
IET Research Journals

An Analysis of Dynamic Code Updating in
Android with Security Perspective

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Ahmet I. AYSAN, Fatih SAKIZ, Sevil SEN∗

Department of Computer Engineering, Hacettepe University, Ankara, Turkey
* E-mail: ssen@cs.hacettepe.edu.tr

Abstract: Attackers have been searching for security vulnerabilities to exploit in Android applications. Such security vulnerabilities
include Android applications that could load code at runtime which helps attackers avoid detection by static analysis tools. In this
study, an extensive analysis is conducted in order to see how attackers employ updating techniques to exploit such vulnerabilities,
and to assess the security risks of applications in the marketplace using these techniques. A comprehensive analysis was carried
out on nearly 30,000 applications collected from three different Android markets and two malware datasets. Static, dynamic and
permission-based analyses were employed in order to monitor malicious activities in such applications, and new malicious appli-
cations using updating techniques were discovered in Google Play. The results show that applications employing code updating
techniques are on the rise. It is believed that this is the first study of its kind to monitor updating behaviors of applications during
their execution. This analysis allows us to deeply analyze suspicious applications and thereby develop better security solutions.

1 INTRODUCTION

Android architecture provides a mechanism for developers to update
their applications after their installations completed on the device.
The code updating mechanism allows attackers to load malicious
payload or to change the application completely at runtime. There-
fore it helps attackers to hide their malicious activities from analysis
carried out in market stores. Detecting these types of malicious
activities is one of the biggest problems that market stores face.

Moreover, these types of applications usually do not follow the
updating policy of the application markets. After installation, appli-
cations fetch their malicious payload from servers determined by
the application developer. In April 2013, Google Play declared that
“An app downloaded from Google Play may not modify, replace or
update its own APK binary code using any method other than Google
Play’s update mechanism” [11]. However, reality differs from policy.
Even Facebook, one of the most popular applications in Google Play,
still updates itself by using its own servers. Furthermore, many mar-
kets such as Amazon [2] and SlideMe [16] stores have no policy on
updating applications from unknown servers.

In this study, updated applications from three different Android
markets were analyzed: Google Play [10], SlideMe [16], and App-
sApk [6]. Investigations also included malware using code updat-
ing techniques in publicly available malware datasets, namely
Malgenome [49] and Drebin [19]. Both static and dynamic analy-
ses were carried out to reveal malicious applications using updating
techniques in market stores. Suspicious applications were investi-
gated by applying signature-based analysis, then dynamic analysis
techniques were performed on each application in order to reveal
malicious applications which hide themselves from static analysis
techniques through evasion techniques such as obfuscation, encryp-
tion, and other similar means. Furthermore, permission-based anal-
ysis was carried out to explore the behaviors of dynamically loaded
code. It was found that some permissions are only used by malicious
files downloaded at runtime execution. These permissions could be
employed as distinguishing features in order to differentiate updated
attacks from benign adwares.

Mechanisms that trigger malicious applications were also inves-
tigated. A new method called time-based triggering is introduced.
To the researcher’s knowledge, there is no published study in the
literature that has focused on triggering mechanisms to reveal appli-
cations updating themselves. The time-based triggering techniques
have largely increased the number of applications to analyze, which

allows the finding of new updated attacks not revealed through cur-
rent methods of analysis from existing studies [49]. The results
support that triggering is one of the evasive strategies effectively
applied by attackers.

The aim of this study is to analyze update attacks extensively and
to present their characteristics. The main contributions of this study
could be summarized as follows:

• This is the first large-scale analysis (signature-based and dynamic
analyses) that uncovers malicious applications using updating tech-
niques [21]. Triggering of updating behavior of applications is
also explored. This study extends this work [21] with permission-
based analysis for better profiling of updating attacks. As far as the
researchers are aware, this is the first extensive study to analyze per-
missions from the updating perspective, which could help to detect
update attacks.
• New malicious applications using code updating techniques were
discovered in the markets. Detailed analyses of these applications are
presented. This study established that some such applications, which
are not detected by any anti-virus systems at the time of analysis,
could be detected by the new versions of some anti-virus systems.
Furthermore, they are still in the official market. The analysis helps
researchers to see the evolution of update attacks in the market.
• A proof-of-concept malware is developed and uploaded to the
official Android market to demonstrate market stores’ vulnerability
to update attacks.

The remainder of this paper is organized as follows: updating tech-
niques are presented in Section 2. Methodology and triggering
mechanisms are introduced in Section 3; analysis results are thor-
oughly discussed in Section 4. The related work is discussed in
Section 5 and the study concludes in Section 6.

2 ANDROID UPDATE TECHNIQUES

Most application stores use packet manager to manage the instal-
lation of new versions of applications’ or updates. Application
managers usually check applications as to whether or not they need
to install a new package. Typically, Android OS developers employ
the updating techniques that follow:

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 1



Fig. 1: The conceptual schema of the analysis

Upgrading: When a new version is ready in the store, the packet
manager presents the new applications to users or triggers an auto-
matic update. If the application name, the permissions and the appli-
cation signature match the previous version, the update mechanism
is covertly triggered. Otherwise the installation process is committed
explicitly for users who might not have superuser privileges.

Silent Installing: This technique is only applicable in rooted
devices. Users need to have root privileges in order to perform instal-
lation without approval. Therefore, an attacker has an opportunity to
install malicious applications without user approval. In this study,
this mechanism is aptly called “silent updating”. An attacker uses
“pm install” command in order to start an installation. According to
a recent Kaspersky security bulletin [33], the most popular and dan-
gerous Trojans of 2016 employed this technique for installing new
apps on devices.

Dynamic Class Loading: Android applications are originally
written in Java and compiled into the .dex file. Android applications
have significant flexibility, enabling developers to load applications
(.jar and .apk files) from any server at runtime [8]. Since dex files are
limited to 64K reference size, developers typically use the dynamic
class loader to overcome this limitation. Specifically, they divide
the application into several files and each file is dynamically loaded
during execution by using the DexClassLoader class.

3 METHODOLOGY

First, the malware samples in publicly available malware datasets,
Malgenome [49] and Drebin [19], were examined. Secondly,
Android applications downloaded from three popular markets,
Google Play, SlideMe and AppsApk, were then examined.
Signature-based and dynamic analysis techniques were conducted
on both applications, and the downloaded files at runtime.

The first step determined applications using the Android updating
techniques, as defined in the previous section. Here, only a static
signature-based analysis was carried out. Then, dynamic analysis
was conducted on all applications in order to detect malware that
evaded signature-based analysis, since updating techniques could
be encrypted in the bytecode. This research mainly focuses on
finding malicious applications using the updating techniques as an
evasive strategy. Please note that, signature-based analysis is only
used to find applications that have explicit signatures for updating
as given in Section 3. The most significant part of this study is
the dynamic analysis. Applications were especially analyzed which
avoided identification in the signature-based analysis, and perform
malicious activities at runtime. These evading applications were fur-
ther explored by a machine learning (ML)-based detection system
in order to reveal unknown malicious applications (see Figure 1).
The ML-based detection system works on the dynamic features of
applications.

3.1 Signature-based Analysis

This initial analysis classifies applications according to whether or
not they use the updating techniques. Applications were firstly dis-
assembled into .smali files using Android apktool [3]. After the
disassembling step, applications were dissected in order to ascertain
whether or not they contain updating features in their code.

This signature-based analysis highlights potentially dangerous
applications employing upgrading, silent installing, or dynamic class
loading techniques. Keywords were searched for related to the API

Table 1 Updating Signatures

Method Signature
Upgrading startActivity(Landroid/content/Intent)

setDataAndType
application/vnd.android.package-archive

Silent Installing pm install
Ljava/lang/Runtime;->exec

Dynamic Class Loading DexClassLoader;->loadClass

calls defined according to the characteristics of each updating tech-
nique (see Section 3). Applications including the complete signature
of any of these three updating techniques in its code were tagged for
further analysis. Signatures of each technique are presented in Table
1.

3.2 Dynamic Analysis

An attacker could conceal his malicious activities by using obfusca-
tion and encryption techniques. Therefore, a dynamic analysis tool
was developed in order to overcome the limitations of signature-
based analysis. What makes this work unique is the analysis of
applications in order to monitor their updating behaviors during
execution. To achieve this, DroidBox[9], one of the mostly used
dynamic analysis tools, was employed. In order to force applica-
tions to update at runtime, extra features were added to DroidBox,
and a new triggering mechanism called time-based triggering was
proposed.

Event-based Triggering: DroidBox uses MonkeyRunner [15] to
generate events in order to analyze application behaviors. However,
MonkeyRunner alone cannot trigger applications to load the pay-
load at runtime. Besides, some applications wait for certain events
in order to trigger updating. To overcome this limitation of Mon-
keyRunner, a UI/Application exerciser called Monkey [14] was used.
Monkey generates streams of simulated user and system events by
running on an Android device or emulator. Thus, applications could
be automatically forced to click the pop-up dialogue “OK” button
in order to start the new application download or loading a pay-
load dynamically by using Monkey. Multi-thread ability was also
added to the DroidBox. In addition, dynamic analysis was limited to
execute for only 10 minutes.

Time-based Triggering: Many researchers have pointed out a
significant weakness of dynamic analysis techniques for mobile
devices as the limited time period for application inspections. Appli-
cations are generally executed for 10 minutes due to efficiency
constraints. Therefore, attackers could exploit this weakness by con-
trolling the time when malicious code will be executed. Android
uses Java java.lang.System package to obtain the current time. It
is observed that 59% of applications from Google Play uses the
java.lang.System.currentTimeMillis() method in their packages. In
order to eliminate this limitation, a module was added to the Droid-
Box in order to change the system date during execution and set the
time forward. Test results show a noticeable increase in the num-
ber of downloaded files observed owing to this trigger mechanism.
However, time-based triggering might not be adequate to detect
some malicious applications using static, dynamic and hypervisor
heuristics in order to evade detection by dynamic analysis.

In dynamic analysis, the number of malicious files down-
loaded and how many connections opened during runtime was also
explored, and thereby all the downloaded files and IP connections
were logged. Work was first performed on malware datasets, then
the applications in stores were analyzed in order to see whether
or not they downloaded similar files and/or connected to the same
servers as the malware. IP addresses that applications connected to
were forwarded to IpVoid [12] in order to check whether or not these
IP addresses were listed on malicious blacklists. IpVoid uses 39 dif-
ferent technologies to decide whether or not any given IP address
communicates with malicious servers.

IET Research Journals, pp. 1–9
2 c© The Institution of Engineering and Technology 2015



Fig. 2: The number of connections activated by applications in the
malware datasets.

3.3 Permission Analysis

Permissions are one of the important security mechanisms in
Android. It is known that malware writers mainly request more per-
missions on average than benign applications do. From the point
of view of an updated attack, attackers might well have to request
more permissions needed for the code to be loaded dynamically
at runtime. Therefore, a permission analysis was carried out for
completeness of this study.

In order to detect these types of malicious application, unused
permissions of applications in the manifest file were analyzed; then
it was investigated as to whether or not these unused permissions
were required for file downloads later on. Therefore, suspicious
applications could be found which have prepared permissions in
the AndroidManifest.xml file for usage in the future. In this study,
PScout [20] API-permission list is employed in order to extract
the real permission list of applications (the permissions used in the
code).

4 EVALUATION

4.1 Analysis of Malware Datasets

The publicly available malware datasets [19, 49] were first analyzed.
Furthermore, the effect of time-based triggering on the number of
files downloaded by malware during the runtime was investigated.
Dynamic analysis revealed time-based triggering to be very effec-
tive on the Malgenome and Drebin datasets, with the number of
downloaded .apk files increasing by 92% and, 53%, respectively. A
relatively small increase in the number of downloaded .dex files was
also observed (6% for Malgenome; 28% for Drebin).

In addition, the impact of time-based triggering on the number of
connections made by malware was analyzed. Figure 2 shows that the
number of connections increased by 6% for Malgenome, and 2% for
Drebin. The “+” symbol in Figure 2 indicates time-based triggering.
Results show that four of the connected servers from the Malgenome
dataset, and 30 from the Drebin dataset were listed as malicious
domains. Moreover, a new C&C server, used by 244 malware sam-
ples belonging to five malware families in the Drebin dataset and 178
malware samples in the Malgenome dataset, was discovered. A vast
amount of communication was observed between this C&C server
and the malicious applications.

Zhou and Jiang [49] divided malware into four groups according
to the techniques they applied to install malware on mobile phones
: repackaging, update attacks, drive-by-downloads, and others.
They stated that four malware families performing update attacks
exist in the dataset: BaseBridge, DroidKungFuUpdate, Anserver-
Bot, and Plankton. However, runtime analysis from this study’s
experiment showed that five families (totaling 275 applications)
from the Malgenome dataset download runnable Android appli-
cations were tagged as malicious by VirusTotal (see Table 2).

Table 2 The Attack Families using Update Techniques in the MalGenome Dataset

Family Number Percentage
AnserverBot 183 98%
BaseBridge 78 64%
DroidKungFu1 2 6%
DroidKungFu3 11 4%
DroidKungFu4 1 1%
Total 275 22%

Most of the downloaded files were the same, even though they
are members of the same family. For example, “mainmodule.jar”
malicious payload was seen 165 times in AnserverBot and 78
times in the BaseBridge family. However, there were no update
attacks for either the DroidKungFuUpdate or Plankton fami-
lies, which no longer seem to connect to malicious servers. For
example, applications from the Plankton family attempt to reach
“http://schemas.android.com/apk/res/com.planktond”, which is no
longer accessible. Results of the analysis show the three additional
families found were DroidKungFu1, DroidKungFu3, and Droid-
KungFu4. With the help of time-based triggering, more updated
attacks can now be found compared to the previous analysis tech-
niques [49]. These results emphasize the importance of dynamic
analysis in order to detect malware using update techniques.

Permission Analysis: Extra permissions to execute extra pay-
load downloaded during runtime were found in 20% of samples of
the Malgenome dataset and 5% of samples of the Drebin dataset.
These applications were obtained as a result of comparison of the
permission list extracted in the static analysis and the permission
list of the downloaded files extracted in the runtime analysis. These
applications are members of the AnserverBot and BaseBridge fam-
ilies (see Figure 3). Results were also compared of the permission
analysis with the benign applications. For the comparison, 1260 of
the top applications were selected randomly from the official store;
among them 159 have executable payload downloaded during run-
time. In addition 2.3% of samples in the top application dataset were
found to have extra permissions to execute extra payload down-
loaded during runtime. After detailed analysis, it was ensured that
these applications use ad libraries.

Figure 3 demonstrates that, MANAGE_ACCOUNTS, GET_ACCOUNTS,
USE_CREDENTIALS and BROADCAST_STICKY permissions
are widely used in all datasets. However, malware datasets more
commonly used ACCESS_NETWORK_STATE, READ_CONTACTS,
CHANGE_NETWORK_STATE, BLUETOOTH, WAKE_LOCK,
READ_SMS and ACCESS_COARSE_LOCATION permissions
than benign datasets. Figure 4 demonstrates the permissions
only used by downloaded files at runtime. According to the
results, overprivileged usage of READ_SMS, READ_CONTACTS,
WAKE_LOCK, and VIBRATE could be used as a sign of malicious
application in static analysis, which could be added as distinguishing
features to detection systems.

4.2 Analysis of Application Stores

Three popular application stores were selected for analyzing mali-
cious applications using update mechanism (see Table 3). All free
applications available from the application stores (SlideMe : 1,469
applications, AppsApk : 3,560 applications) were crawled between
August 2013 and February 2014. A total of 20,000 applications were
randomly downloaded from Google Play, representing nearly 1%
of the Google Play store at that time. While downloading applica-
tions from SlideMe and AppsApk stores was straightforward, a tool
was developed which uses Android Market API [4] for downloading
applications from the Google Play store.

Even though these applications is generally supported by the old
versions of Android due to their collection times, there are still 60%
of devices running old versions of Android [45]. Therefore, malware
targeting these devices due to having more exploitable vulnerabil-
ities [23] is still being studied as in this paper. There are recent
valuable datasets introduced that covers such malware [45]. These

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 3



(a) Permissions of Downloaded Files

by Malgenome Dataset (876)

(b) Permissions of Downloaded Files

by Drebin Dataset (916)

(c) Permissions of Downloaded Files

by Benign Dataset (159)

Fig. 3: The Permissions Used by Downloaded Files at Runtime in
Malicious and Top Applications

(a) Permissions of Downloaded Files

by Malgenome Dataset (256)

(b) Permissions of Downloaded Files

by Drebin Dataset (293)

(c) Permissions of Downloaded Files

by Benign Dataset (29)

Fig. 4: The Permissions Only Used by Downloaded Files at Run-
time in Malicious and Top Applications.

Table 3 The Results of the Signature-based Analysis
Google Play SlideMe AppsApk

Silent Installing 21 (0.1%) 1 (0.06%) 15 (0.4%)
Upgrading 1,127 (5.6%) 66 (4.4%) 402 (11.3%)
Dynamic Class Loading 660 (3.3%) 98 (6.6%) 94 (2.6%)
All Updated Applications 1,808 (9%) 165 (11.2 %) 511 (14.3%)
All Applications 20,000 1,474 3,563

Fig. 5: The percentage of applications using update techniques in
the store datasets.

malware samples are still threats to mobile devices, and they are
still in the wild as shown in the results (Section 4.3). Moreover, this
recent analysis, by analyzing same applications in time, allows us to
see how uptade attacks are evolved in Google Play, which presents
valuable finding for researchers.

Signature-based Analysis: Most of the applications found, espe-
cially adwares, use dynamic class loading since it is easily man-
ageable at runtime. For instance, while upgrading requires making
considerable changes on the device, this technique allows users
to download new files straightforwardly. A total of 3,480 adware
applications were found from Google Play using the dynamic class
loading technique. Silent installing was the least-used updating tech-
nique among developers since it requires root privileges to update.
Finally, 10% of applications on average were found by these three
market stores to use update techniques; showing how insecure and
vulnerable the application stores are. Note: adwares are excluded
from Table 3.

Grace et al. [31] showed that 3.90% of 118,000 applications used
code loading techniques, whilst Sebastian Poeplau et al. [41] found
that 5% of 1,632 applications from Google Play used code loading
techniques. Both results could have included adwares since there was
no information on their studies with regards to adwares. The current
study’s analysis detected 19.60% of 25,000 applications from three
markets datasets using this updating technique. If adware applica-
tions were to be excluded, this number decreases down to just 3.40%.
Results show a substantial increase in the number of applications
using updating techniques, especially dynamic class loading, over
the last few years. While some developers apply these techniques
to overcome the reference size limit, attackers could also easily use
them in order to download malicious code.

Dynamic Analysis: Figure 5 shows the percentage of applica-
tions using update techniques in the store datasets. It was found that
2% of Google Play and 1% of SlideMe datasets evaded signature-
based analysis and downloaded runnable applications at runtime. A
total of 453 applications from the application stores datasets were
found to evade signature-based analysis; however, for the AppsApk
dataset, the number of applications downloading runnable applica-
tions was less than the number of applications using the updating
techniques according to the signature-based analysis. One reason is
that dynamic analysis is only executed for a limited period of time.
Secondly, specific events might not be generated to trigger the update
through dynamic analysis. Moreover, malicious applications could

IET Research Journals, pp. 1–9
4 c© The Institution of Engineering and Technology 2015



(a) Evaded Apps. (b) Evaded Apps by Market Stores.

Fig. 6: New malware not detected in the Signature-based Analysis.

hide themselves with the realization of running on an isolated envi-
ronment. Attackers commonly use static, dynamic and hypervisor
heuristics in order to evade from dynamic analysis [40]. These tech-
niques might be used so as to detect the running environment of the
application.

The results of signature-based and runtime analysis were com-
bined in order to search for applications using updating techniques
stealthily. A total of 453 applications from application store datasets
were found to evade signature-based analysis by using techniques
such as obfuscation, encryption, and updating themselves at runtime.
These samples were found not to contain any updating signature in
the bytecode; however, they could download executable files dur-
ing runtime. Of these updated applications, 36% were detected to
be malicious by VirusTotal [17]. The remaining applications were
analyzed dynamically and some representative features extracted.
The collected features were sent to the ML-based approach pro-
posed in [39]. This approach differentiates malicious applications
from benign applications using machine learning (ML) techniques
(C4.5, Naive Bayes, Random Forest, and SMO). The models work
on dynamic features of applications collected using DroidBox. Here,
the application is accepted to be malicious if more than the three
ML techniques detect the application as malicious. As a result, 81
(18%) new malicious applications were discovered. 70 applications
out of 412 applications in Google Play, 6 applications out of 15
applications in SlideMe, and 5 applications out of 26 applications
in AppsApk were found to perform malicious activities (see Figure
6). The newly found malicious applications were manually analyzed
in order to verify results of the ML-based approach. Malicious appli-
cations especially found in Google Play were deeply analyzed and
the analysis results are presented in the next subsection.

It was also observed that even a downloaded file that does not have
the .dex extension might contain runnable code within. This could
therefore be one of the techniques an attacker uses to hide from secu-
rity mechanisms. Some downloaded .dex files use the extensions:
.epub (1), .data (4), .tmp (15) and .zip (292).

Connections that applications made at runtime were also investi-
gated, and the IP addresses they connected with were sent to IpVoid.
IpVoid tags an IP address as malicious if two or more vendors agree
that the given IP address is blacklisted. Additionally, it places a
warning tag if one vendor denotes the IP address as being black-
listed. In total, 26 applications from the Google Play dataset were
found to build connections with blacklisted IP addresses.

4.3 Newly Discovered Malware

In this section, the aforementioned 70 newly discovered malicious
applications from Google Play detected through ML-based detection
were deeply analyzed to confirm their maliciousness. Both static and
dynamic analyses were conducted on these applications, and 27 sus-
picious activities (see Figure 7) were monitored. According to the
suspicious activities they carried out, the applications were grouped

Fig. 7: Suspicious activities and their percentage distribution into
threat levels

into three threat levels: low, medium, and high by using expectation-
maximization (EM) clustering. The suspicious activities and their
percentage distribution into threat levels are shown in Figure 7. For
instance, it is shown that all applications in the high-level threat cat-
egory (100%) access kernel parameters. Such suspicious activities
are summarized as follows:

First of all, the updating behavior of the applications were ana-
lyzed. It was observed that all of them tried to load at least one class
through DexClassLoader. In addition, each application tried to install
a seemingly new version of itself within the first two seconds after
they started running. Moreover, most of the applications (∼88.5%)
requested HTTP connections to various addresses.

The results of dynamic analysis also provides evidence of the
sneaky nature of malicious applications. For example, many appli-
cations (∼35.7%) access the file that stores wireless hotspot pass-
words (/data/misc/wifi/wpa supplicant.conf). Other important targets
of malicious applications are operating system and memory. They
could access kernel parameters (/proc/cmdline) which is read by
init process after the kernel boots in order to set system proper-
ties accordingly (∼35.7%), or query the version of the running
kernel (/proc/version) (∼37.14%). Few of them check if the boot
process is completed or not. Almost all applications access the
file (/proc/meminfo) which provides detailed information about the
RAM usage of the system (∼37.14%) and few of them (∼8.57%)
kill background processes.

Some applications try to access information that uniquely iden-
tify the user and/or the device in the network. For example, some of
them query the device ID (∼38.5%), SIM card serial number (5.7%
), local phone number (∼8.57%) and IMSI (International Mobile
Subscriber Identity) (∼4.3%), which is a unique international iden-
tification of mobile terminals and users. While some applications
(∼15.7%) leak such information via the network and only one
application asks for root privilege.

An interesting service used by some of the applications (10%)
is Google cloud-to-device (C2D) messaging service, which enables
developers to communicate with installed applications via messages.
The messages sent from an app server are distributed to applications
installed on Android devices through a connection server owned by
Google itself. Even though the application is not running at the time
of message delivery, it will be invoked since the messages are deliv-
ered by the Android OS. According to SecureList [13], attackers
could exploit this service and turn it into a C & C channel. More-
over, both antivirus software and the users are unable to block this
message delivery since it is considered a system activity performed
by the OS. The service could be used to disseminate links and/or
commands in order to perform malicious activities. Even though the
messaging service has been shut down as of October 20, 2015 and
replaced by Google Cloud Messaging (GCM) and Firebase Cloud

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 5



Messaging (FCM), both services could be misused in a similar man-
ner, according to NIST Mobile Threat Catalogue [7]. An analysis of
a malware which utilizes FCM to communicate with a C & C server
can be found in [44].

This study has shown that analyses of malicious applications
could cause unexpected behavior during dynamic analysis. The mali-
cious applications could try taking full control of the emulator and
if successful, they could circumvent normal operations necessary
for proper dynamic analysis. For example, during analyses of nine
applications, the emulator gave the following warning message:
“WARNING: Device: This app might have hijacked the device!”.

These newly discovered malicious applications were also tested in
two online tools: Akana from MobiSec Lab [1] and NVISO ApkScan
[5]. They both perform static and dynamic analysis on .apk files, and
provide detailed reports about the applications, in addition to utiliz-
ing VirusTotal [16]. NVISO ApkScan’s results showed that 15 out
of 70 applications showed “suspicious activity” and one application
was identified as “confirmed malicious”. On the other hand, Akana
has three threat levels: low, medium, and high. For each application,
their threat levels are produced along with probability of occurrence.
Akana’s results showed that 66 out of 70 applications had significant
probability of low-level threat occurrence while three applications
had significant probability of medium-level threat occurrence and
one application had significant probability of high level threat occur-
rence. On the other hand, this current study’s results showed that 26
out of 70 applications fell into the high-level threat category, 13 as
medium-level and 31 as low-level threat categories. Detailed results
of the analysis are shown in Figure 8. Since the results of dynamic
analysis depend on inputs generated which could trigger a myriad
number of activities, different tools could yield different results as
shown here. For example, by utilizing DroidBot [34] in the detailed
analysis more malicious activities were observed to be triggered.

Interesting applications were observed during the analysis. Some
applications (∼4.3%) hid their launcher icons in order to evade
detection from users. If activities/permissions of an application do
not conform to its design goal(s), the inconsistency could discredit
the application even though it performs unsuspicious activities and
therefore requires extra attention. For example, one interesting appli-
cation which is a simple face-swapping application gets busy with
encryption and sending/receiving information to three different IP
addresses within the first 40 seconds after it starts running with-
out any user input. After watching closely, it was revealed that the
information sent by the application includes the IMEI number of the
device.

One of the most interesting malware found in this current study
uses phishing techniques to deceive users. It warns the user that the
application requires Adobe Flash Player in order to run the applica-
tion. Even if the user approves the installation, the following error is
displayed on the device display “App not installed. This app is not
compatible with your phone” as shown in Figure 9. However, two
malware samples were installed with the users unbeknown approval:
“com.adobe.flash.apk” and “adobe.flash.new.apk”.

Another interesting application downloaded from Google Play
(apkv2:air.albinoblacksheep.shoot:1:4.apk) communicates with a C
& C server. This application sends the IMEI MD5 hash sum of
the device to the server. After successful communication, the server
sends a message to the client ({“code:200,action:hi”}). Moreover,
this application reads four different process information and access
to system memory information (/proc/meminfo) six times using
the AES algorithm with the key “0123456789abcdef”. Only one
anti-virus in VirusTotal identified this application as malware.

It should be noted that at the time of the initial analyses, 70 new
applications were found that had not been detected by VirusTotal.
However, a recent submission of these applications to VirusTotal
showed that some of these applications are now identified as mal-
ware by at least one AV. While some of them are removed from
Google Play in time, the remaining are still as yet undetected by
Google Bouncer as shown in Table 4. Please note that versions of
some applications could not be checked due to their unavalilability
in our country anymore. This table shows how attacks are evolved
at Google Play in time. It also underlines that how evasive update
attacks can be.

Fig. 8: Newly discovered malicious applications with respect to
considered parameters along with their percentage distributions.

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015



(a) Installation Screen (b) Not Compatible Screen

Fig. 9: The malware needing so-called Adobe Flash Player

Table 4 Updated Attacks in Google Play (2017)
Applications Detected by Our Approach Detected
at Google Play High Medium Low TOTAL by VirusTotal
Removed 8 5 5 18 9
Exist with
Same Version 9 3 12 24 1
Exist with
Updated Version 2 4 3 9 3
Exist with
Unknown Version 7 1 11 19 3
TOTAL 26 13 31 70 16

4.4 Discussion

In this study, a detailed analysis of benign and malicious software
that updates itself has been carried out. Furthermore, malicious soft-
ware that is not detected by security mechanisms on Google Play has
been analyzed in detail. As a result of these analyses, some character-
istics of update attacks are obtained. For example, permission-based
analysis has shown that some over-demanded permissions in the
manifest file are frequently used by malicious payload downloaded
at runtime. It is believed that the results of this analysis will be useful
for malware analysts. It will also help in the development of malware
detection systems. To illustrate this, some of the features obtained
from this analysis are added to an existing static analysis-based
detection system.

A recent detection system based on structural features called
SAFEDroid is employed as the base system. In that study [42],
different classifiers were trained using different combinations of
features and the results compared. The results show that the combi-
nation of code-based features and API calls produces the lowest error
rate. The performance of this combination is quite close to the com-
bination of all features. Hence, both combinations were evaluated on
the new malwares. The MalGenome dataset [49] was used for train-
ing and validation. The Drebin dataset [19], which is a larger dataset
than MalGenome [49], was used for evaluation. It should be noted
that, all applications that exist in Malgenome were removed from
the test dataset before the evaluation took place. Hence the results
show the performance of the system on new malware families and
new variants of existing malwares.

The distinctive permissions obtained from the Figures 3 and 4 are
added to the SAFEDroid system. The same experimental set used
by SAFEDroid was employed. Since newly added features belong to
more than one feature groups (manifest-based and code-based), all
features of SAFEDroid plus these new features are used for train-
ing. The new detection system shows a similar performance on the
Malgenome dataset with a small decrease in the false positive rate
(0.7%). However the results show that new features show a notice-
able positive effect on detecting new variants of update attacks and

new malwares. The detection rate was increased approximately by
10%. When the newly added features are evaluated based on the
Information Gain method, some of these new features (such as the
READ_SMS permission in the manifest file, the READ_SMS and
ACCESS_COARSE_LOCATION permissions used in the code) are
observed to be very highly effective.

Table 5 Effects of novel features on new malwares
Family Family SAFEDroid SAFEDroid SAFEDroid (All)

Size (Code& API) (All) with new features
BaseBridge 22 63.6% 72.7% 77.3%
DroidKungFu 193 94.8% 95.3% 95.3%
Plankton 614 2.1% 14.5% 17.9%
DREBIN 4432 70.2% 61.86% 71.6%

This proof-of-concept experiment shows the analysis carried out
in this study could be useful for detecting update attacks. Please
note that different trade-offs between detection and false positive
rate could be discovered by using different combinations of features.
Furthermore, the detection system could be improved by adding
dynamic features of update attacks in the future.

4.5 Security against Update Attacks in Application Stores

In this study, a proof-of-concept update attack is developed. A
repackaged space game application called Spicy Space Defender
was developed and successfully submitted to the official Android
market. In the game, the ships aim to travel as long as they can
among enemy ships in space. In order to bypass Google Play’s
security mechanisms, a clean version of the game application was
first uploaded; then its infected version, which downloads additional
malicious code after installation on the device, was upload. Accord-
ing to the recent Kaspersky’s security bulletin [33], it has become
one of the techniques that attackers employ in order to evade the cur-
rent market’s security mechanisms. The attackers generally upload a
clean app at first, then provide a few clean updates, and finally upload
an infected version.

The malware uses dynamic class loading technique in order to
load malicious payload at runtime. When a game player travels for
a particular distance in space, the dynamic code is loaded. So, it is
difficult to trigger the code loading by using input generation tools
based on a random exploration strategy, which are the most fre-
quently used tools to test Android apps [26]. Furthermore, the server
name that the code is going to be downloaded from, the name of
the package to be downloaded, and the class name containing the
malicious code in the package is embedded within an image in the
application package. The keywords dalvix.system.DexClassLoader
and loadClass are also embedded in the figure. Therefore, this study
was able to invoke these suspicious methods by using reflection.
Reflection is also employed in other parts of the code in order to pre-
vent the code initiating the download from being too obvious. Before
uploading the application to Google Play, the application is scanned
on VirusTotal to ensure it was undetectable by any antivirus system.
The application was uploaded to the market in February 2017 and
has remained there since.

The malicious code downloaded simply sends packets to a victim
whose IP address was also downloaded from the server. The number
of packets is a parameter controlled by the server. The time that the
packets are to be sent to the victim node could also be specified.
Hence, a DDoS attack could be implemented through a great deal
of users downloading such an application. It has been reported that
Google Play even has malicious applications that have been installed
more than 100,000 times [33].

This proof-of-concept application has shown that a malicious
application, by using reflection and dynamic code loading tech-
niques, could still bypass security mechanisms in the markets and
become successfully uploaded. The markets are as yet largely inef-
fective against such evasion techniques and detecting such updated
attacks. Even though Google Bouncer is known to perform dynamic
analysis, it did not connect to the server used in this experiment to
get the package before approving the application. Please note that

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 7



for ethical reasons, the malicious code in the server is replaced not
to harm users/devices.

5 RELATED WORK

Even though many researchers have worked on mobile malware
security, there is no complete solution to this complex problem.
Many studies have focused on the analysis of permissions in order
to protect mobile devices against malware. Kirin [29] proposed an
approach which terminates the installation of an application if suspi-
cious permissions are requested by the application. Zhou et al. [50]
compares the permissions requested by an application with the per-
missions in the mobile malware samples. Yuan Zhang et al. [47] also
analyzes the permissions in order to identify privacy leakage. Sen
et al. [42] takes into consideration also the number of used/unused
dangerous permissions in the code in order to detect malware.

Andromaly [43] employs machine learning techniques in order to
differentiate malicious applications from the benign. The feature set
used was obtained by employing dynamic analysis. There are also
other proposals based on dynamic analysis, such as AppGuard [22]
which uses program traces, Crowdroid [24] which monitors system
calls, TaintDroid [28] which monitors privacy sensitive information
with taint tracking, and MADAM [27] which monitors application
behaviors both at the user and kernel levels.

There are also malware detection techniques based on static
analysis available for mobile devices. Chin et al. [25] proposed
ComDroid in order to detect applications’ vulnerabilities by ana-
lyzing inter-application communications. RiskRanker [31] proposed
a two-level analysis with high-risk and medium-risk applications
determined in the first-order analysis, and applications employ-
ing obfuscating, encryption or dynamic class loading techniques
extracted among these risky applications in the second-order anal-
ysis. However, RiskRanker only employs static analysis, and does
not analyze downloaded files at runtime.

Grace et al. [32] showed that dynamic code loading is danger-
ous since an attacker can remotely control the application and inject
suspicious payload after installation. Hence malicious applications
could easily bypass static analysis techniques by modifying code
at runtime. Sebastian Poeplau et al. [41] presented a static analy-
sis tool in order to detect code loading techniques. Furthermore they
showed that these code loading techniques introduce vulnerabilities
that could be exploited in order to shift a benign application to a
malware.

Maier et al. [36] showed that malware can easily bypass Virus-
Total scanners by developing an application with both benign and
malicious parts, with the malicious part loaded at runtime using
the dynamic code loading technique. Xue et al. [46] also showed
that benign code could evolve into more evasive malware by using
dynamic code loading. While it has been shown that malicious appli-
cations often make use of dynamic code loading [37], this conflicts
with another recent extensive analysis [35]. According to the anal-
ysis of one-million apps submitted to Andrubis [35], dynamic code
loading was not seen as an indicator for malicious behavior any more
due to its rising popularity among goodwares.

There are also proposals for protection mechanisms against
code injection attacks, which exploit vulnerabilities introduced by
dynamic code loading. Grab’n Run [30] proposed a code verifica-
tion protocol and introduce a library for secure implementation of
dynamic code loading. StaDyna [48] proposed an approach which
expands the method call graph of an application by capturing addi-
tional codes loaded at runtime through dynamic code loading and
reflection. However, these models are triggered manually and are
therefore unsuitable for automatic analysis. They extended their
study by proposing StaDART, which utilizes ArtDroid in order to
avoid modifications to the Android framework, unlike StaDyna [18].
Furthermore, DroidBot [34] is employed for triggering malicious
activities.

To the best of the researchers’ knowledge, the only work on
detecting updated attacks was presented recently by [38]. Mercaldo
et al. identified update attacks by analyzing four malware families,

and localizes the portion of code that implements downloading by
using formal methods.

Even though there has been limited research on statically ana-
lyzing malware using dynamic class loading ([41], [32], [31]),
this current study also applied dynamic analysis techniques and
permission-based analysis in order to investigate updating appli-
cations evading static analysis. Furthermore, all update techniques
are explored, not just dynamic class loading. Moreover, new update
attacks were found in the wild and analyzed in this study.

6 CONCLUSIONS

This paper presents an extensive study of dynamic code updating in
Android. Nearly 30,000 applications collected from three different
markets and two malware datasets were deeply analyzed with both
static and dynamic analyses performed. Permission analysis, which
analyzes overprivileged permissions in order for use in downloaded
code at runtime, was also conducted. This first time permission anal-
ysis shows that some dangerous permissions are requested only for
use by downloaded code of malicious applications.

This work has been the first large-scale analysis to uncover mali-
cious applications using updating techniques on Android. As a result
of static and dynamic analyses, suspicious applications have been
extracted. Even though these applications do not have updating sig-
natures in their code, they are able to load malicious code at runtime.
When these applications are fed into the malware classifier, some
were found to be malicious. To confirm their maliciousness, these
malicious applications were then deeply analyzed. Analysis showed
that all applications fell into one of three threat categories (low,
medium, or high). It was observed that some were detected as mali-
cious by some commercial antiviruses over time; however, others
still remain undetected in the official market. The proof-of-concept
update attack was also successfully uploaded to Google Play.

To summarize, this study has extensively analyzed code updat-
ing applications. Both malicious and benign applications were taken
into consideration, and important characteristics of both obtained.
The authors believe that this analysis will help other researchers to
develop solutions to address update attacks, which are shown to be
one of the biggest security threats that Android faces with.

7 ACKNOWLEDGEMENTS

This study is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK-115E150). The authors would like to
thank TUBITAK for its support and also Yilmaz Degirmenci for his
help in developing the proof-of-concept update attack application.

8 References
1 Akana, MobiSec Lab. (Visited September 2017) [Online]. Available:

http://www.mobiseclab.org/akana/Intro.html.
2 Amazon. (Visited April 2015) [Online]. Available:

https://developer.amazon.com/public/support/faq.
3 Android Apktool. (Visited July 2017) [Online]. Available:

https://code.google.com/p/android-apktool/.
4 Android Market API. (Visited July 2017) [Online]. Available:

http://code.google.com/p/android-market-api.
5 ApkScan, NVISO. (Visited September 2017) [Online]. Available:

https://apkscan.nviso.be/.
6 AppsApk. (Visited July 2017) [Online]. Available:

http://www.appsapk.com/android/all-apps/.
7 Command-and-control messaging evades traffic analysis. (Visited

November 2017) [Online]. Available: https://pages.nist.gov/mobile-threat-
catalogue/application-threats/APP-29.html.

8 DexClassLoader. (Visited July 2017) [Online]. Available: http://android-
developers.blogspot.com.tr/2011/07/custom-class-loading-in-dalvik.html.

9 Droidbox. (Visited July 2017) [Online]. Available:
https://code.google.com/p/droidbox/.

10 Google Play. (Visited July 2017) [Online]. Available:
https://play.google.com/store/apps.

11 Google Play Update Policy. (Visited July 2017) [Online]. Available:
https://play.google.com/about/developer-content-policy.html.

12 IpVoid. (Visited July 2017) [Online]. Available: http://www.ipvoid.com/.
13 Kaspersky SecureList, GCM in Malicious Attachments. (Visited September 2017)

[Online]. Available: https://securelist.com/gcm-in-malicious-attachments/57471/.

IET Research Journals, pp. 1–9
8 c© The Institution of Engineering and Technology 2015



14 Monkey. (Visited July 2017) [Online]. Available:
http://developer.android.com/tools/help/monkey.html.

15 Monkey Runner. (Visited July 2017) [Online]. Available:
http://developer.android.com/tools/help/monkeyrunner-concepts.html.

16 SlideMe. (Visited July 2017) [Online]. Available: http://slideme.org/.
17 Virus Total. (Visited July 2017) [Online]. Available: https://www.virustotal.com/.
18 M. Ahmad. Mobile Application Security in the Presence of Dynamic Code

Updates. PhD thesis, University of Trento, 2017.
19 D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and C. Siemens.

Drebin: Effective and explainable detection of android malware in your pocket.
In Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS), 2014.

20 K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the android per-
mission specification. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 217–228. ACM, 2012.

21 A. I. Aysan and S. Sen. Do you want to install an update of this application?a
rigorous analysis of updated android applications. In Cyber Security and Cloud
Computing (CSCloud), 2015 IEEE 2nd International Conference on, pages 181–
186. IEEE, 2015.

22 M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky.
Appguard-real-time policy enforcement for third-party applications. Technical
report, 2012.

23 N. B. Buchka and M. Kuzin. Attack on Zygote: a new twist in the evo-
lution of mobile threats. (Visited November 2017) [Online]. Available:
https://securelist.com/attack-on-zygote-a-new-twist-in-the-evolution-of-mobile-
threats/74032/.

24 I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based mal-
ware detection system for android. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, pages 15–26. ACM,
2011.

25 E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th international conference on
Mobile systems, applications, and services, pages 239–252. ACM, 2011.

26 S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for
android: Are we there yet?(e). In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, pages 429–440. IEEE, 2015.

27 G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Madam: a multi-level
anomaly detector for android malware. In Computer Network Security, pages
240–253. Springer, 2012.

28 W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: an information flow tracking system for real-time privacy monitoring
on smartphones. Communications of the ACM, 57(3):99–106, 2014.

29 W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone applica-
tion certification. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 235–245. ACM, 2009.

30 L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna, and F. Maggi. Grab’n
run: Secure and practical dynamic code loading for android applications. In Pro-
ceedings of the 31st Annual Computer Security Applications Conference, pages
201–210. ACM, 2015.

31 M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and
accurate zero-day android malware detection. In Proc. of the 10th international
conference on Mobile systems, applications, and services, pages 281–294. ACM,
2012.

32 M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis
of mobile in-app advertisements. In Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks, pages 101–112. ACM,
2012.

33 K. Lab. Kaspersky security bulletin 2016, 2016. https://securelist.com/kaspersky-
security-bulletin-2016-executive-summary/76858/.

34 Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a lightweight ui-guided test input
generator for android. In Proceedings of the 39th International Conference on
Software Engineering Companion, pages 23–26. IEEE Press, 2017.

35 M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van
Der Veen, and C. Platzer. Andrubis-1,000,000 apps later: A view on current
android malware behaviors. In Proceedings of the the 3rd International Work-
shop on Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS), 2014.

36 D. Maier, T. Muller, and M. Protsenko. Divide-and-conquer: Why android malware
cannot be stopped. In Availability, Reliability and Security (ARES), 2014 Ninth
International Conference on, pages 30–39. IEEE, 2014.

37 D. Maier, M. Protsenko, and T. Müller. A game of droid and mouse: The threat of
split-personality malware on android. Computers & Security, 54:2–15, 2015.

38 F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio. Download malware?
no, thanks. how formal methods can block update attacks. In Formal Methods in
Software Engineering (FormaliSE), 2016 IEEE/ACM 4th FME Workshop on, pages
22–28. IEEE, 2016.

39 H. B. Ozkan, E. Aydogan, and S. Sen. An ensemble learning approach to mobile
malware detection. Technical report, 2014.

40 T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis.
Rage against the virtual machine: hindering dynamic analysis of android malware.
In Proceedings of the Seventh European Workshop on System Security, page 5.
ACM, 2014.

41 S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute this!
analyzing unsafe and malicious dynamic code loading in android applications. In
Proc. of the 20th Annual Network and Distributed System Security Symposium
(NDSS), volume 14, pages 23–26, 2014.

42 S. Sen, A. I. Aysan, and J. A. Clark. Safedroid: Using structural features for detect-
ing android malwares. In Proceedings of the 13th EAI International Conference on
Security and Privacy in Communication Networks (SECURECOMM 2017). EAI,

2017 (to appear).
43 A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andromaly: A behav-

ioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 38:161–190, 2012.

44 L. Stefanko. Turn the light on and give me your passwords! (Visited November
2017) [Online]. Available: https://www.welivesecurity.com/2017/04/19/turn-light-
give-passwords/.

45 F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis of cur-
rent android malware. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 252–276. Springer, 2017.

46 Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, and J. Zhang. Auditing anti-
malware tools by evolving android malware and dynamic loading technique. IEEE
Transactions on Information Forensics and Security, 12(7):1529–1544, 2017.

47 Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang.
Vetting undesirable behaviors in android apps with permission use analysis. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 611–622. ACM, 2013.

48 Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Massacci. Sta-
dyna: Addressing the problem of dynamic code updates in the security analysis
of android applications. In Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, pages 37–48. ACM, 2015.

49 Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and
Evolution. 2012 IEEE Symposium on Security and Privacy, (4):95–109, May 2012.

50 Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: Detect-
ing malicious apps in official and alternative android markets. In Proc. of the 19th
Annual Network and Distributed System Security Symposium (NDSS), pages 5–8,
2012.

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 9


