs no. of received broadcast route error packets (to be forwarded or not)
send rerrPs no. of broadcasted route error packets from this node
recv aodvPs no. of received total routing protocol packets
recvF aodvPs no. of received total routing protocol packets to be forwarded
send aodvPs no. of initiated total routing protocol packets from this node
frw aodvPs no. of forwarded total routing protocol packets by this node


