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Abstract—Source code analysis techniques used for automated
software testing are insufficient to find security flaws in pro-
grams. Therefore, security researchers have been employing also
fuzzing techniques for finding bugs and vulnerabilities in target
programs. With the proliferation of mobile devices, researchers
have started to explore the use of fuzz tests on mobile platforms.
While most of these studies are GUI-based and implemented
at the application level, the detection of vulnerabilities in lower
levels is very critical due to affecting a broader range of Android
users. Therefore, in this study, a new approach is proposed to
fuzz testing for Android application installation process. The use
of a search heuristic namely genetic algorithms is investigated
for efficient fuzz testing on DEX (Dalvik EXecutable) files. The
proposed black box fuzzing tool called GFuzz is shown to be able
to produce more unique crashes in Android in a shorter time
than recently proposed similar approaches and to detect new and
existing bugs.

Index Terms—Android, security, fuzzing, search-based soft-
ware testing, genetic algorithms

I. INTRODUCTION

Technology has evolved towards mobile devices with the
increased demands for instant communication such as video
calling, messaging and surfing on the Internet. According to a
recent study conducted by Hootsuite and We Are Social [1], the
number of mobile users in the world has exceeded 5 billions
in 2018. With the advancing technology, the use of mobile
devices such as smart phones, smart watches, tablets, ad hoc
devices has increased rapidly and the security of these devices
and their users has become very important.

With mobile devices having become an integral part of
modern lifes, attackers focus more and more on harming
mobile devices and stealing private information from them.
Security weaknesses caused by coding errors could be ex-
ploited by malicious software that results in mobile devices
to be compromised and mobile data to be leaked for various
purposes. According to the Android security report 2017 [2],
since 2014 the Android Security Improvements (ASI) program
has fixed nearly 383,000 vulnerable apps in Google Play,
which is caused by 27 different types of vulnerabilities. Only
in 2016 [3], 655 vulnerabilities, where 133 of them are critical
are addressed by Android. Therefore, security researchers,
mobile operating system and application developers have been
exploring on new methods for detecting and closing these
software bugs and vulnerabilities before hackers exploit them

and affect billions of users. Fuzzing is a software testing
technique that has been extensively used for this purpose since
it was introduced by Barton P. Miller in 1998 [4].

Fuzzing (semi-)automatically tests the robustness of a pro-
gram by providing invalid or semi-valid, unexpected, or ran-
dom data as inputs to the program. It has been applied to
many platforms from embedded devices to desktop computers
in order to find software bugs in these platforms. Since 2014,
studies on the automatic testing of Android applications has
accelerated with the increasing usage of mobile devices [5].
However most of these studies are at the application level,
there are only few studies on fuzzing for Android application
installation process [6] and compiler fuzzing [7] [8] that helps
to find vulnerabilities affecting many devices independent of
applications running on them. Some of the bugs found at
this stage could cause the compiler to crash, some others
cause more serious errors such as memory read/write, null
pointer that is occurred at runtime during the execution of the
generated native code [9].

In this study, a new evolutionary fuzzing approach based
on genetic algorithms for Android application installation
process is introduced. Such meta-heuristics have been proven
to be useful for generating test data and be effective for
optimizing the testing process [10]. Moreover, algorithms
employing heuristics are shown to perform better than fully
random sampling [11]. Therefore, while random exploration
strategies are surprisingly shown to be quite effective in testing
in Android [12], the use of genetic algorithms are explored for
effective and efficient fuzz testing in Android in this study. A
new Generic algorithm-based Fuzzing (GFuzz) is introduced
for finding effective test cases from an infinite search space
within limited time.

GFuzz has been executed on an Android emulator for two
weeks and has produced 20,452 crashes in total in this time,
where 305 of them are unique. Among these crashes, the
ones produced critical error signals (SIGSEGV, SIGABRT,
SIGFPE and SIGILL) are manually analyzed. One of these
crashes is found to be a zero-day vulnerability triggered in a
native library [13]. So, in this study, by fuzzing DEX files,
a vulnerability that affects many Android users regardless of
the applications they have been using is found. The proposed
approach is also compared with other DEX fuzzing techniques



in the literature, namely Droid-FF [6], DexFuzz [8] and zzuf
[14]. While Droid-FF produces the biggest number of crashes
in two weeks, GFuzz is shown to be more efficient by means of
producing more unique crashes in the same period of time by
giving higher fitness values for unique crashes in the evolution
process.

The remainder of this paper is organized as follows. Section
2 discusses the related works in the literature, and outlines
existing testing tools of Android applications. An overview of
genetic algorithms is given in Section 3. Section 4 introduces
GFuzz and gives the implementation details. The experimental
results are discussed in Section 5. Finally, the study is con-
cluded in Section 6.

II. RELATED WORK

The studies on automatic testing of Android applications has
accelerated since 2014 [5]. However, most of these studies per-
form their tests at the application level and target GUI/events,
intercomponent/interapplication communications [5].

The existing test input generation tools for Android has
been compared based on four metrics: code coverage, ability
to detect faults, ability to work on different platforms, and ease
of use [12]. Surprisingly, tools based on random exploration
strategies such as Monkey [15] and Dynodroid [16] show the
best performance. It is shown that most of the behavior can
be exercised by generating only UI events. Therefore, the
random-based approaches are generally effective enough to
cover the application code [12]. However, mobile malware
could also be triggered by systems events. Therefore, input
generation tools that could generate system events such as
Dynodroid [16] and ACTEve [17] stand out in terms of trigger-
ing malicious activities. Targeted input generation tools such
as SmartDroid [18], IntelliDroid [19], DroidBot [20] could
also be referred for triggering such malicious applications.

Monkey as being the most widely used tools is also analyzed
on an industrial app and shown to be very ineffective [21]-
[22]. Moreover, the same authors has proposed some improve-
ments over Monkey [21]- [22]. Since real-world industrial
applications tend to have more complex implementations, six
tools are compared on industrial apps [23]. While Monkey [15]
performs the highest activity coverage and Sapienz [24]
achieves the highest method coverage, Stoat [25] is the best
tool at triggering unique crashes. However, a recent model-
based study called AIMDROID [26] is claimed to outperform
Monkey [15] and Sapienz [24] in activity, method and instruc-
tion coverage by focusing on exploring new activities with
controlling the length of test cases.

In the literature, there have been few efforts in order to
identify vulnerabilities at the byte-code level that are critical
and affect a broader audience. With the fully replacement of
Dalvik VM with a new runtime environment called ART in
2015, few studies have been proposed to fuzzing ART. The
first and only academic study called DexFuzz [8] combines
domain-aware binary fuzzing with differential testing to find
bugs in ART. DexFuzz applies mutation-based fuzzing and
analyze the effects of different DEX mutations. Another study

TABLE I
SUMMARY OF RELATED STUDIES

Fuzzers Box Approach Target
Monkey [15] black random-based apps

Dynodroid [16] black random-based apps
EvoDroid [30] white search-based apps
Sapienz [24] gray search-based apps

Stoat [25] black model-based apps
AIMDROID [26] black model-based apps

DexFuzz [8] black mutation-based installation process
GFuzz black search-based installation process

targets to fuzz dex2oat (ART) and dexopt (KitKat) methods
for the application install process in Android [27] using the
Radamsa fuzzer [28] and finds one critical vulnerability af-
fecting the Lollilop version. Another mutation-based approach
targets also dex2oat and claims to have found important
crashes by applying mutations to almost all sections of DEX
files [7]. Droid-FF targets also DEX files and proposes a
mostly automated approach by using dumb and intelligent
fuzzing techniques [6]. Droid-FF claims to find a lot of crashes
by applying two techniques namely dumb fuzzing using the
Radamsa [28] and pyzuff tools and generation-based fuzzing
using the PEACH fuzzer [29].

Search-based software testing, which formulates testing as
an optimization problem, has been extensively used in the liter-
ature [10]. In the last couple of years, search-based techniques
have also appeared for the Android platform [5]. The first
evolutionary testing framework for Android called EvoDroid
[30] is a white-box approach. EvoDroid firstly extracts call
graph model (CGM) of the application, then breaks each path
in the CGM into segments. It aims to cover as many unique
CGM paths, hence maximize the code coverage by searching
each segment separately. A recent study called Sapienz [24]
has proposed the first multi-objective search-based testing
approach that aims to maximize code coverage and fault
revelation, while minimizing the length of test sequences.
Another multi-objective approach seeks to minimize the whole
test suite for re-usability besides to maximize code coverage
and fault detection [31].

In Table I, the most effective studies in the literature and the
recent studies closest to our approach are summarized. Please
note that only academic studies are included in the table. The
main contribution of the current study is to propose an efficient
fuzzing tool by using genetic algorithms for the application
installation process of Android. By fuzzing DEX files, some
critical bugs are found in Android. Moreover, such bugs and
unique crashes are discovered in a shorter time than similar
approaches in the literature. According to the taxonomy of
Android testing [5], the areas in which this study takes place
are: security (objectives), general (targets), system (levels),
black-box (types), emulator (environments) and search-based
(methods).



III. GENETIC ALGORITHM

Genetic algorithm is a population-based optimization
algorithm, which is inspired from Darwinian’s evolutionary
theory. The algorithm starts with generating a population
of individuals that are representative of candidate solutions
for the problem. Each solution is represented as strings
(usually string of 1s and 0s) in GA [32]. The first population
is in general randomly initialized. Each individual in the
population is evaluated by a fitness function that shows how
well this individual has solved the problem or how close it
is to the solution. Generation-by-generation, the population
is transformed into a new, hopefully better, population of
individuals by using genetic operators. The general steps of
genetic algorithms are given below.

initialize a population
while termination criterion not satisfied do

execute and evaluate fitness value of each individual
apply genetic operators to the individuals
create new population

end
return best-of-run individual

Algorithm 1: General steps of GA
Genetic operators are used to create new individuals using

the selected individuals from the old population based on their
fitness values. It aims to create better individuals in the next
generations by using/modifying the better individuals in the
current populations as in natural evolution. Application of
these operators differentiate the evolutionary computation from
random search. The main variation operators are crossover
and mutation. Crossover mimics the exchange of DNA under
sexual production to generate new individuals. This binary
operator generates two child individuals by swapping some
part of two selected parent individuals. Mutation is an unary
operator that mimics natural mutation by changing selected
individuals to introduce diversity into the population. New
populations are generated iteratively until the termination
condition is satisfied. For termination, the algorithm is run
until the maximum number of generations is reached or a
solution of sufficient quality is obtained.

IV. THE METHOD

In this study, a fuzzer has been proposed to detect security
vulnerabilities in the disassembler used during the installation
of Android applications. Therefore, automatically generated
DEX files using the genetic algorithm are sent to the dexdump
disassembler tool in the emulator, which is located under /sys-
tem/xbin/. Dexdump creates Dalvik Virtual Machine bytecode
from dex files during the application installation process. The
conceptual schema of the proposed fuzzer is presented in
Fig. 1.

Firstly a group of DEX files obtained from random ap-
plications are given as the initial population to the genetic
algorithm. In each generation of the evolution process, such
files are executed on the emulator and assigned to a fitness

Fig. 1. Conceptual schema of GFuzz

value according to the flow graph proposed in the subsequent
subsection. The new DEX files are generated based on these
values. All generated files in time are also logged for differen-
tiating unique crashes. The details of the evolution is presented
below.

A. Representation and Genetic Operators

As shown in Fig. 1, DEX files (classes.dex) are inputs of the
genetic algorithm. Android application files are compiled into
dex files which are used to hold a set of class definitions and
their associated adjunct data [33]. By default, each application
has a single classes.dex file [34]. In this study, classes.dex
files of randomly collected applications are taken as the first
population in genetic algorithm.

The DEX file format is given in Table IV. New populations
are generated at each generation by applying genetic operators
to the string ids fields of the DEX files, which are identifiers
for all the strings used by the file. The main reason of using
the string ids field in the evolution is to be able to produce
vulnerabilities such as buffer overflow vulnerabilities that is
very critical and exploitable. However, other fields such as
field ids, method ids could be easily added to the evolution
process in the future. In the crossover operator, two new
individuals are generated by exchanging the fields of two
selected parent individuals. In the mutation operator, random
number of bits at random position in the string ids field of a
selected individual is changed.

When new individuals are generated through generations,
the header of the newly generated DEX file should be changed.
The following fields of a DEX header file are static and cannot
be modified : magic, endian tag and header size. If one of these
fields are modified, the file is rejected by dexdump. While
such fields cannot be changed, the file size, checksum and
SHA-1 signature fields should be recalculated and updated
respectively when a modification has been made to the DEX
file. Hence, these modified files by GA are repaired by using
the open source dexRepair tool [35]. Then, newly generated
DEX files are sent to the Android emulator and evaluated. The
outputs of dexdump is analyzed for calculating fitness value of
each individual. The better the fitness value of an individual,
the more likely it is to be selected as a parent for being applied
in genetic operators.



TABLE II
DALVIX EXECUTABLE FORMAT

header the header
string ids string identifiers
type ids type identifiers list
proto ids method prototype identifiers list
field ids field identifiers list
method ids method identifiers
class defs class definitions list
data data area

TABLE III
GA PARAMETERS

Population Size 20
Generations ≈5000 per day

run for 2 weeks
Crossover Probability 0.2
Mutation Probability 0.5
Selection Mechanism Tournament (size:7)

The major GA parameters are given in Table III. Population
size, which is the number of DEX files given as inputs in the
study, is the number of individuals in a population in any
generation. Generations defines when (at which generation)
the evolution process stops. Crossover probability shows how
likely individuals selected for mating will exchange elements.
The parameter mutation probability shows how likely each part
of an individual’s genotype elements will be altered. Since the
mutation operator increases the diversity of the population,
the mutation probability is chosen to be bigger than the
crossover probability. The selection mechanism provides a
great opportunity for fitter individuals to survive by picking out
individuals from the current population based on their fitness
values. Tournament selection is employed in our experiments.
In tournament selection, a group of individuals is chosen
randomly from the population and the best individual from
this group is selected as parent. Tournament size defines the
number of the individuals in this group. The parameters not
listed here are the default parameters of the GA implementa-
tion [36].

B. Fitness Function

The individuals are evaluated based on the output logs of
dexdump. Since the main aim of the proposed fuzzer is to
generate unique crashes, the higher fitness values are assigned
to the individuals who produce such crashes. In this study, the
flow graph given in Fig. 2 is proposed to evaluate the fitness
of an individual based on dexdump’s outputs. As it is seen in
the figure, the sum of the event weights in each level of the
graph is equal to 1.

In the first level of the graph, it is checked whether there
exists a crash or not. If there is no crash, the minimum
fitness value is assigned to the individual. In the second level
of the graph, the following triggered signals are checked
: SIGSEGV, SIGABRT, SIGFPE, SIGILL. If one of these
signals are triggered, it could be a sign of an expoitable

TABLE IV
THE FORMAT OF DEX HEADER

magic magic value
checksum alder32 checksum of rest of file
signature SHA-1 signature of rest of file
file size file size in bytes
header size header size in bytes
endian tag endianness tag
link size size of link section
link off file offset of link section
map off file offset of map list
string ids size count of strings in the string ID list
string ids off file offset of string ID list
type ids size count of types in the type ID list
type ids off file offset of type ID list
proto ids size count of items in the method prototype ID list
proto ids off file offset of method prototype ID list
fields ids size count of items in the field ID list
fields ids off file offset of field ID list
method ids size count of items in the method ID list
method ids off file offset of method ID list
class defs size count of items in the class definitions list
class defs off file offset of class definitions list
data size size of data section in bytes
data off file offset of data

security vulnerability. The SIGSEGV error is caused by an
invalid memory reference or a segmentation fault. Since a
buffer overflow attack can cause a SIGSEGV error signal,
the weight of this signal is considered to be slightly higher
than other signals. While the SIGABRT signal is caused by
a fatal error, the SIGFPE signal is caused by an incorrect
arithmetic operation. When an illegal instruction is used,
the SIGILL signal is produced. In the third level of the
graph, the target library of the crash is checked. Because
crashes in native libraries may be a sign of a more critical
vulnerability, crashes that are encountered in native libraries
are assigned higher fitness values than Java libraries. Finally,
it is taken into account whether the collision is observed for
the first time during the evolution process. The fitness value
is calculated according to the weights (w) of the events in
each level as given in the following equation:

Fitness = 1 /
∏

each level l wl

The red state transitions in Fig. 2 shows the output of an
example individual. Since the individual has caused a unique
crash in a native library with the SIGSEGV signal, it is
assigned to the highest fitness value as shown below:

Fitness = 1 / (0.9 * 0.3 * 0.7 * 0.8) = 6.613

The general steps of GFuzz are summarized in the
Algorithm 2. The evolution process continues for two weeks.
For each generated individual during this time is sent to the
dexdump application on the Android Emulator for execution.
Then, each individual is subjected to individual fuzz testing
for calculating the fitness value. Based on this value, the
evolution process continues until the termination criteria



Fig. 2. Flow graph used for the fitness evaluation

(running for two weeks) is satisfied.

initialize a population from existing applications
for two weeks do

for each individual (DEX file) in the population do
execute the DEX file on the emulator
analyze logs and evaluate fitness values
apply genetic operators
repair the DEX file

end
end

Algorithm 2: General steps of GFuzz

V. EXPERIMENTAL RESULTS

As a test platform, the Android emulator which runs An-
droid 5.1.1 on Nexus 4 with 2 GB RAM is used. Android
Lollilop had been one of the most popular Android versions
at the time we started this study. Even though Android has
released new versions and has modified its architecture to
improve security since then, but that is only beneficial to users
who download the latest version of Android, which is rarely
the case [37]. The numbers also supports that Android Lollilop
(5.0 and 5.1) with approximately 18% of the market share is
still among the most used Android versions today [38].

The tests have been carried out for two weeks. In that
time, 20,452 crashes have been encountered by GFuzz. 301
of these crashes are unique, since they are found in different
parts of the code. 11 bugs among these crashes are manually
analyzed, since they crashed with one of the following signals:
SIGSEGC, SIGABRT, SIGFPE and SIGILL. One of these
crashes are determined to be a new bug [13], which is
discovered in the file /system/lib/libz.so. The generated signal
SIGSEGV is the sign of a stack overflow vulnerability for the
Android version under test. It is a critical vulnerability, since it

affects all Android devices and versions that using this native
library independent of the Android application. The output
associated with this crash is given in Fig. 5. Furthermore, three
exploitable crashes found by Droid-FF [6] is also produced by
GFuzz and DexFuzz [8] in the experiments.

The proposed fuzzer is compared with Droid-FF [6], Dex-
Fuzz [8] and zzuf [14]. Even though there are two evolutionary
approaches for Android testing namely EvoDroid [30] and
Sapienz [24] in the literature, they are not directly comparable
with GFuzz. Because, these approaches apply white and gray
box testing for Android applications. On the other hand, since
the Droid-FF [6] and DexFuzz [8] tools employ fuzz testing
over DEX files like the proposed approach, they are especially
preferred for comparison in this study. The proposed study
cannot be compared with d’ART [7], another fuzzer that
targets the installation process of Android, since we could not
access its code. The zzuf fuzzer [14] has been used in many
fuzzing frameworks including Droid-FF [6], therefore it is also
employed in the comparisons. All fuzzers have been run for
two weeks on the same testing platform.

The results are presented in Fig. 3 and Fig. 4. Fig. 3
demonstrates the number of total and unique crashes obtained
by each fuzzing test tool in two weeks. As it is seen in the
results, the highest number of crashes is obtained by using the
Droid-FF fuzzer. However, the proposed fuzzer has produced
more unique crashes than Droid-FF in the same time. By
performing the highest ratio of the number of unique crashes
to the number of total crashes, the proposed fuzzer performs
better than others.

Fig. 3. Number of total and unique crashes

Since discovering vulnerabilities before attackers exploit
them is very important, the efficiency of the proposed fuzzer
tools should be evaluated. Therefore, the number of obtained



unique crashes by each fuzzing tool over time is analyzed and
presented in Fig. 4. While the proposed fuzzer has obtained
150 unique crashes in around 3 days, the DexFuzz and Droid-
FF has obtained the same number of unique crashes in around
4 days. The zzuf tool has reached the same number of crashes
in 5 days. It is easily seen in Fig. 4 that the proposed tool
outperforms other tools by producing unique crashes in a
shorter time. At any time, the number of unique crashes
produced by GFuzz is observed to be bigger than the other
tools’ outputs.

Fig. 4. Number of unique crashes over time

Fig. 5. Output of the crash associated with the discovered zero-day vulnera-
bility

VI. CONCLUSION

Android is among the most target platforms by attackers.
Therefore, it is important to find security vulnerabilities of
Android and its applications before exploited by attackers.
Although studies on automatic testing of Android applications
has been accelerated in the last few years, only ≈ 28% of these
studies target security in their tests [5]. Furthermore, most of

these studies are at the application level. However, finding
vulnerabilities affecting a broader range of users other than
the users of particular applications is very critical. Therefore,
in order to achieve that a DEX file fuzzing approach based on
genetic algorithms is introduced in this study.

This study investigates the use of genetic algorithms, known
to be effective for software testing, to fuzz testing in Android.
The proposed approach called GFuzz aims to find critical
vulnerabilities with the proposed fitness evaluation flow. By
giving more weights to unique crashes in the fitness evaluation,
GFuzz is shown to be able to find more unique crashes
than other similar fuzzers in the literature, namely Droid-
FF [6], DexFuzz [8] and zzuf [14] in the same period of
time. Moreover, it finds a new vulnerability in a native library
besides some existing vulnerabilities produced by Droid-FF
[6]. GFuzz has been shown to be an effective and efficient
fuzzer with experiments conducted over two weeks. In the
future, some part of the exploitable analysis is aimed to be
automated and integrated into the fuzzer.
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