
1

Coevolution of Mobile Malware and Anti-Malware
Sevil Sen*, Emre Aydogan, Ahmet I. Aysan

Abstract—Mobile malware is one of today’s greatest threats
in computer security. Furthermore, new mobile malware is
emerging daily that introduce new security risks. However,
whilst existing security solutions generally protect mobile devices
against known risks, they are vulnerable to as yet unknown risks.
How anti-malware software reacts to new, unknown malicious
software is generally difficult to predict. Therefore, anti-malware
software is in continuous development in order to be able to detect
new malware or new variants of existing malware. Similarly, as
long as anti-malware software develops, malware writers also
develop their malicious code by using various evasion strategies
such as obfuscation and encryption. This is the lifecycle of
malicious and anti-malware software. In this study, the use of
evolutionary computation techniques are investigated, both for
developing new variants of mobile malware which successfully
evades anti-malware systems based on static analysis and for
developing better security solutions against them automatically.
Coevolutionary arms race mechanism has always been considered
a potential candidate for developing a more robust system against
new attacks and for system testing. To the best of the authors’
knowledge, this study is the first application of coevolutionary
computation to address this problem.

Index Terms—mobile malware, automatic malware generation,
static analysis, evasion, obfuscation, malware detection, evolution-
ary computation, coevolution, Android

I. INTRODUCTION

Mobile devices have become an integral part of daily life.
They provide many useful functions such as the ability to read
and write e-mails, surf the Internet, indicate nearby facilities,
video conferencing, and voice recognition, to name but a few.
However, the popularity and adoption of mobile devices also
attract malware writers to develop mobile malware in order to
harm these devices. According to a Kaspersky security report
[1], 884,774 new malware was introduced in 2015, three times
more compared to 2014. Symantec also reported that one zero-
day attack per week on average was discovered in 2015 [2].
Moreover, they emphasized the large increase in the volume of
Android variants (40%) besides new Android malware families
added in 2015 (6%) [2]. Hence, in order to protect mobile
devices from such threats, researchers and security companies
work to develop effective and efficient anti-malware systems.

There are some techniques available for malware analysis
and detection with varying strengths and weaknesses. Two
common types of malware detection techniques, according to
how the code is analyzed, are static and dynamic analyses.
They can also be combined to create hybrid solutions. Since
dynamic analysis might not be affordable on some mobile
devices due to their significant limitations in terms of power
consumption, most of the proposed approaches in the literature
rely on static analysis. However, these tools are known to be

S. Sen*, E. Aydogan, A. I. Aysan are with the WISE lab, Hacettepe Uni-
versity, Ankara, TURKEY (e-mail: {ssen, emreaydogan}@cs.hacettepe.edu.tr,
aysan@hacettepe.edu.tr) * Corresponding author

vulnerable to some obfuscation techniques and new attacks.
Therefore, in recent years, attackers have focused on exploiting
the vulnerability of static analysis tools. While the number of
new Android mobile malware families has inclined to decrease
over the past two years, there has been significant growth in
the number of new Android mobile malware variants [2]. How
anti-malware is effective against known attacks, variants of
known attacks, and unknown attacks requires further investiga-
tion, and forms the primary goal of the current study. In order
to be able to assess security solutions proposed for mobile
devices, new variants of existing attacks were automatically
generated. The generated new attacks highlighted weaknesses
of the market available static analysis tools, and the need
for new detection techniques suited to mobile devices. The
secondary goal of the study is to explore developing an anti-
malware software automatically, which is robust to both some
known attacks and their variants. In order to achieve these
goals, coevolutionary computation techniques were applied to
the problem. The researchers believe that better anti-malware
software can be developed when new malicious software is
taken into account, hence the use of coevolutionary arms
race mechanism is explored in this study. Experiments in this
current study are grouped into three main sets.

• mobile malware evolution
• mobile anti-malware evolution
• mobile malware/anti-malware coevolution

The researchers created new malware and variants of known
malware by using genetic programming (GP) in order to mimic
mobile malware evolution, and thereby evaluate the perfor-
mance of existing static analysis tools. The aim was to generate
new malware automatically that could be used in order to also
strengthen existing static analysis tools automatically. As most
existing static tools update their signature databases when they
encounter new/unknown malware, automating this process
will ensure that detection systems are more robust against
attacks. While this approach only automates the generation
of new/unknown attacks, an evolution-based detection system
is proposed for mobile anti-malware. The framework is ex-
tended by improving existing solutions automatically in mobile
malware/anti-malware coevolution. Malware writers mainly
aim to achieve their goals (e.g. damaging mobile devices
and/or achieving financial gain) without being detected by
using effective evasion strategies such as obfuscation and en-
cryption. The increasing number of new malware variants has
led to security companies improving their solutions. As new
anti-malware solutions are introduced, malware writers also try
to evade them, resulting in a cyclical, endless process. These
cycles exactly define the coevolution arms race mechanism
between malware and anti-malware, with each competing to
outmaneuver the other. This current study investigates the use

2

of coevolutionary computation techniques in order to generate
more evasive malware and more robust anti-malware against
new variants of existing malware.

GP has already been applied in order to evolve new attacks
and new malware in the literature [3]–[7]. However, most of
these approaches are not fully automated and only proposed
for a specific attack type. A security expert is generally needed
to analyze the code and extract parameters that changes in
different variants of malware code, so a representation of the
problem can be constructed for GP. The aim of this study
was to create a fully automated system by employing genetic
operators on smali codes of existing malware by using GP.
The results show that GP could generate effective attacks able
to evade existing anti-malware systems which are considered
to be among the most successful mobile security solutions [8].
Furthermore, GP shows better performance than sole or dual
application obfuscation techniques as proposed in the literature
[9][10].

The current study also developed a detection system based
on certain static features of Android applications such as API
calls and permissions. As far as the researchers are aware, there
is no such GP-based mobile malware detection system in the
literature. The results produced a high rate of detection on
known attacks with a low false positive rate. Furthermore, co-
evolutionary computation techniques were applied in order to
generate more robust detection systems, and as a result, more
evasive attacks and robust security solutions were generated.
This approach was able to produce very evasive malware com-
parable with the obfuscation results of Zelix KlassMaster [11],
a well-known Java bytecode obfuscator. The coevolved AVs
were evaluated against three datasets : PRAGuard obfuscated
dataset [12], Drebin dataset [13], and Zelix dataset created by
employing Zelix KlassMaster [11]. Results showed that the
coevolved solution especially outperformed commercial AVs
to a considerable degree for the PRAGuard and Zelix datasets.

This current study makes the following contributions :
• A fully automated model is proposed which generates

evasive mobile malware from existing ones.
• A GP-based malware detection system is proposed based

on static features of Android applications, which proves
very effective against known attacks.

• The first application of coevolutionary computation tech-
niques to system security is proposed in order to both
generate more evasive malware and robust anti-malware
software.

The remainder of the paper is organized as follows: Section
II summarizes the related approaches in the literature. Section
III describes the proposed method for generating new malware.
Section IV details the proposed model for detecting known
mobile malware. Section V contains the main framework
which combines malware and anti-malware evolution under
coevolution. Section VI reports on the performance of the
model, with results discussed in Section VII. Section VIII is
devoted to concluding remarks and future works.

II. RELATED WORK

This section is divided into two in order to support better
understanding of the current literature and this study’s contri-

bution.

A. Malware Evolution

Security companies and researchers working on security
solutions for mobile devices use two main techniques to
analyze apps: dynamic and static analysis. Since dynamic
analysis is unsuited to resource-constrained mobile devices,
static analysis techniques are mostly used to analyze mobile
apps. Since many security companies already brought out their
solutions for protecting mobile devices, how effective they are
against known and unknown malware requires investigation.

There are two main studies in the literature that evaluate
commercial anti-malware products against obfuscation tech-
niques on the Android platform. In [9], Zheng et al. proposed
a system called ADAM that evaluates the effectiveness of
anti-malware systems against malware samples generated by
employing some obfuscation techniques automatically, while
preserving the original malicious function. Rastogi et al. [10]
developed a system called DroidChameleon that evaluates
Android anti-malware products against obfuscation attacks
that are extended forms of the attacks in [9]; automatically
mutating Android applications by using polymorphic and
metamorphic techniques.

Christodorescu and Jha [14] proposed a technique based
on a transformation of source code for creating test samples
for desktop malware detection systems. Their technique aimed
to evaluate the resilience of anti-malware systems to various
obfuscation techniques. Morales et al. [15] evaluated and
tested how anti-malware systems protect handheld devices
against known malware. Their results indicate that all four
anti-malware systems tested produce high false negative rates
due to the simple signature detection algorithms employed
by the products. Moser et al. [16] proposed a malware de-
tector relying on semantic signatures and employed a model
checking for detection. They showed that static analysis alone
is not efficient in detecting malware, and that it should be
complemented with dynamic analysis techniques.

You and Yim [17] analyzed the obfuscation techniques com-
monly used by malware writers, with the aim of understanding
how malware writers use these techniques. Christodorescu et
al. [18] propose a malware normalizer that reverts obfuscated
malware to their original by undoing the obfuscations. Their
goal being to increase the detection rate of malware detectors.

The earliest works based on malware evolution by using
evolutionary computation are proposed by Kayacik et al. [3],
who used GP to evolve buffer overflow attacks in order to
obfuscate the true intent of the attacker. In [4], the authors
also used GP to generate mimicry attacks with the objective of
finding potential vulnerabilities before attackers could exploit
them, with the goal to generate attacks that seem benign, hence
they could evade detection. The authors extended this study
in [5] by increasing the number of detectors and adding a
delay parameter in order to build evasion attacks. In [6], a
comparison of two approaches was employed, white-box and
black-box. While the former employs the internal knowledge
of the detectors to generate evasion attacks, the latter uses only
the output of the detectors.

3

Wu et al. [19] proposed a computer malware evolution
model based on Immune Genetic Algorithm, and Noreen et
al. [7] created new variants of Beagle malware by applying
genetic operators. They also applied this approach to Silvio
malware threatening the ARM-Linux based smartphones and
generated new variants of Silvio malware by using Markov
models [20]. In [21], the authors aimed to generate new
malware by changing the semantic of malware by extracting
the abstract representation of a malware, then using GP to
evolve a new malware from this representation.

The closest work to the approach of the current study in
terms of generating new mobile malware using evolutionary
algorithm is Mystique [22], which was published after the
current study’s previous work [8]. In [22], attack and evasive
features of Android malware were extracted, and a meta-model
for Android malware created by using these features. Then, a
multi-objective evolutionary algorithm was employed on these
features in order to generate more aggressive, evasive and
undetectable malware variants. The approach was effective;
however, analyzing malware and determining attack/evasive
features, detectability and latency values of such features
require considerable manual input and experience. In [23], the
authors extended their work by using more attack types and
generating malware using dynamic code-loading, which can
be used to hide malicious activities of an application from the
analysis carried out in devices and market stores [24].

The studies in the literature proposed for generating new
malware by using evolutionary computation are mostly not
fully automated, and focus on specific attacks like buffer
overflow attacks or malware like Beagle and Silvio. Only a
few approaches were found to evaluate mobile anti-malware
solutions against obfuscated attacks [9][10]. The target of this
current study is also to test existing anti-malware solutions,
and to the best of the authors’ knowledge, this is the first
work that generates evolved mobile malware using GP for
Android platforms [8]. GP automatically employs the best
evasion strategies by reducing the size of the search space. One
of the main characteristics of the proposed system is its being
fully automated. The proposed approach in the current authors
previous study [8] is extended with additional obfuscation
techniques, and experimental results; combining it with anti-
malware evolution to become coevolutionary.

B. Anti-Malware Evolution

In order to cope with the rapid increase in the number of
mobile malware, many companies have introduced their own
mobile security solutions, which are mainly based on static
analysis. Many studies in the literature also propose mobile
malware detection in academia as well. However, this current
study only outlines the important detection techniques based
on static analysis due to the relevance for this study.

Stowayay et al. [25] detects overprivileged apps by an-
alyzing API calls of applications. Kirin [26] detects mo-
bile malware by employing permission-based static analy-
sis. Drebin [13] also employs permissions, API calls, and
network addresses in order to differentiate malicious soft-
ware from benign software by employing machine-learning

techniques. Similarly, DroidAPIMiner [27] employs machine-
learning techniques and uses API calls of applications as
distinguishing features. RiskRanker [28] uses two-level static
analysis. High- and medium-risk applications are determined
in the first order analysis, and applications employing obfus-
cating, encryption or dynamic class loading techniques are
extracted among these risky applications in the second-order
analysis. Some researchers focused on system-level events
for malware detection. Schmidt et al. [29] proposed a static
analysis detection technique based on library and system
function calls.

Moser et al. [16] indicated that static analysis alone is not
efficient in detecting malware and should be complemented
with dynamic analysis. They used semantic signatures and
employed a model checking for detection. A recent study for
mobile malware detection called MARVIN [30] employs both
static and dynamic analysis. It is shown that they achieve better
results than Drebin [13] and DroidAPIMiner [27]. The most
distinguishable features are also analyzed and noted that static
features show a high level of accuracy.

Recently, Martin et al. proposed a framework called Moc-
Droid [31] that extracts import terms from Java codes obtained
by decompiling apk files since they cannot be obfuscated.
These import terms are then clustered by three different
algorithms and the obtained clusters used as inputs to a multi-
objective genetic algorithm in order to create a classifier.
The performance of the classifier is then compared with
commercial AVs. The authors showed that MocDroid improves
results by more than 10%.

As shown in the literature, different machine-learning tech-
niques are employed for malware detection. A recent proposal
[32] for detecting unknown malicious code used genetic
programming, plus comparison of GP with other well-known
machine-learning methods such as Support Vector Machines,
Bayesian Networks, Decision Trees, and Artificial Neural
Networks. Their results showed that GP outperforms other
methods on both balanced and imbalanced datasets. Such
a conclusion showed promise for employing GP to mobile
malware detection; hence it has been applied with different
features in this current study.

The battle between computer malware and anti-malware
is still as far from over as ever [33]. Although coevolution
has a potential for application in the area of systems security
[34], it has not yet been applied and is therefore a primary
aim and intended contribution of this study. To the best of
the researchers’ knowledge, there has only been one work
that proposes a network anomaly intrusion detection using
coevolutionary computation [35]. In [35], a network behavior
model based on the self-nonself space paradigm is constructed.
The authors then built hyper-rectangular detectors covering
nonself-space using a niching genetic algorithm. Their results
showed that their proposed method was very effective against
all five types of attacks in the dataset.

In the following sections, to aid understanding of the
proposed approach based on coevolutionary computation, each
component (malware and anti-malware evolution) will be
introduced. Then, how these components are combined for
coevolutionary computation will be presented.

4

III. MALWARE EVOLUTION

This section introduces the method proposed by this current
study, which employs GP in order to generate new, unseen
mobile malware from that occurring in the wild. Figure 1
illustrates the conceptual schema of the proposed approach
called malware evolution.

Primarily, the apk files (executable application files on
Android) are converted to their source codes. Although Java
source files can be obtained from apk files and modifications
can be applied to them, this study uses smali files since they
allow for the conversion of modified source files back to
apk files. Smali can be seen as the assembly language for
dalvix, Android’s Java VM implementation. It should be noted
that conversion to apk files is essential in order to evaluate
generated malware on mobile devices/emulators.

Apk	Files

Smali Files

CG
Converter

CGsGP

Apk	Files

Malware/Benign

print()
setFlags(I)

setAction(String)

Fig. 1. The Architecture of Malware Evolution.

Smali files are similar to Java class files and consist of
methods. ApkTool [36] is an open source tool used to obtain
smali files from apk files. Call graphs (CGs) of smali files
files were extracted by using a CG converter developed by
the authors. CG is a control flow graph representing all paths
that can be passed through a program during its execution.
Each CG corresponds to a tree, each method is represented by
nodes, and the edges indicate the flow between each method.
Each application is represented by an individual in GP and
each individual has different sizes of trees (CGs) as each apk
file has a variable number of functions. In GP, crossover or
mutation operators are applied to each CG. It should be noted
that applications considered here do not consist of recursive
functions, which would limit the study to a smaller set of
malicious applications.

Genetic programming [37] is a population-based search
algorithm inspired by natural evolution . It starts with gener-
ating a population of individuals (usually at random) which
are candidate solutions for the target problem. Then, each
individual is evaluated and assigned with a fitness value that
indicates how well this candidate solves or comes close to
solving the problem at hand. Until a termination criterion is
satisfied, new populations are generated iteratively by using
selection, crossover, and mutation operators, as in natural
evolution. These genetic operators are used to provide better
solutions in the new population. Each individual represents an
Android application in GP. The initial population consists of

malware in the wild. The main aim is to generate more evasive
malware at each generation by applying genetic operators on
them. These operators are applied to CGs, then smali and
apk files are recreated from them. Newly generated apk files
are signed by using keytool and jarsigner tools, then sent
to emulators in order to calculate their fitness values, which
shows the degree to how evasive newly generated malware is.

In order to evaluate newly generated malware, six emulators
with different anti-malware systems installed and a detection
system based on machine-learning (ML) are used in this
study. While anti-malware systems work on static attributes of
applications, the ML-based detection system extracts dynamic
features of applications by running them on an emulator for
a period of ten minutes. A newly generated malware is run
on each emulator separately and tagged as either malicious
or benign by anti-malware systems. The aim of this process
is to generate malware that evade anti-malware systems by
decreasing the fitness value in each generation. The fitness
value is calculated as the ratio of the number of systems
detecting the generated application as malware to the total
number of systems. Since it is hard to obtain the ideal fitness
value by generating malware that evades all anti-malware
systems, the GP algorithm terminates when the predefined
generation size is reached.

In the experiments, the ECJ v.20 [38] tool is used. The
GP parameters used are shown in Table I. Parameters not
shown here are the default parameters of ECJ. The tree depth
(17) is also the default parameter of ECJ. GP generally has
a code bloating problem due to its long tree depth. Since
this problem is not desired in many GP applications, the tree
depth parameter is often decreased. However, bloating has a
positive effect in the method used in this study by causing
more complex, hence more evasive malware to be generated.
Therefore, the default value of the tree depth parameter is
employed in this study.

A. Genetic Operators
1) Crossover: This operation exchanges sub-trees of indi-

viduals. In order to obtain executable programs, sub-trees must
be compatible with each other. Only methods with the same
declarations having the same return type and an equal number
of parameters with the same types may be exchanged. This
allows for the creation of new malware from existing malware.
However, since the high crossover rate increases the number of
non-executable individuals, the crossover operation is assigned
a low rate (0.1) in the experiments. Crossover provides the
change of malware signatures by code exchange, and helps
generate more evasive malware.

TABLE I
GP PARAMETERS FOR MALWARE EVOLUTION

Parameter Value
Goal Generating evasive malware

Population Size 15
Generation Size 200
Crossover Rate 0.1
Mutation Rate 0.9

Tournament Size 2
Tree Size 17

5

When the crossover is applied to applications, it is required
to see whether or not the newly generated application runs
properly and exposes malicious behaviors. In order to be
able to check this automatically, a ML-based detection sys-
tem based on dynamic analysis is employed [39]. The tool
runs each application for a period of ten minutes, extracting
dynamic features collected from the outputs of DroidBox [40]
such as messaging information, services used etc. in order
to distinguish malicious applications from the benign using
machine-learning. Monkey [41] is used as an UI exerciser as
it generates random events. Although Monkey [41] is one of
the tools to achieve the best code coverage [42], triggering
malware is one of the main limitations of any dynamic analysis
tool. Although the developed detection system has a high
rate of accuracy (97.91%), it might not detect malicious
applications not triggered during the ten minute period as
would any other dynamic analysis-based detection system. If
the application is neither runnable or malicious, the worst
fitness value (1.0) is assigned in order to eliminate it from
the next generation.

2) Mutation: These operator changes selected individuals
in order to introduce diversity to the population. Six obfusca-
tion techniques are employed on sub-trees of randomly chosen
individuals. These techniques aim to generate different variants
of malware while preserving the original malicious function.
The mutation rate was set to a high value (0.9). Source codes
are shuffled as much as possible in order to make it less
recognizable by detection systems. The obfuscation techniques
used in this study are as follows; although further techniques
could be added in the future.
• Rename Local Identifier
• Junk Code Insertion
• Data Encryption
• Two-fold Code Reordering
• Three-fold Code Reordering
• Register Realignment

TABLE II
ANTI-MALWARE SYSTEMS AND THEIR PROTECTION SCORES.

Manufacturer Product Version Protection Protection
Score 2014 Score 2017

Avast Avast Mobile Security 3.0.7550 5.5 6.0
Ikarus Ikarus mobile.security 1.7.20 4.5 5.0
Norton Norton Mobile Security 3.8.6.1533 5.5 6.0

TrendMicro Trend Micro Mobile Security 5.0.0.1255 6.0 5.5
Eset Eset Mobile Security 3.0.882.0-16 6.0 5.5

Gdata G Data Internet Security 25.0.0 6.0 5.5

B. Fitness Function

Since the fitness function defines how individuals’ solve
problems or come close to a solution, defining a well-
representative fitness function is very important in any GP
application. First an evaluation takes place to ascertain
whether or not the evolved malware is runnable and showing
malicious behavior to the ML-based detection system. If
not, the worst fitness value is assigned to the individual.
Then, the fitness function uses the output of six anti-malware
systems, selected according to their protection score given
in AV-TEST [43]. The second criteria in choosing the

anti-malware systems is being able to use the anti-malware
output automatically to run on an emulator. Hence, the
solutions used are those which produce log files. Table
II lists the anti-malware systems employed in this study’s
experiments. Current protection scores of the related products
are shown in Table II in addition to the protection scores of
the version of each AV system used in the training. Each
anti-malware is executed on different emulators (GenyMotion
[44], a powerful Android emulation platform) to simulate
the execution of evolved malware and the anti-malware’
response against them. Each individual is run for a period
of one minute on emulators in order to generate results.
This time was determined experimentally. Anti-malware
systems generally return their results in less than one minute,
although analysis of larger applications could take longer. If
an output cannot be obtained from an anti-malware system
for an individual, then the specific anti-malware is not taken
into account in the fitness function for that individual of that
particular generation. The fitness value, which is aimed to be
minimized, is defined as follows :

Fitness Value =
of anti-malware systems detecting the malware

total # of anti-malware systems
(1)

The fitness value is between 0 and 1.0, with 0 being the best
fitness value being aimed at, and equates to evolved malware
having deceived all anti-malware solutions. When the fitness
value is 1.0, it means that either the malware is detected by
all solutions, or it is not runnable or malicious.

C. Dataset
The malware dataset used in this study, MalGenome, is the

first mobile malware dataset used in the research community,
having been generated by the Android Malware Genome
project [45] in 2011. Most of the literature used this dataset
to compare their results to other works. It consists of 1,260
Android malware from 49 different malware families collected
between August 2010 and October 2011. Five of the malware
families are found only within the official Android market and
35 are found in the alternative Android markets. The remaining
nine malware families are found in both the official and
alternative Android markets. It is stated that 1,083 malware is
in the form of packed malware in the wild. This study used the
same malware families from MalGenome as employed in the
current authors’ previous work [8]; extending it with additional
families obtained through their CGs. The malware families
used in this study are AnserverBot, Asroot, BaseBridge,
DroidKungFu1, DroidKungFu2, FakeNetFlix, GPSSMSSpy,
HippoSMS, and NickSpy. Their CGs were extracted and used
as input to the GP algorithm as the first population. Each was
detected by at least some of the anti-malware systems given
in Table II.

IV. ANTI-MALWARE EVOLUTION

This section details the approach developed in this study
for evolving more robust malware detection systems. The

6

simplified schema of the approach is illustrated in Figure 2.
Firstly, reverse-engineered techniques were used for applica-
tions collected from the MalGenome Project [45] and Google
Play [46]. They were then analyzed and the distinguishing
features of malicious applications were noted. Then, a malware
detection system based on these features was evolved using
genetic programming (GP).

MALGENOME Disassembling	of	
Apps

Extracting	API
Features

Extracting
Permissions

Genetic
Programming

Fig. 2. The Conceptual Schema for Anti-Malware Evolution

A. Features

First, API calls and permissions for each application were
extracted, as these are the most used features in static analysis
for detecting mobile malware [47]. The difference between
the number of malicious and benign applications of each API
call was determined and sorted in descending order, and the
top 100 API calls were selected for use in training. The most
discriminative 40 permissions were also selected in a similar
way. In addition to these 140 features, six static attributes of
applications were also used in the training. A recent study
showed that structural attributes such as the following, as
employed in this study, could detect new malware better than
solely applying API calls-based features [48]. These attributes
were also observed in the evolved anti-malware.

1) Number of API calls related to DexClassLoader used to
load codes at runtime.

2) Number of API calls related to Crypto used to encrypt
the code.

3) Number of classes in the application.
4) Number of goto statements used in the applications.
5) Number of methods in the application.
6) Number of permissions in the application.
An individual in GP, which represents an anti-malware

solution, is a tree consisting of all 146 features defined above
as terminal nodes and some operators as non-terminal nodes.
Mathematical operators such as addition, multiplication and
subtraction, together with the logical operators such as or, xor
were employed to form a GP tree, as illustrated in Figure 3.
Each individual produces an if statement in determining the
maliciousness of an application being analyzed. An example if
statement is given below for the GP tree given in Figure 3. In
crossover operation, new offspring if statement(s) are created
for the new population by exchanging randomly chosen parts
of two selected parent GP trees. For example, the rightmost

subtree F71-&&-F34 could be exchanged with another subtree
selected in another individual. In mutation operator, one new
offspring if statement is generated for the new population by
randomly mutating a randomly chosen part of one selected
GP tree. For example, the node && could be mutated to the ‖
operator. Please see the tutorial in [49] for further information
on genetic programming.

if(
(F45 ∗ F5)− F74

F2
∗F25) ≤ (

F59
F43 − (F57||F142)

F1
∗(F71&&F34)) (2)

≤

× ×

÷ 𝐹25

− 𝐹2

× 𝐹74

𝐹45 𝐹5

&&

𝐹34𝐹71

÷

− 𝐹1

÷ ||

𝐹59 𝐹43 𝐹57 𝐹142

Fig. 3. The GP Tree of the Equation 2

B. Fitness Function

Fitness value is calculated based on true positive and false
positive rates, as defined in Equation 3. The true positive rate
is the ratio of applications labeled malicious to all malicious
applications; whereas, the false positive rate is the ratio of
applications labeled malicious to all benign applications. Since
the evolved malware was observed in preliminary results to
mostly have the perfect detection rate (100%) with a high
false positive rate, the weight of the false positive rate was
increased for the fitness function. Having a low false positive
rate is important as much as having a high detection rate, hence
the constant (k=4) in the fitness function is used for decreasing
the false positive rate. The parameters used in GP are given in
Table III (note that the first population is generated randomly).

Fitness V alue = True Positive Rate − k ∗ False Positive Rate (3)

TABLE III
GP PARAMETERS FOR ANTI-MALWARE EVOLUTION

Parameter Value
Goal Developing more resistance and robust detection method against malware

Function Set +, ∗,−, >,<,≥,≤,&&, ||
Terminal Set top 100 API calls, top 40 permissions, 6 static features

Population Size 15
Generation Size 200
Crossover Rate 0.1
Mutation Rate 0.9

Tournament Size 7
Tree Size 17

C. Dataset

This study’s experiments used the MalGenome dataset cre-
ated by Zhou et al. [45] in which malware is classified by

7

their common features. However, only the following 11 mal-
ware families were used in the training: AnserverBot, Base-
Bridge, DroidDreamLight, DroidKungFu1, DroidKungFu2,
DroidKungFu3, DroidKungFu4, Geinimi, GoldDream, Kmin,
and Pjapps. The main reason for using these families was to
ensure a sufficient number of malware in each family for both
training and testing. For benign applications, the most popular
applications were downloaded from GooglePlay. Normally,
Google Play does not allow the download of applications, only
allowing installation on a device. Therefore, a Java program
using Android Market API was developed to download appli-
cations from GooglePlay automatically. The critical feature of
the applications is that they have been downloaded at least
five million times, and it is therefore assumed that these
applications are benign. A total of 500 applications (250
malicious, 250 benign) were employed in the training.

V. MOBILE MALWARE/ANTI-MALWARE COEVOLUTION

Coevolution is evolving better individuals among multiple
species affecting each other. When one species evolves, the
relationship of this species with other species also changes.
Species affect each other in order to evolve better through
each generation. When this philosophy is applied to computer
science, coevolution is used against problems that are aiming
to improve multiple systems simultaneously. These problems
can be cooperative or competitive; however, most problems
in the security field are competitive problems known as the
arms race. There are limited resources in competitive problems
and species compete with each other in order to use more
resources. In a competitive problem, while the fitness value of
one species increases, the fitness value of its rivals decreases,
or vice versa. In the experiment for this study, malicious
software competes with anti-malware. While malware tries
to survive against anti-malware software through evasion, the
anti-malware software aims to detect both known and new
kinds or variants of malware.

Yes

No

Malware
Evolution

Anti-Malware
EvolutionTermination

Criteria

Fitness

Selection Selection

Mutation /
Crossover

Initial population
of malware

Initial population
of anti-malware

Mutation /
Crossover

Best individuals
from each
population

Fig. 4. The Architecture of Malware/Anti-Malware CoEvolution

The conceptual scheme of mobile malware/anti-malware co-
evolution is illustrated in Figure 4. The coevolution framework

is based on malware and anti-malware evolutions as previously
described in Sections III and IV. Two subpopulations were
used in this model; with the first consisting of malware and
the other of anti-malware. The representations of malware and
anti-malware are used as in the malware and anti-malware
evolutions, respectively. There is a variance on how fitness
values are calculated. Two fitness functions were used; one
for malware evolution and the other for anti-malware evolu-
tion. However, in this experiment the fitness function is not
evaluated on a static dataset. The population of each system
is used as an input for evaluating the fitness value of the other
system. Hence, coevolution is carried out on dynamic datasets
in each generation.

The coevolutionary computation algorithm is executed until
the best individual is obtained or a defined number of gen-
erations is reached. Since the former is difficult to obtain in
a timely manner, the termination criterion, which is mainly
employed in GP applications, was employed in this study.
As in the previous experiments, a generation size of 200 was
applied.

Fitness function of malware evolution: This function
evaluates the performance of evolved malware. Besides the
outputs of commercial anti-malware systems along with the
ML-based detection system as previously described, the output
of anti-malware evolution at each generation is also used as
input to the malware evolution. Hence, more evasive malware
could be evolved against more powerful anti-malware systems.
However, there is no guarantee that anti-malware evolved in
the early generations can detect malware successfully; hence,
this could lead to a negative effect on the malware population.
Therefore, a threshold (75%) was applied for the fitness
value of the individuals in the anti-malware subpopulation.
If the individual in the anti-malware subpopulation detects
malware effectively, then it is included in the fitness function
of malware evolution.

Fitness function of anti-malware evolution: The fitness
value of individuals in the anti-malware subpopulation is
evaluated by using the same malware and benign dataset
given in Section IV. Additionally, malware from the malware
subpopulation is also included in order to evolve more robust
anti-malware systems against newly unseen malware. It should
be noted that if the crossover operator is applied on malware
evolution, only executable, malicious malware assured by the
ML-based detection are used in the fitness function.

VI. RESULTS

A. Performance of Coevolved Malware

This section discusses the results of the coevolution ap-
proach. First, outputs were analyzed from the best (n=64) in-
dividuals from coevolved malware after 150 runs that showed
improvement in their fitness value. Only the mutation operator
was applied in the malware evolution in order to be able to run
the system as many times as possible. When crossover is ap-
plied, the evolved applications should be evaluated on dynamic
analysis, which increases the simulation time considerably. For
further information on the effect of each operator on malware
evolution, see the authors’ previous study [8].

8

Table IV shows the detection rate of commercial anti-
malware on coevolved malware. Since some aspects of evo-
lutionary computation is stochastic, the algorithm is generally
run n number of times, and the best individual of these runs
returned as the output. Therefore, the best coevolved malware
in each malware family is taken into account in the results.

It was seen that many of the coevolved malware could
successfully evade commercial anti-malware solutions. The
IKARUS anti-malware solution was the least effective against
unknown malware, besides its high detection performance
against known malware. The most robust anti-malware so-
lution against all types of malware was GData, despite its
low detection rate; even identifying evolving or obfuscating
malware. Commercial anti-malware solutions were also eval-
uated against obfuscated malware by using Zelix KlassMaster
[11] for comparison. The anti-malware solutions were seen
to be very ineffective against obfuscated malware by Zelix
KlassMaster [11]. While this tool obfuscates two methods
in each class by using various obfuscation techniques like
string encryption, flow obfuscation and name obfuscation, this
experiment obfuscated one method of an application with 0.9
mutation probability per iteration.

TABLE IV
THE PERFORMANCE OF COMMERCIAL AVS AGAINST COEVOLVED

MALWARE

Commercial AV Original Coevolved Malware Zelix K. Top 100 Apps (FPR)
AVAST 77.78% 55.56% 22.22% 0.00%
ESET 88.89% 66.67% 88.89% 2.04%

GDATA 66.67% 66.67% 66.67% 0.00%
IKARUS 100.00% 55.56% 55.56% 3.06%
NORTON 100.00% 33.33% 22.22% 0.00%

TRENDMICRO 88.89% 66.67% 66.67% 0.00%

The best coevolved malware in each family against com-
mercial AVs is shown in Table V. It should be noted that the
anti-malware evaluated is some of the most powerful solutions
in the market. In the table, O indicates the original malware,
and C indicates the coevolved version of the same malware,
whilst denotes malware detected by the AV, otherwise it
evaded detection. The results demonstrate that AVs could be
robust to different types of malware. The difference should be
based on their detection method and their signature database,
which are not specified publicly. DroidChameleon [10] shows
that the combinations of some obfuscation techniques should
be applied for a particular malware family in order to evade
detection from a particular anti-malware tool. For example, in
order to evade detection from Trendmicro, two transformations
should be applied to the BaseBridge family: EE (encrypt
native exploit) and RF (rename files). Similarly, at least EE
should also be applied in order to evade detection from ESET.
However, this technique is not fully automatable as stated
in [10]; therefore, this technique was not applied in this
study. Hence, results showed that BaseBridge could not evade
detection from these solutions. BaseBridge, which downloads
its malicious code at runtime, is one of the most evasive
malware families. Other than BaseBridge, all families evades
one or more AVs. The evasiveness of all coevolved malware
can be seen in Figure 5.

TABLE V
THE PERFORMANCE OF AVS AGAINST THE BEST COEVOLVED MALWARE

IN EACH FAMILY

COMM. AV / FAMILY AnserverBot Asroot BaseBridge DroidKungFu1 DroidKungFu2 FakeNetflix GPSSMSSpy HippoSMS NickySpy
O C O C O C O C O C O C O C O C O C

AVAST × × × × × ×
ESET × × × ×

GDATA × × × × × ×
IKARUS × × × ×
NORTON × × × × × ×

TRENDMICRO × × × ×

AVAST ESET GDATA IKARUS NORTON TRENDMICRO
0

16

32

48

64

N
u

m
b

e
r

o
f

M
a

lw
a

re
 S

a
m

p
le

s

evasive

unchanged

Fig. 5. The Performance of AVs against All Coevolved Malware

The results in Table V could be improved by adding more
obfuscation techniques; such as file and package renaming
which are known to be very effective techniques to evade
detection. When these techniques are simply applied to the
evolved malware, more evasions from the AV tools are noticed
as given in Table VI. For example, it is observed that the Nick-
Spy and HippoSMS families are weak against both techniques.
Again, by applying package renaming to the Asroot family,
the AVAST solution was deceived. Furthermore, by applying
package renaming technique, all families evade detection from
GDATA, the most robust anti-malware solution in Tables
IV and V. This result supports that different AV tools are
vulnerable to different obfuscation techniques. However, the
application of these techniques could result in modification of
more than one node in the GP tree. On the other hand, other
obfuscation techniques used in the mutation operator change
only one node at a time. Even when applicable to GP, the
researchers elected to apply more suitable obfuscation tech-
niques for GP at first. Therefore, more obfuscation techniques
such as file, method, and package renaming, which could affect
more nodes in one mutation operator, could be applied to all
nodes in the evolved malware as applied in previous studies
[9][10], which is also an automatable step.

TABLE VI
THE PERFORMANCE OF AVS AGAINST THE BEST COEVOLVED MALWARE

IN EACH FAMILY AFTER APPLYING MORE OBFUSCATION TECHNIQUES

COMM. AV / FAMILY AnserverBot Asroot BaseBridge DroidKungFu1 DroidKungFu2 FakeNetflix GPSSMSSpy HippoSMS NickySpy
O C O C O C O C O C O C O C O C O C

AVAST × × × × × × × × ×
ESET × × × ×

GDATA × × × × × × × × × × × ×
IKARUS × × × ×
NORTON × × × × × ×

TRENDMICRO × × × ×

In order to see the capability of the proposed system
against Zelix KlassMaster, the best coevolved malware in each
malware family in Table V was compared with its obfuscated
version by Zelix KlassMaster in Table VII. Original indicates

9

the number of AV solutions (out of six) that detect the
original malware. With comparable results, it is hard to state
one method as being superior over another. However, when
more obfuscation techniques are applied, coevolved malware
provides slightly better results than Zelix KlassMaster (5
more evasions). It is observed that Zelix KlassMaster does
not change the package names in the manifest file, hence
it becomes less effective than package renaming technique
applied in this study.

TABLE VII
THE COMPARISON BETWEEN COEVOLUTION AND ZELIX KLASSMASTER

Family Malware Original Coevolved Zelix K.
AnserverBot 1de1d5f21a4afefb7c345187cd391ab83589f85a 6 4 4

Asroot 0c059ad62b9dbccf8943fe4697f2a6b0cb917548 5 4 3
BaseBridge 6d5ed5ca8434a571f21fc0770f4f8ba689b20fed 5 5 4

DroidKungFu1 02d2e109d16d160f77a645f44314fedcdbcd6e18 6 5 6
DroidKungFu2 1fce3240ea70b77e0d11c009788ae7cea5c87f77 5 4 4

FakeNetflix 0936b366cbc39a9a60e254a05671088c84bd847e 5 1 2
GPSSMSSpy af727f5e23e69bfe2321f5d556c63f741dae8283 3 1 0
HippoSMS bd7e85f5a0c39a9aeecc05dbc99a9e5c52150ba6 6 2 2
NickySpy 1ce27fa92a313da39f1e31e97d3ac05a8d6ffe78 6 5 4

(Co)evolved malware has evasive features added in some
parts of the code that helps it to evade anti-malware systems.
Since coevolved malware is evaluated against both commercial
AVs and coevolved anti-malware, the coevolution mechanism
has a potential in developing more evasive malware than the
evolution mechanism naturally. This output was also observed
in our experiments.

It was also analyzed as to whether or not these (co)evolved
malware could be detected by the detection systems developed
by (co)evolutionary computation. While GpAV shows the best
individual evolved by anti-malware evolution in Table VIII,
CoAV represents the best anti-malware solutions evolved by
malware/anti-malware coevolution. The best individuals were
selected among 150 runs. While GpAV shows very high
accuracy on known attacks, it is ineffectual against evolved
malware. CoAV-1 and CoAV-2 show the perfect detection rate.
It should be noted that coevolved anti-malware are only tested
on coevolved malware if they did not coevolve in the same
running. However, the (co)evolved malware used in training
and testing could show a degree of similarity, since they are
obfuscated through the same tool. Therefore, the coevolved
anti-malware systems are also evaluated against variations of
malware generated by other tools as shown in the subsequent
section.

It is difficult to have a detection system with both a perfect
detection rate and a perfect false positive rate as there is
a clear trade-off between detection rate and false positive
rate. However, the authors believe that the consequences of
letting a malware be installed on a device is more critical
than preventing the installation of benign applications. Fur-
thermore, the proposed static analysis-based detection system
can be complemented with other solutions such as sending
suspicious applications for dynamic analysis. Whitelisting,
where commercial anti-malware solutions mainly apply not
to detect well-known applications as grayware/malware, can
also be applied in order to decrease the false positive rate.
In choosing distinguished features of malicious applications,
DroidAPIMiner [27] and SAFEDroid [48] were referred to as
they achieve a high detection rate and a low false positive
rate. The authors believe that accuracy of coevolved detectors

could be increased by way of enlarging the training size [50].
Moreover, additional features could be introduced for a lower
false positive rate by accepting lower detection rate, as seen
in [13].

TABLE VIII
THE PERFORMANCE OF (CO)EVOLVED ANTI-MALWARE SYSTEMS

Detection Rate False Positive Rate
Anti-Malware Evolved Malware Coevolved Malware Top 100 Top 1000

GpAV 48.44% 42.86% 0.00% 1.58%
CoAV-1 100.00% 100.00% 5.00% 5.59%
CoAV-2 100.00% 100.00% 7.00% 12.09%

Finally, periodic updates to commercial anti-malware solu-
tions were applied in order to see their effect on coevolved
malware over time. Updates were applied that were released
between 2014 and September 2017 for each anti-malware
in Table II. Even though GDATA was updated, their recent
updates were not received and were therefore excluded from
the results. When an original malware is out in the wild, anti-
malware solutions also take precautions in detecting it, as
shown in Figure 6. Their detection rates on coevolved malware
also increase in time as shown in Figure 7. It was interesting to
note that their solutions develop over time for malware similar
to coevolved malware in this study.

AVAST IKARUS NORTON TRENDMICRO ESET GDATA
0

20

40

60

80

100

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

2014

2015

2016

2017

Fig. 6. The Detection Rate of Original Malware in Time

AVAST IKARUS NORTON TRENDMICRO ESET GDATA
0

20

40

60

80

100

D
e

te
c
ti
o

n
 R

a
te

 (
%

)

2014

2015

2016

2017

Fig. 7. The Detection Rate of Coevolved Malware in Time

B. Performance of Coevolved Anti-Malware

The proposed detection system was also evaluated against
new variants of existing malware (see Table IX). A new dataset

10

of obfuscated malware called PRAGuard dataset was released
in a recent study [12]. PRAGuard contains malware from the
MalGenome [45] and the Contagio datasets [51], and then
different obfuscation techniques were applied. There are trivial
techniques (TRI) which only affect strings such as renaming
of classes/methods, and non-trivial techniques that both affect
string and bytecode of executables. The non-trivial obfuscation
techniques used in the PRAGuard dataset are string encryption
(SE), reflection (REF), and class encryption (CE). While some
techniques applied in PRAGuard and the current study are
common, there are also different techniques as well, and
combinations of different obfuscation techniques are also
applied in the experiments. The study tested the proposed
detection system on the malware obfuscated by all techniques
in PRAGuard in order to check the system. The PRAGuard
dataset contained 608 malware, whose families are used in
the malware (co)evolution. Results show that coevolved anti-
malware systems perform superior on obfuscated malware;
almost achieving a perfect detection rate, while commercial
anti-malware solutions other than GDATA missed most of
the obfuscated malware. Only some malware (n=17) from
PRAGuard was able to be installed on emulators in order to
evaluate them against commercial anti-malware.

TABLE IX
THE DETECTION RATE OF ANTI-MALWARE ON NEW VARIANTS OF

MALWARE

Anti-Malware Original PRAGuard (All) Zelix K. Drebin
CoAV-1 94.08% 98.85% 94.08% 86.58%
CoAV-2 96.38% 100.00% 98.16% 95.95%
AVAST 95.35% 0.00% 75.92% 99.22%
ESET 99.00% 11.76% 94.49% 97.67%

GDATA 66.61% 64.71% 60.00% 86.56%
IKARUS 100.00% 17.65% 74.29% 100.00%
NORTON 73.09% 11.76% 18.37% 95.87%

TRENDMICRO 98.84% 11.76% 83.27% 97.16%

The effect of each obfuscation technique employed in PRA-
Guard dataset can be seen in Table X. Coevolved anti-malware
detects most malware obfuscated by each technique including
class encryption. Class encryption, which completely encrypts
and compresses each class, is claimed to be the most powerful
and advanced technique employed in the PRAGuard dataset
[12].

TABLE X
THE DETECTION RATE OF COEVOLVED ANTI-MALWARE ON PRAGUARD

DATASET

Anti-Malware CE REF SE TRI TRI+SE TRI+SE+REF TRI+SE+REF+CE
CoAV-1 98.85% 93.91% 93.91% 93.91% 94.24% 94.24% 98.85%
CoAV-2 93.09% 96.55% 96.55% 96.55% 96.55% 96.38% 100.00%

The proposed anti-malware systems were also tested on
malware obfuscated by Zelix KlassMaster, a well-known Java
obfuscator [11] as shown in Table IX. The proposed system
was also found to be very effective against obfuscated mal-
ware, while commercial anti-malware other than ESET missed
many malware obfuscated by Zelix KlassMaster, and did not
show any improvement over time. Only AVAST showed mild
improvement (6.25%) against malware obfuscated by Zelix
KlassMaster over time.

The proposed systems were also evaluated against the new
variants of malware and 0-day attacks in the Drebin dataset

[13]. The six families in Drebin; BaseBridge, DroidKungFu,
DroidDream, Geimini, GoldDream, and Kmin have many
more samples than the MalGenome dataset. Since these sam-
ples (n=490) are not used in the coevolution training, they are
unknown to the proposed system. The results demonstrate that
the coevolved anti-malware system effectively detected new
variants of known attacks. Commercial anti-malware solutions
are also very effective against the Drebin dataset. This was
an expected result, since malware in the dataset is quite well
known since its release in 2014. The performance of coevolved
malware on each family in the Drebin dataset can be seen in
Table XI. The tested (co)evolved anti-malware systems were
the least effective against the BaseBridge, DroidKungFu and
GoldDream families. It should be noted that the BaseBridge
and DroidKungFu families are known to be difficult to detect
due to their loading of malicious code at runtime [52]. Gold-
Dream might also require dynamic analysis for detection in
order to observe its bot behavior.

TABLE XI
THE PERFORMANCE OF COEVOLVED ANTI-MALWARE SYSTEMS ON

DREBIN DATASET

Anti-Malware BaseBridge DroidDream DroidKungFu Geinimi GoldDream Kmin
CoAV-1 81.81% 97.05% 81.03% 96.00% 56.52% 100.00%
CoAV-2 86.36% 100.00% 95.90% 96.00% 91.30% 97.92%

To sum up, in this study, new variants of malware and
new anti-malware systems are generated automatically by
using coevolutionary-based computation techniques. One of
the most important characteristics of the coevolution process
is that it is fully automated, so long as only mutation operator
is applied. It is shown that coevolved malware are more
evasive than their original versions, hence they could evade
from commercial anti-malware systems. The results show that
these security solutions could be ineffective against different
obfuscation techniques. Hence, coevolved malware could be
more evasive by adding more obfuscation techniques into
the coevolution system. Furthermore, it is shown that over
time, coevolved malware could be detected by such solutions.
Therefore, coevolved malware shows similarity to malware in
the wild, and security companies need to develop their anti-
malware solutions against such attacks. The results also show
that developed anti-malware systems are very effective against
new variants of malware and obfuscated malware, and much
better than commercial anti-malware systems. Since there is
a significant growth in the number of new Android malware
variants [2], automatically improving anti-malware systems as
performed in the current study becomes vital.

VII. DISCUSSION

This study investigated the use of coevolutionary compu-
tation techniques for the development of malicious and anti-
malware software. It is believed to be the first application of
coevolutionary computation to systems security. Although the
proposed approach produced promising results from the point
of malware and anti-malware evolution, the system also has
some limitations which are discussed in the following.

Fully automated: The aim was to develop a fully automated
system. GP has already been applied for malware evolution in

11

some approaches in the literature. However, these approaches
are not fully automated and only proposed for specific types
of attacks. A security expert is generally needed to analyze
the code and to extract parameters that changes in different
variants of malware’ codes, so a representation of the problem
could be constructed for GP. On the other hand, the current
study used the CGs of malicious applications, obtained au-
tomatically, as inputs to the GP algorithm in the malware
evolution. Then, new applications were evolved by applying
genetic operators such as crossover and mutation. Here, the
mutation operator does not change the functionality of the
code, hence its maliciousness. On the other hand, the crossover
operator could change the malicious code in an application.
In order to assure the maliciousness of an application, a ML-
based detection system was developed. However, this detection
system does not provide perfect detection, the same as any
system developed for detection of malware either in academia
or the security industry. It also has certain limitations such
as triggering malicious code and running for a limited time
period. There are a few precautions that could be taken in
order not to have to analyze evolved malware manually. More
than one detector could be used for labeling applications as
malicious or benign, which would increase the credibility of
the system. Excluding the crossover operator would solve the
problem of manually analyzing some evolved malware. In
the authors’ previous study [8], malware was evolved using
only the mutation operator or the mutation-crossover operators
together, which shows that the mutation operator is sufficiently
powerful to generate evasive malware. Furthermore, GP only
outputs legal applications with respect to its ability to eliminate
non-compiled and non-executable malware.

Sufficient number of malware: This study used a limited
number of malware families existing in the MalGenome
dataset [45]. In order to have adequate sample numbers both
for training and testing, the larger malware families were
chosen in the dataset. Samples were also selected that did not
include recursive methods, since GP accepts trees as inputs,
not graphs. This could limit the applicability of the proposed
approach to certain kinds of malware, but not all. However,
this could be overcome by replacing recursive with iterative
methods before obtaining the CGs.

VIII. CONCLUSION

Mobile malware is one of today’s biggest security issues.
Malware writers have become more attracted to mobile de-
vices in recent years since these devices have become a
widespread, integral part of daily life. Security firms also
release solutions for mobile devices. Since mobile devices
have certain power limitations, most proposed anti-malware
solutions in the market rely on static analysis techniques.
However, these techniques could be more open to new attacks
or even new variants of known attacks than dynamic analysis
techniques. Therefore, these techniques need to be evaluated
against unseen attacks, which is one of the aims of this current
study. New mobile malware was successfully generated from
known malware by using GP. These attacks are seen to be quite
effective against the popular security solutions in the market.

One of the most powerful features of the proposed approach is
its applicability to any mobile malware. In order to evolve new
variants of malware, analysis of the malware or knowledge of
a security expert is no longer needed, with this approach able
to work as fully automated. In the future, functionality could
be extended by adding dynamic code-loading features [23], or
adding method renaming technique in order to generate more
evasive attacks. Moreover, the similarity of evolved malware
to the original malware could be taken into account in the
fitness function as in [7].

The main aim of this study was to investigate the use of
coevolutionary computation techniques on the development of
mobile malware and anti-malware. The researchers are aware
of no other approach in the literature that can do this. By using
coevolutionary computation techniques, the proposed system
evolved more evasive malware and more robust anti-malware
against unseen attacks. The anti-malware system developed
shows a superior performance on new datasets, which reveals
its robustness to new attacks. In the future, work could be
undertaken to decrease its false positive rate by running the
algorithm against a larger training set, and exploring more
features for detection.

The possibility of malware/anti-malware coevolution has
always been a point of academic interest [33]. The authors
believe that this has been successfully achieved in this study.
Researchers could also apply these techniques to new areas to
be explored in other security areas such as intrusion detection
and prevention, and employ generated intrusions in penetration
testing.

ACKNOWLEDGMENT

This study is supported by the Scientific and Technological
Research Council of Turkey (TUBITAK-112E354). We would
like to thank TUBITAK for its support.

REFERENCES

[1] K. Lab. (March 2016) The volume of
new mobile malware tripled in 2015.
http://www.kaspersky.com/about/news/virus/2016/The Volume of New
Mobile Malware Tripled in 2015.

[2] Symantec. (April 2016) Internet security threat report.
https://www.symantec.com/content/dam/symantec/docs/reports/istr-
21-2016-en.pdf.

[3] H. G. Kayacık, M. Heywood, and N. Zincir-Heywood, “On evolving
buffer overflow attacks using genetic programming,” in Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation,
ser. GECCO ’06, 2006, pp. 1667–1674.

[4] H. G. Kayacık, A. N. Zincir-Heywood, M. I. Heywood, and S. Burschka,
“Generating mimicry attacks using genetic programming: A benchmark-
ing study.”

[5] H. G. Kayacık, A. N. Zincir-Heywood, and M. I. Heywood, “Can a good
offense be a good defense? vulnerability testing of anomaly detectors
through an artificial arms race,” Applied Soft Computing, vol. 11, no. 7,
pp. 4366–4383, Oct. 2011.

[6] H. G. Kayacık, A. N. Zincir-Heywood, and M. Heywood, “Evolutionary
computation as an artificial attacker: generating evasion attacks for
detector vulnerability testing,” Evolutionary Intelligence, vol. 4, pp. 243–
266, 2011.

[7] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq, “Evolvable
malware,” in Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, ser. GECCO ’09, 2009, pp. 1569–1576.

[8] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in European conference on the applications of
evolutionary computation. Springer, 2015, pp. 745–756.

12

[9] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “Adam: An automatic
and extensible platform to stress test android anti-virus systems,” in
Detection of Intrusions and Malware, and Vulnerability Assessment, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[10] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: Evaluating android
anti-malware against transformation attacks,” in Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communica-
tions Security, ser. ASIA CCS ’13, 2013, pp. 329–334.

[11] AV-TEST. (February 2016) Zelix klassmaster: Java obfuscator - zelix
klassmaster. http://www.zelix.com/.

[12] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth
attacks: An extended insight into the obfuscation effects on android
malware,” Computers & Security, vol. 51, pp. 16–31, 2015.

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket.” in NDSS, 2014.

[14] M. Christodorescu and S. Jha, “Testing malware detectors,” in Proceed-
ings of the 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2004). Boston, MA, USA: ACM Press,
Jul. 2004, pp. 34–44.

[15] J. A. Morales, P. J. Clarke, Y. Deng, and B. Golam Kibria, “Testing and
evaluating virus detectors for handheld devices,” Journal in Computer
Virology, vol. 2, pp. 135–147, 2006.

[16] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, Dec 2007, pp. 421–430.

[17] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2010 International Conference on, Nov 2010, pp. 297–300.

[18] M. Christodorescu, J. Kinder, S. Jha, K. S., V. H., and T. U. Mnchen,
“Malware normalization,” Tech. Rep., 2005.

[19] L. Wu and Y. Zhang, “Research of the computer virus evolution model
based on immune genetic algorithm,” in Proceedings of the 2011 10th
IEEE/ACIS International Conference on Computer and Information
Science, ser. ICIS ’11, 2011, pp. 9–13.

[20] F. Shahzad, M. Saleem, and M. Farooq, “A hybrid framework for
malware detection on smartphones using elf structural & pcb runtime
traces,” Tech. Report TR-58 FAST-National University, Pakistan, Tech.
Rep., 2012.

[21] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq, “Using formal
grammar and genetic operators to evolve malware,” in Proceedings
of the 12th International Symposium on Recent Advances in Intrusion
Detection, ser. RAID ’09, 2009, pp. 374–375.

[22] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang,
and T. Chen, “Mystique: Evolving android malware for auditing anti-
malware tools,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. ACM, 2016, pp. 365–376.

[23] Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, and J. Zhang,
“Auditing anti-malware tools by evolving android malware and dynamic
loading technique,” IEEE Transactions on Information Forensics and
Security, 2017.

[24] A. I. Aysan and S. Sen, “Do you want to install an update of this
application? a rigorous analysis of updated android applications,” in
Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd
International Conference on. IEEE, 2015, pp. 181–186.

[25] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 627–638.

[26] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 235–245.

[27] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in Security and Privacy in
Communication Networks. Springer, 2013, pp. 86–103.

[28] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 281–294.

[29] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A.
Yüksel, S. A. Camtepe, and S. Albayrak, “Static analysis of executables
for collaborative malware detection on android,” in Communications,
2009. ICC’09. IEEE International Conference on. IEEE, 2009, pp.
1–5.

[30] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in Computer Software and Applications Conference (COMP-
SAC), 2015 IEEE 39th Annual, vol. 2. IEEE, 2015, pp. 422–433.

[31] A. Martı́n, H. D. Menéndez, and D. Camacho, “Mocdroid: multi-
objective evolutionary classifier for android malware detection,” Soft
Computing, pp. 1–11, 2016.

[32] T. A. Le, T. H. Chu, Q. U. Nguyen, and X. H. Nguyen, “Malware
detection using genetic programming,” in Computational Intelligence
for Security and Defense Applications (CISDA), 2014 Seventh IEEE
Symposium on, Dec 2014, pp. 1–6.

[33] C. Nachenberg, “Computer virus-coevolution,” Communications of the
ACM, vol. 50, no. 1, pp. 46–51, 1997.

[34] S. Sen, “A survey of intrusion detection systems using evolutionary
computation,” Bio-Inspired Computation in Telecommunications, pp. 73–
94, 2015.

[35] M. Ostaszewski, F. Seredynski, and P. Bouvry, “Coevolutionary-based
mechanisms for network anomaly detection,” Journal of Mathematical
Modelling and Algorithms, vol. 6, no. 3, pp. 411–431, 2007. [Online].
Available: http://dx.doi.org/10.1007/s10852-007-9061-x

[36] A. A. tool for reverse engineering Android apk files. (March 2016)
https://code.google.com/p/android-apktool/.

[37] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[38] ECJ. (March 2016) A java-based evolutionary computation research
system. http://cs.gmu.edu/ eclab/projects/ecj/.

[39] H. B. Ozkan, E. Aydogan, and S. Sen, “An ensemble learn-
ing approach to mobile malware detection,” Hacettepe Univer-
sity, Department of Computer Engineering, Tech. Rep., 2014,
http://eprints.cs.hacettepe.edu.tr/7/.

[40] Droidbox. (Visited July 2017) [Online]. Available:
https://code.google.com/p/droidbox/.

[41] Monkey. (Visited July 2017) [Online]. Available:
https://developer.android.com/studio/test/monkey.html.

[42] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?(e),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 429–440.

[43] AV-TEST. (August 2014) The independent it-security institute.
http://www.av-test.org/en/home/.

[44] GenyMotion. (March 2017) Genymotion android emulator fast easy
anywhere. https://www.genymotion.com/.

[45] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, ser. SP ’12, 2012, pp. 95–109.

[46] Google. (March 2016) Google play. https://play.google.com/store.
[47] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review

on feature selection in mobile malware detection,” Digital Investigation,
vol. 13, pp. 22–37, 2015.

[48] S. Sen, A. I. Aysan, and J. A. Clark, “SAFEDroid: Using structural
features for detecting android malwares,” in Proceedings of the 13th EAI
International Conference on Security and Privacy in Communication
Networks (SecureComm 2017 Workshops), LNICST 239. Springer,
2018, pp. 255–270.

[49] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, “Genetic
programming: An introductory tutorial and a survey of techniques and
applications,” University of Essex, UK, Tech. Rep. CES-475, 2007.

[50] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android
malware detection approach using bayesian classification,” in Advanced
Information Networking and Applications (AINA), 2013 IEEE 27th
International Conference on. IEEE, 2013, pp. 121–128.

[51] Contagio. (March 2016) contagio. http://contagiodump.blogspot.com.tr/.
[52] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:

Android malware detection through manifest and api calls tracing,” in
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on. IEEE, 2012, pp. 62–69.

