
International Journal of Information Security
https://doi.org/10.1007/s10207-022-00601-x

REGULAR CONTRIBUT ION

Lib2Desc: automatic generation of security-centric Android app
descriptions using third-party libraries

Beyza Cevik1 · Nur Altiparmak1 ·Murat Aksu1,2 · Sevil Sen1

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2022

Abstract
Android app developers are expected to specify the use of dangerous permissions in their app descriptions. The absence
of such data indicates suspicious behavior. However, this is not always caused by the malicious intent of developers; it
may be due to the lack of documentation of the third-party libraries they use. To fill this gap in the literature, this study
aims to enrich application descriptions with security-centric information of third-party libraries. To automatically generate
application definitions, the study explores classifying libraries and extracting code summaries of library methods that use
dangerous permissions and/or leak data. Both the textual information of third-party libraries and their source code are used to
create these definitions. To the best of our knowledge, this is the first approach in the literature that creates app descriptions
based on third-party libraries.

Keywords Android security · Description-to-permission fidelity · Third-party libraries · NLP · NLG

1 Introduction

Researchers have been exploring the use of natural language
processing (NLP) techniques in Android security. The cen-
tral distribution of Android applications provides a platform
for developers and users to share textual data about appli-
cations such as descriptions, user reviews, and ratings. In
the last decade, this “metadata” has been used in Android
security under four categories [1]: description-to-behavior
fidelity, description generation, privacy, and malware detec-
tion.

Early studies aim to discover inconsistencies between
dangerous permissions requested by an app and its meta-

B Beyza Cevik
beyzaccevik@gmail.com

Nur Altiparmak
nur.altiparmak@hacettepe.edu.tr

Murat Aksu
murat.aksu@bakircay.edu.tr

Sevil Sen
ssen@cs.hacettepe.edu.tr

1 WISE Lab., Department of Computer Engineering, Hacettepe
University, Ankara, Turkey

2 Department of Computer Engineering, Izmir Bakircay
University, Izmir, Turkey

data, particularly app descriptions. This problem, known
as description-to-permission fidelity [2], is based on the
assumption that the usage of dangerous permissions should
be explained within the app description. In the literature,
there are recent promising studies based on recurrent neural
networks [3,4] and attention mechanism [5] that could auto-
matically reveal such inconsistencies automatically. How-
ever, these studies have revealed low levels of performance
on apps with short descriptions. These apps also decrease the
accuracy of systems that categorize applications according to
their metadata [6].

Another gap between permissions and descriptions results
from the usage of third-party libraries (TPL) [7]. The litera-
ture has shown that some applications can use more than 20
TPLs [8], and on average more than 60% of application code
consists of libraries [9]. In Android, since permissions are
requested at the app level, TPLs may directly use these per-
mission requests, although this may result in certain security
concerns. It has been shown that the number of dangerous
permissions in ad libraries has increased [10]. Moreover,
some libraries fail to indicate their usage of such dangerous
permissions in their documentation [11].

The current study proposes an approach called
“Lib2Desc”in order to automatically generate app descrip-
tions. Different from other studies in the literature [12,13],
these approaches focus on generating descriptions related

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

to the usage of TPLs in the app. Here, we use both the
library code and textual documentation in order to explain the
security-sensitive usage of such libraries. First, we consider
what the libraries do and towhich categories they belong, and
extract this information from their documentation. Then, we
aim to explain the usage and leakage of sensitive data from
libraries through the use of source code summarization tech-
niques.

The proposed approach is aimed at assisting devel-
opers, users, and also market stores. First, it will help
app/library developers to automatically generate app descrip-
tions. Developers are often unaware of the permissions and
data used by TPLs due to their focus on writing customized
code as well as a lack of library documentation. There-
fore, automating text generation based on the use of TPLs
will be of help to developers. Depending on the libraries
used, they may even add descriptions of the libraries used
directly to their app descriptions and policies. Second, it
will provide users with detailed app descriptions that can
be scrutinized prior to installation and usage of an app.
Lastly, althoughmarket stores do not create app descriptions,
the proposed approach may be utilized by market stores to
enhance developer-written descriptions.

This current study aims to deliver the following contribu-
tions:

– To the best of the authors’ knowledge, this represents the
first study that aims to comprehensively explain the use
of sensitive data through TPLs, through the use of both
the textual data and code of libraries.

– The study constructs a dataset1 of TPLs, and then ana-
lyzes the usage of TPLs from a security perspective.
As far as we know, the current literature offers no such
dataset of TPLs. Currently, there are 2247 libraries, with
3% of them making use of dangerous permissions.

– It represents the first study to group TPLs into their cat-
egories in order to explain their usage in application
descriptions. In this study, the effects of both the semantic
information obtained from the libraries’ documentation
and the API usage in their code on the library categoriza-
tion problem are analyzed.

– Source code summarization techniques based on neural
models are explored to explain the usage reasons for dan-
gerous permissions, and for data leakages associatedwith
TPLs. This represents the first usage of such a technique
to tackle the description generation problem in Android
systems. The study proposes a newmodel based on trans-
formers called “Code2Desc.”Besides the proposal of a
new model to address the problem, a successful model is

1 The datasets generated during and/or analyzed during the cur-
rent study are available in the Lib2Desc repository, [https://wise.cs.
hacettepe.edu.tr/projects/desre/Lib2Desc/].

proposed for the summarizing of Java source code frag-
ments called “Neural Code Sum (NCS)”[14], which is
adapted to the Android environment according to two
different settings: fine-tuning the published NCS model
with the introduced Android API dataset[1] that contains
Android API code-explanation pairs, and training the
model from scratch using only the Android API dataset.
Each of these models are compared according to the
BLEU score.

– Theproposedmodels are also evaluatedon a small dataset
consisting of TPL methods that use dangerous permis-
sions and leak data manually according to the following
metrics: readability, correctness, expressiveness vulnera-
bility, and the audience targeted (i.e., user or developer).
Finally, examples of the generated descriptions are pre-
sented.

The remainder of the paper is organized as follows: Sect. 2
summarizes the related approaches in the literature under the
following four subsections: description generation, analysis
of TPLs, and source code summarization.Section 3 describes
the steps to collect TPLs and Android apps to be used in fur-
ther experiments. It also summarizes the analysis of collected
TPLs from the security perspective. The proposed approach
for the automatic generation of descriptions based on TPLs
is introduced in detail in Sect. 4, presenting a detailed evalua-
tion of the proposed approach and exemplar generated texts.
The limitations of the approach are also discussed. Finally,
Sect. 5 is devoted to presenting the concluding remarks of
the study.

2 Related work

This section is divided into three subsections. In the first
subsection, the existing studies on Android description gen-
eration are presented. Next, a summarization is provided
of the studies published on the privacy analysis of TPLs,
which mainly focuses on the detection of ad libraries since
the classification of TPLs is one of the primary aims of the
current study. The final subsection addresses studies regard-
ing source code summarization techniques, since they are
applied in the current study to explain methods that use dan-
gerous permission and/or leak data.

2.1 Description generation

One of the first attempts to generate Android application
descriptions was called “DescribeMe.”[12]. Its aim being
to generate security-centric Android App descriptions by
combining static code analysis, subgraph mining, and NLG
techniques. Static code analysis was used to extract behav-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

ior graphs from Android source code, with subgraph mining
techniques are applied to reduce complex graph sizes and
to discover particular security behavior patterns. Then, each
vertex of the constructed graphs was traversed so as to gen-
erate a natural language sentence corresponding to these
paths. DescribeMe [12] can effectively generate informative
descriptions for some but not all permissions; this is because
some permissions cannot be associated with API calls and
their parameters. With a different perspective, CLAP [15]
concentrates on recommending a list of potential permission
requirements for the permission explanation. It is based on
finding similar apps according to information such as title,
description, category, and permissions and then extracts sen-
tences from the descriptions of the similar apps identified.

PERSCRIPTION [16] generates personalized security-
centric descriptions by using statistical natural language
generation techniques. PERSCRIPTION [16] learns users’
linguistic preferences and concerns through their behavior,
such as denial of specific permission, and then identifies that
permission usage as a concern for the user. Users are cate-
gorized according to their behavior based on the Big Five
Personality model [17]. Users’ linguistic preferences such
as frequently used word types are then analyzed in order to
generate user-specific descriptions. Then, different syntac-
tic templates for different personality traits according to the
findings are constructed based on statistical natural language
generation.

AutoPPG [18] focuses on creating readable and correct
privacy policy descriptions regarding the personal privacy
information-related behavior of Android applications. As far
as we know, this is the only study that has used informa-
tion collected about TPLs; however, only data leaked by
TPLs were actually presented. Another work [19] exam-
ined human-authored reports written by malware analysts
in which text mining and machine learning techniques were
applied to the reports in order to explain the malicious
behavior in natural language First, a feature set was con-
structed from negative (unexpected behavior) and positive
(normal behavior) weights extracted from the L-1 Regu-
larized Logistic Regression model [20] that is developed
for malware detection. Each application is represented by
API calls, actions, and permissions, and then passed to the
model.An algorithmbased on the beam search techniquewas
designed to extract a list of keywords indicative of malware
to locate descriptions including keywords from the list, and
then to rank them according to the cosine similarity between
the TF-IDF vectors of sentences. Consequently, it automati-
cally extracts promising description sentences.

2.2 Analysis of third-party libraries

In the literature, some studies analyze TPLs from the security
perspective. One of the earliest studies in the literature called

“AdRisk”[21] analyzed a total of 100 ad libraries and showed
that they could perform risky behaviors from sending sensi-
tive information to allowing non-trusted dynamically loaded
code to be executed. Some ad libraries use dangerous per-
missions provided by applications, but fail to document them
[11]. In that study, 13 libraries were analyzed in detail and it
was shown that some libraries could access and send private
information.Moreover, these data are sent in clear text in each
of these libraries under analysis other than Youmi. Lastly, it
is shown that four of them could run external code, hence
becoming susceptible to attack. Permissions requested by ad
libraries over timewere investigated in [10], and itwas shown
that an increasing number of both permissions and dangerous
permissions were requested by the ad libraries. Moreover, it
was pointed out that the usage of dangerous permissions was
less common among the more popular libraries.

While the analysis studies on libraries have mainly been
based on static analysis, a recent study based on dynamic
analysis showed that many TPLs access private information,
and even leak such confidential data which therefore presents
a potential security risk [22]. In their study, they classified
data leakage into four cases, with particular focus on cases
where the data leakage was directly caused by the TPLs.

In CHABADA [23], applications were clustered based on
app descriptions. Then, sensitive APIs used by each clus-
ter were determined, and deviations from the behavior of
clusters then identified using OC-SVM. In [24], a similar
outlier detection approach was applied, but for the formation
of each cluster’s behavior, only sensitive APIs used by cus-
tomcodewere used. Theyunderlined that apps donot provide
information regarding TPL functionality in their description;
hence, the use of TPLs could affect outlier detection. The
results showed that some deviations found by CHABADA
no longer existed when TPLs were removed from the cus-
tom code. This result underlines the necessity for information
regarding TPLs to be present in app descriptions.

Since the category of a library could provide information
about its functionality and the permissions it may require,
such category information could be added to the descrip-
tion of apps that use that library. However, there are only a
few studies [25,26] that have classified TPLs, and differently
from the current study too, and have also only classified ad
libraries. AdDetect [25] first extracts the modules of an app
according to the decoupling technique, which is based on
hierarchical clustering. This process consists of three steps;
extracting the package hierarchy of the app and identify-
ing the representative packages, estimating the dependencies
among these representative packages and the construction of
a PackageDependencyGraph (PDG), and then applying hier-
archical clustering to recover the individualmodules. In total,
576 semantic features were collected from each module and
given as inputs to the SVMclassifier. These semantic features
were then divided into three groups. The first group extracts

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

information related to the usage of Android components,
device-specific and user profile information such as the usage
of IMEI, whereas the second group obtains the permissions’
usages, and the third group covers the features corresponding
to the usage of selected API calls that provide access to crit-
ical system resources. The experimental results showed that
AdDetect was able to detect ad libraries with 95.34% accu-
racy and was proven to be robust to obfuscation. PEDAL
[26] also detects ad libraries very effectively by extracting
features from applications bytecode. A total of 128 features
were extracted related to the usage of Android components,
the usageof selectedAndroid permissions, the usageof visual
elements since they are frequently used to display ads in ad
libraries, the usage of information sources and sink, and the
usage ofAPIs for runtime permission check.Whereas each of
these studies only detect ad libraries, the current study aims
to classify libraries by using features extracted both from the
libraries’ metadata and code. In other words, we generate
a model for multiclass library classification. Another impor-
tant difference is that the features are extracted not only from
the code, but also from the metadata, and also that they are
text-based.

2.3 Source code summarization

As in many fields, artificial intelligence-based solutions have
been proposed in recent years to address numerous software
engineering problems [27]. One such area is the creation
of natural language descriptions for a given piece of code
[28], which is defined as source code summarization, which
focuses on briefly and clearly describing the behavior of soft-
ware code fragments. Automatic source code summarization
has therefore been investigated by researchers as it helps to
comprehend source code, and also has extensive application
domains such as automatic documentation generation, source
code captioning, and code commenting.

In recent years, neural models have been widely used
to address this problem as they can develop solutions that
require less human effort than template-based methods.
This sequence-to-sequence (Seq2Seq) learning problem per-
forms translations from one language to another, essentially
performing a programming language to natural language
conversion. However, using only the words sourced from
software fragments is insufficient to adequately describe
what a piece of actually does. The structure of the language
must therefore also be considered in order to understand-
ing a program’s behavior. As such, words and symbols that
describe the behavior of a program, for example its control
and data flow, are also utilized in such models [29].

One of the first essential studies in the literature [30]
extracted high-level events related to a method by using the
control flowchart and abstract syntax tree (AST) of that code.
For this purpose, they utilized the SWUM (Software Word

Usage) model. In a later study [31], PageRank and SWUM
methods were used together in order to extract phrases from
Java source code and to generate natural language expres-
sions of methods. The most important method calls were
extracted using PageRank, and then the keywords to be used
in the natural language representation of the method were
extracted from these calls using SWUM.

Recently, neural network approaches for automatic source
code summarization have become very popular, due in part
to the advances made in deep learning and the availabil-
ity of high-volume data. Most of the recent approaches
[32,33] adopt the sequence-to-sequence (Seq2Seq) neu-
ral machine translation architecture proposed to date in
numerous natural language processing applications [34].
The Seq2Seq network architecture uses an encoder-decoder
structure composed of RNNs, LSTM, or GRUs. While RNN
and LSTM-based architectures are much preferred in these
models, transformer-based architectures [14,35] have been
proposed only very recently.

Neural Code Sum (NCS) [14] is a state-of-the-art
transformer-based approach that has been very recently pro-
posed to address the problem. As in NCS [14], most other
studies [29,32,35] use source code written in programming
languages such as Java and Python that support multiple pro-
gramming paradigms (e.g. object-oriented, scripting). The
comparisons carried out in [14] show that the full model
version of NCS, which uses relative position representations
and a copy-attention mechanism that allows the model to
copy from input source code, outperforms the other models
by a significant margin (a BLEU score of 44.58). How-
ever, a recent study [36] that deeply analyzed neural code
summarization models in the literature showed that various
factors could affect the performance of models such as data
preprocessing steps, selection of BLEU metrics (sentence
level, corpus level, smoothing method, etc.), dataset splitting
approach, and dataset characteristics.

Since API calls are one of the most important features
in a piece of code, the knowledge of a model generated for
matching API calls with their call definitions was transferred
so as to solve code summarization in [37]. It was shown that
the performance of code summarization increased with the
transfer of API call knowledge. A study examining human-
generated code summaries [38] showed that as the detail
in code summaries increases, so does the use of keywords
related to API calls. According to the study, while high-
level code summaries use keywords related to APIs at a
rate of 76.78%, this increases to 93.75% in low-level (more
detailed) code summaries [38]. Hence, some neural models
use a method’s API calls to extract a summary [38]. Instead
of using the names of API calls, some models use the docu-
mentation (description) of those calls together with the code
and AST tree. [39]. However, it was shown that the models’
performance decreased when the number of API calls used

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

increased due to the long definitions that originated fromAPI
calls.

In the literature, there have been limited approaches to
summarizing the source code of programs developed utiliz-
ing the event-driven programming paradigm, in which the
program flow is controlled by user actions named events
(e.g., keypress, mouse clicks). In other words, while pre-
vious studies have worked on large datasets generated from
Java methods and their definitions, the current study aims to
expand upon these approaches in order to explain Android
application methods. For this purpose, Android API calls
and their documentations are utilized. This study is different
from other studies in the literature in that it aims to gener-
ate code summaries of Android source code developed in
Java language that support the event-driven architecture of
Android OS. In addition, the study aims to provide a sim-
ple explanation for suspicious behavior in code fragments
from the security perspective. In the future, this approach
could be further improved with an extended dataset that
includes explanations, particularly for suspicious and mali-
cious behaviors.

3 Data collection

3.1 Collecting third-party libraries

A total of 2247 TPLs were collected from Android Arsenal
[40], Maven Central [41], Spring.io [42], JCenter [43] and
Jitpack [44], which are all repositories commonly used by
the Android developer community. These repositories each
contain various information about TPLs such as their source
code, API documentation, general descriptions, and cate-
gories. However, only Android Arsenal contains information
about the categories of TPLs that are shown as tags selected
by developers; therefore, the categorization of TPLswas con-
ducted semi-automatically in the study. First, the categories
listed in Table 1 were determined based on the functionali-
ties of TPLs presented in their descriptions and tags. In this
step, the most discriminate words of each category were also
extracted. Then, the keyword-based approach was applied
to group the TPLs into their categories. Although this is
a somewhat simplified approach, it is applicable to most
TPLs in the dataset of the current study. For example, all
TPLs in the PERMISSION category include the keyword
“permission”in their description. Similarly, all TPLs in the
DATE & TIME PICKERS category include at least one of
the followingkeywords: “date,”“time,” “calendar,”“range,”or
“picker.”Following this initial filtering, three authors of the
current studymanually verified theTPLs’ categories. In some
cases, where the descriptions were not found to be that infor-
mative, the code and the TPL explanations shared on Github
were analyzed. The most significant issue was that the cate-

gories were not homogeneously distributed, so, whilst there
were a large number of libraries in some categories, there
were insufficient numbers of libraries to work on in other cat-
egories. The homogeneous distribution of data is important,
especially for themulticlass classification of libraries. There-
fore, the sample for categories with inadequate volume were
increased by applying the same automatic keyword-based
filtering and manual verification steps.

The dataset used also contains the source code of the
libraries; however, the source code of some libraries down-
loaded from the repositories may be empty. Moreover, in
some cases, the decompilation of code in the libraries might
fail. Therefore, static analysis was applied to 87% of all
the libraries in the dataset. The source code of the libraries
downloaded from these repositories was generally not obfus-
cated contrary to the code obtained from the decompilation
of applications that use the same libraries. This allowed us to
analyze the libraries’ code statically, and only a small num-
ber of the libraries in the dataset were found to be partly
obfuscated. While only 88% of libraries include a general
explanation, 85% included category information. The cate-
gories of the libraries in the dataset are listed in Table 1.

Overall, 16% of the libraries in the dataset use permis-
sions, and 3% use dangerous permissions. While the most
frequent permission found in the libraries was ACCESS_
NETWORK_STATE, the most used dangerous permis-
sion was ACCESS_COARSE_LOCATION. The permis-
sions used by TPLs were extracted using Axplorer [45].
Although it may be said that Axplorer has certain limita-
tions such as supporting up to Android API Level 25, it has
the most up-to-date Android API permissions mappings in
the current literature. More information about the dangerous
permission usage of libraries is provided in Table 2. Most
of the libraries (approx. 63%) with LOCATION permission
were found to be in the LOCATION category. Another cate-
gory that uses this permission, although in only about 14% of
cases, was the UTILS category. Libraries in other categories
were also found to use this permission, albeit rarely. The
READ_PHONE_STATE permission was found to be used
by libraries belonging to various different categories in our
dataset.

3.2 Collecting Android applications

TPLs form an extensive part of an APK (Android Package
Kit). In the literature, it is shown that, on average, more
than 60% of application code belongs to TPLs [9]. However,
the usage of TPLs yields security risks due to the poten-
tial malicious use of dangerous permissions requested by an
application. In addition, it has been shown that they could
leak sensitive data [11,21]. Therefore, the usage of danger-
ous permissions and data leakage by TPLs were analyzed as
part of the current study. In addition to the library dataset,

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Table 1 Categories of TPLs

Categories # of samples

UI 524

UTILS 206

CAMERA 133

LOCATION 107

AUDIO 87

MESSAGE 82

DEBUG 74

DATE & TIME PICKERS 69

BLUETOOTH 68

ANALYTICS 65

ADVERTISEMENTS 53

NETWORK 51

DATABASE 48

TOOLS 43

PERMISSIONS 41

PURCHASE 40

SECURITY 36

SENSOR 33

FILE_SYSTEM 30

STORAGE 26

MEDIA 23

TEXTTOSPEECH 19

TESTING 12

LOCALIZATION 8

MAIL 7

CLOUD STORAGES 6

USB 5

FACE RECOGNITION 4

a total of 7152 applications were also collected from the
official Android market in order to analyze how they use
TPLs from a security perspective. Since the most frequently
encountered dangerous permission used by applications and
libraries is LOCATION, applications that use these permis-
sions are given priority to download.

In the literature, several approaches have been used for
TPL detection. The white list approach, in which a list of

libraries is constructed and the package names in applica-
tions are searched against this list, is not considered resilient
to package name obfuscation. Hence, new approaches for the
automatic detection of libraries have been proposed in recent
years. The most popular and recent TPL detection tools are
LibRadar [46], LibD [47], LibPecker [48], LibScout [49],
LibID [50]. In the current study, LibRadar was selected for
TPL detection due to its considerably low detection time
when compared to other tools. LibRadar employs static anal-
ysis and uses library-specific features such as the number of
API calls in its TPL detection.

First, LibRadar was executed on the application dataset.
According to the output, each application was shown to
use seven TPLs on average. Second, applications were then
decompiled. Libraries using dangerous permissions in the
dataset were extracted using Axplorer [51], which matches
API calls with the permissions used. The results showed that
77% (n= 5.562) of applications used dangerous permissions
through TPLs, and that 83% of these applications declared
that dangerous permissions were used by libraries in their
manifest files. The most used permission in our dataset was
INTERNET, and the most used dangerous permission was
established to be ACCESS_FINE_LOCATION as expected.
This permission is mostly used by the “android.location.
LocationManager. getLastKnownLocation”API call, which
returns the last known location of a device.More information
on the uses of dangerous permissions is provided in Table 3.

Lastly, the libraries in the dataset that leak data were
extracted using FlowDroid [52], which is a static analysis
tool that analyzes data flow in Android and Java programs.
In total, 61 unique libraries were found to leak data. The
majority of the leaked data came from network usage, with
network information found to be the datamost leaked. Table 4
and Table 5 present more information on the methods used
for leaking and data leaked by TPLs, respectively.

4 Lib2Desc

The proposed approach, Lib2Desc, consists of three com-
ponents as shown in Fig. 1. First, where available, the
general information about a given library (e.g., its purpose)

Table 2 Dangerous permissions used by TPLs

Permission # of libraries Most Used API Call

ACCESS_COARSE_LOCATION 47 android.location.LocationManager.getLastKnownLocation

ACCESS_FINE_LOCATION 46 android.location.LocationManager.getLastKnownLocation

READ_PHONE_STATE 5 android.telephony.TelephonyManager.listen

SEND_SMS 1 android.telephony.SmsManager.sendTextMessage

READ_EXTERNAL_STORAGE 1 android.telephony.SmsManager.sendTextMessage

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

Table 3 Dangerous permissions used through TPLs in apps

Permission # of applications Most used API Call

ACCESS_COARSE_LOCATION 5529 android.location.LocationManager.getLastKnownLocation

ACCESS_FINE_LOCATION 5401 android.location.LocationManager.getLastKnownLocation

READ_PHONE_STATE 1636 android.telephony.TelephonyManager.listen

SEND_SMS 211 android.telephony.SmsManager.sendTextMessage

READ_EXTERNAL_STORAGE. 211 android.telephony.SmsManager.sendTextMessage

ACCESS_LOCATION_EXTRA_COMMANDS 57 android.location.LocationManager.sendExtraCommand

USE_SIP 24 android.net.sip.SipManager.open

RECEIVE_MMS 7 android.telephony.SmsManager.downloadMultimediaMessage

Table 4 Leaking methods used by TPLs

Leakage type # of libraries

NETWORK 47

FILE 2

NO_CATEGORY 5

UNKNOWN 7

Table 5 Data leaked by TPLs

Leaked data # of libraries

NETWORK_INFORMATION 54

LOCATION_INFORMATION 2

CALENDAR_INFORMATION 4

ACCOUNT_INFORMATION 1

is extracted from its documentation. Then, the second com-
ponent aims to automatically identify the category of the
library, whilst the final component creates a summary of
librarymethods using dangerous permissions and/or that leak
data. The primary combined purpose of these components is
to provide the user with an explanation as to why TPLs use
dangerous permissions or leak data. While the most fine-
grained information is obtainable from the third component,
it may not perform that well if the method is exposed to sig-
nificant obfuscation. Even in such cases, the aim is to elicit
some basic information about the library and its category
through the first two components in order that the users can,
at the very least, evaluate whether or not the requested per-
mission or data leakage is considered compatible with the
general purpose and category of the library in question.

4.1 Extraction of general information

This component aims to assess the quality of the collected
dataset, and then to extract the general information of the
libraries. The BERT (Bidirectional Encoder Representations
from Transformers) framework is a commonly used solution

applied for a variety of tasks inNLP, such as question answer-
ing, sentiment analysis, and language inference. Here, BERT
[53] models were employed for a question-answer task, with
the focus being on answering questions askedwithin a certain
context using natural language.

First, three predefined questions were determinedwith the
aim to extract information from the textual description of
TPLs (Q1: “What is this?”, Q2: “What is the purpose?”, Q3:
“What does it do?”). Then, these three questions, together
with the preprocessed descriptions of 450 TPLs, which form
the context for the questions, were fed into the model to
extract information from the textual description as output.
In the preprocessing of the TPL descriptions, fundamen-
tal operations such as removing code pieces, eliminating
non-Unicode characters were applied. For the current study,
the BertForQuestionAnswering extractive question-answer
model from the Transformers package, as developed byHug-
ging Face [54], was employed as it is known to provide
state-of-the-art NLP models. Finally, the model’s output, as
in answers to the aforementioned questions, were analyzed
in detail.

Each library’s textual description was then automatically
extracted from their websites, and then analyzed in terms of
content before being classified as insufficient/noisy or suf-
ficient data. Overall, 82% of the descriptions were found to
be sufficient. Next, the validity of the answers produced by
the model to the three questions were checked and sepa-
rately tagged as valid or invalid for both all descriptions and
for those with only sufficient data (see Table 7). The overall
content sufficiency and textual quality of library data was
then tagged as valid where at least one of the questions was
answered correctly. In the context of description generation
or library classification, even answering one of these ques-
tions may constitute important or descriptive information.
Table 7 presents the number of valid tags for each question,
as well as the total number of valid answers, in which the
TPL descriptions have at least one valid answer. The results
reveal that 92% of libraries with sufficient textual description
contained at least one valuable item of information. These

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Fig. 1 Overview of the proposed approach

results and their statistics provide insight into the quality
of the dataset, and thereby its potential application through
revealing whether or not the collected data is deemed ade-
quate to resolve tasks such as library classification. A few
example answers produced by the model for each question
are presented in Table 6.

4.2 Classification of third-party libraries

The radical increase in mobile applications in recent years
has led to significant interest in Android application devel-
opment. Developers and companies have therefore released
numerous TPLs for application developers to use. These
libraries are widely used as they make the application devel-
opment process both easy and quick to use. As with apps,
libraries are categorized into different groups based on their
functionality, such as advertising or media. Automatically
classifying these categorieswill help to promote better under-
standing as to why some libraries use dangerous permissions
or leak data, and to help identify suspicious behavior for a
given category. This constitutes the primary aim of this com-
ponent.

Developers provide textual descriptions to explain the
functionality, purpose, and usage capability of libraries,
whilst the textual metadata reveals similarities between

Table 6 Exemplar answers generated by BERT

Noise FFT

Q1:What is this? A FFT computation library for
Android

Q2:What is the purpose? to be easy to use

Q3:What does it do? compute FFT

Soundify

Q1:What is this? Soundify Library

Q2:What is the purpose? Offer to you the data
transmission via sound waves

Q3:What does it do? Makes the transformation and
transmission

Of certain information into
sound waves

Android playlist file parser

Q1:What is this? Android Playlist File Parser

Q2:What is the purpose? To parse a playlist file provided
as an InputStream

Q3:What does it do? Please check the format’s

libraries with similar functionality. Therefore, the current
study aimed to automatically investigate the categorization
of libraries by utilizing the textual metadata provided using
machine learning techniques. The effect of different feature

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

Table 7 The accuracy of answers produced by BERT

Accuracy All data Sufficient data

Q1 0.60 0.65

Q2 0.62 0.71

Q3 0.64 0.75

Overall accuracy 0.86 0.92

groups on the classification of libraries was then analyzed.
Few studies in the literature [25,26] have applied machine
learning techniques for the classification ofAndroid libraries,
and primarily these studies have targeted the identification
of ad libraries that are used for displaying advertisements
within Android applications, for monetizing applications,
and for the provision of user-specific advertisements. The
literature has reported that these types of libraries access
sensitive information such as users’ current location and e-
mail addresses, therefore, it may be said that such studies
show a level of parallelism with the current study in terms of
the classification of libraries for Android security. However,
the current study differs in that it approaches the task as a
multiclass classification problem. Another difference is that
our approach utilizes not only features extracted from the
code, but also textual features obtained from the metadata.
In the current study, several feature groups were extracted,
and their effect on the performance of the proposed solution
then evaluated. Further explanations regarding these features
are provided in the subsequent section.

4.2.1 Data preparation

Data were collected from the libraries listed in Sect. 3.1,
from which a total of 29 different categories are represented.
However, not all of the categories were able to provide a suf-
ficient volume sample for the purposes of classification due
to the semi-automated labeling of TPL categories. Having a
balanced and significantly large representative dataset is con-
sidered important for any machine learning method. In order
to achieve a balanced dataset in which each category offers
a sufficient sample size, some of the lesser used categories
were excluded. The intended objective here was both to try
and achieve a sufficient sample size for each category, and
also to have enough categories overall to successfully per-
form multiclass classification as the primary purpose. Based
on this tradeoff, a total of 10 categories were used, with each
consisting of at least 60 samples, as can be seen in Table 8.
The illustration in Fig. 3 further supports this approach by
showing how the sample size plays a key role in classification
performance. Whilst 80% of the selected samples were used
for the purpose of training, the remaining 20% were used for
testing.

Table 8 Categories used in TPL classification

Category Sample size

UI 524

UTILS 206

CAMERA 133

LOCATION 107

AUDIO 87

MESSAGE 82

DATE & TIME PICKERS 69

BLUETOOTH 68

ANALYTICS 65

DEBUG 74

The current study used both TPL descriptions and code in
order to classify and categorize the TPLs. As such, certain
preprocessing steps were applied to both the TPL descrip-
tions and code. First, the library explanations were separated
into distinct words, and then grouped and evaluated accord-
ing to different inflectional word forms using the classical
NLPmethod known as lemmatization. During this process of
simplification, the NLTK [55] library was employed, which
is known to be widely used in NLP tasks. Then, stopwords
were eliminated by using NLTK. To clarify, both lemmati-
zation and stopword elimination are frequently applied tasks
in the field of NLP as they simplify the textual data entering
the classifier and thereby help to eliminate noisy data that
negatively affects machine learning models. API calls were
also extracted from the TPL code. These API calls were rep-
resented in two different ways: textually and encoded as 0
or 1, in order to indicate the existence of a particular API
call in the code. API calls in the form of textual data were
divided into keywords according to pascal-case spelling style
rules, which is a typing style paradigm frequently employed
by developers. An exemplar keyword extraction is provided
in Table 10. The API call vector was then encoded as 0 or 1,
according to whether or not the library makes the call. The
feature groups used in the current study are listed as shown
in Table 9.

4.2.2 Experiments and results

In the study’s experiments, the LinearSVC classification
algorithm from the Scikit-learn library [56] was employed
as the classifier. As previously stated, a total of 10 categories
with more than 60 samples were used to build the classifier.
The experimental results were evaluated according to accu-
racy, precision, sensitivity, and f-score values. The results of
the experiments performed with each different feature group
are presented in Table 11.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Table 9 Feature groups used in the classification of TPLs

Feature group Components Vector

F1 Library
descriptions
and extracted
keywords from
API Calls

TF-IDF vector of
concatenated
components

F2 Library
descriptions

TF-IDF vector

F3 Extracted
keywords from
API calls

TF-IDF vector

F4 API calls One-hot encoded
vector

Table 10 Keywords extraction from API calls

Original API call text Extracted features

GetAction ()Ljava/lang/String; Get, Action

GetColor (I)I Get, Color

The experimental results show that the most successful
model was obtained using only the features extracted from
the library descriptions, which have a more complex struc-
ture than API call vectors, and are represented as one-hot
encoded or textual form. Moreover, they perform better at
describing a library’s functionality. Although feature vectors
consisting of textual or one-hot encoded API calls provide
information about library categories, combining the library
descriptions with API calls adds noise to the input vector.
In other words, as these features are in different languages,
with library descriptions considered natural language, whilst
API calls are formal language (i.e., code), this can nega-
tively affect the understanding of the model. As a result, TPL
descriptions produce a better result when used singularly in
order to resolve the library classification problem.

The results showed that the model using encoded API call
vectors was proven as superior to the model using the text
formAPI call vectors. This result is due to the encoded vector
containing a greater level of information since it has more
dimensions than the textual vector. Moreover, the model
using a concatenation of these twovectors as inputwas shown
to outperform models using only API call representations.
In other words, although the representation of API calls is
different, they are unaffected by the aforementioned noise
problem since both vectors are sourced from the same for-
mal language space and have more dimensions than vectors
that use only a single API call representation.

In order to see the relationships between libraries, the
confusion matrix of the best model is presented as Fig. 2.
The following categories were found to be successfully pre-
dicted by the model: BLUETOOTH, LOCATION, AUDIO,

Table 11 TPL classification results

Feature group (%)Accuracy (%)Precision (%)Recall (%)F-Score (%)

F1 74 75 74 73

F2 75 76 74 75

F3 55 54 55 53

F4 56 57 56 56

F1 and F4 60 60 60 59

F2 and F4 60 60 60 59

F3 and F4 57 57 57 56

Fig. 2 Confusion matrix of TPL classification

andDATE&TIMEPICKERS.However, themodel confused
the categories of ANALYTICS, DEBUG, CAMERA, MES-
SAGE, UTILS, and UI with each other. As such, the model
mislabeled the ANALYTICS category as DEBUG, and the
CAMERA, MESSAGE, and UTILS categories as UI. The
ANALYTICS and DEBUG categories, by their very nature,
contain common functionality such as analysis and moni-
toring and also some that may be linked to the UI category.
For instance, both camera and SMS functions are accessi-
ble via the user interface (UI), so it is therefore possible for
these categories to have some of the same functionality as the
UI category. The UTILS category is very general and may
therefore also contain functionality related to the UI.

Finally, the effects of the sample size on the experimental
results were analyzed using 20, 30, and 40 samples selected
from each category, respectively, and the models were each
trained with these samples and evaluated using the same test
set. The performance results of these tests are provided in
Fig. 3. As can be seen from the results, the training size
significantly affected the performance of the model, which
was an expected result. Therefore, categories with samples
exceeding 60were used in the experiments. It is also believed
that the results would improve significantly by increasing the
training set size further still.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

Fig. 3 Experimentation conducted on a training set of 20, 30, and 40
samples for 10 categories. Experiments use F2 as their input vector

4.3 Source code summarization

In the literature, TPLs are shown to access and collect private
information by using static [57] and dynamic [22] analy-
sis techniques. It has also been shown recently that many
TPLs have access to private information, and therefore could
even pose a security risk if they were to leak confidential
data [22]. Since such suspicious behaviors are not declared
in TPL documentation [57], it is important to extract this
type of security-critical information and to include within
the apps’ descriptions that use such libraries. The main aim
of this component is to resolve or adapt this problem, which
is described as source code summarization in the literature,
to the Android environment.

As in many other fields, machine learning approaches
have gained significant importance with the increases seen
in big data and the advancements in both neural models
and computational resources. Recent approaches [32,33]
to source code summarization have utilized sequence-to-
sequence (Seq2Seq) neural networks [34], which take an
input sequence (words, letters, time series, etc.) and then
output another sequence. The encoder captures the input
sequence and encapsulates the information into a context vec-
tor. Then, the decoder generates the output sequence based
on the received context vector. Models based on the Seq2Seq
architecture have been shown to achieve a high rate of success
in various problems such as text summarization, machine
translation, and grammatical error correction.

In the RNN-based Seq2Seq models, the encoder requires
two forms of input: the current input sequence and the repre-
sentation of the previous sequence. Thus, the output depends
on both the current input and also that of the previous
input. Themodel helps to preserve the sequential information
in the hidden state and to make use of it in the subse-
quent prediction. Although Seq2Seq models significantly
improve machine translation tasks compared to traditional

machine translation approaches, this underlying mechanism
of RNN-based Seq2Seq models does present certain limita-
tions: (1) neural networks become deeper as the sequence
gets longer, which can cause a vanishing gradient problem,
and (2) RNNs cannot preserve long-range dependencies in
long sequences as they can only recall the memory from one
previous step. Transformers have become very popular since
they can overcome these limitations associated with RNNs.
Therefore, two transformer-based Seq2Seq approaches were
employed in the current study’s model to tackle the code
summarization problem. In the first approach, the state-of-
the-art transformer-based approach called neural code sum
(NCS) [14] was adopted, and second, a new approach called
Code2Desc is introduced.

4.3.1 NCS

NCS [14] is a transformer-based model with an attention
mechanism, which has been shown to improve source code
summarization performance. Attention is a mechanism used
to strengthen certain features and weaken others and is
applied to the feature vector during the parallelization of vec-
tor operations. In addition to the self-attention mechanism,
NCS [14] uses a copy-attentionmechanism in order to enable
Transformer [58] to use a copy of an input vocabulary in the
output sequence.

As in NCS [14], most of the studies in the literature
use source code written in programming languages such
as Java and Python, and therefore support multiple pro-
gramming paradigms such as object-oriented and scripting
programming language. However, few approaches actually
summarize the source code of programs developed utiliz-
ing the event-driven programming paradigm in which the
program flow is controlled by user actions (e.g., keypress,
mouse clicks) named events. Since Android uses an event-
based programming language, the NCS model is used in two
different ways as shown in Fig. 4. The Android API (AAPI)
dataset1, which includes both Android API calls and their
corresponding documentation, is used in both approaches:
(1) In the fine-tuned model, the trained and published model
by the authors of NCS is used to initialize the weights of
the model, and then the model is fine-tuned using the AAPI
dataset; (2) In the AAPI model, the NCS model is trained
from scratch using only the AAPI dataset. Both models use
the same hyperparameter settings, and are both trained with
the Adam optimizer for 50 epochs. However, the early ter-
mination strategy is applied unless there is no improvement
seen from themodel for 20 iterations. The other hyperparam-
eters are as follows. The learning rate is 0.001, themini-batch
size is 64, and the dropout rate is 0.2. In addition, parameters
related to the vocabulary for source code and code summaries
are used as in NCS [14]. During the inference, the beam size,
which helps to return high probability outputs, is set to 4.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Fig. 4 NSC approach overview

4.3.2 Code2Desc

Thecurrent study introduces anew transformer-basedmachine
translationmodel called “Code2Desc.”The transformer,which
forms the basis of the model, includes an encoder and
a decoder with an attention mechanism and a positional
encoder, which maintains the parallel structure of the con-
verter and the order of the words. The model is trained for
48 epochs and uses a 64 batch size. The model has a dic-
tionary size of 50,000 entries and produces 256-dimensional
embeddings.

The model performs the following steps. The AAPI train-
ing set is vectorized separately for both code fragments and
descriptions. At each training step, the vectorized inputs are
sent to the encoder in order to generate a new representa-
tion, which is then transmitted to the decoder and the target
words obtained (target words from 0 toN). The decoder then
attempts to predict the subsequent words in the target word
string (N+1 and beyond). Finally, the weights of the model
are updated according to the predictions made.

The architecture of the proposed model is illustrated as
shown in Fig. 5. Regular expressions (regex) are applied
to the model’s output so as to increase both the readability
and accuracy of the predictions produced in the inference
dataset, which the model has not previously seen before.
These regular expressions delete sequentially repeatedwords
and stopwords occurring at the end of sentences. An example
of this last step is presented in Fig. 6. The NLTK and regex
libraries are used for the writing of regular expressions; how-
ever, it should be noted that the same regular expressions are

applied to the NCS-based models’ outputs for the purposes
of fair comparison.

4.3.3 Datasets

Three datasets were used in the current study to train and
evaluate the previously described models. The first is a pub-
licly available Java dataset [59], which was originally used
to develop the NCS [14] model. Even though a few datasets
can be found in the literature for Java code summarization
(e.g., Funcom [60], NCS [14]), to the best of our knowledge,
there are no publicly available Android source code datasets.
Therefore, in order to achieve the aim of generating descrip-
tions for Android source code, the second and third datasets
were created by the authors of the current study.

The second dataset, called AAPI (Android API), includes
both the Android API call source codes together with their
natural language descriptions taken from the Android API
References. The dataset includes a total of 95,380 source
code-summary pairs. Since API calls could help to analyze
the behavior of Android applications and sensitive API calls
are extensively used to detectmaliciousAndroid applications
[61], they were also employed in the study for the purpose of
source code summarization.Moreover, it has been shown that
as the detail in human-generated code summaries increases,
so does the use of keywords related to API calls [38]. The
original NCS model was trained with a Java source code
dataset.Android Java is relatively different from the core Java
language that is limited to the object-oriented programming
paradigm. The AAPI dataset, which is a platform-targeted

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

Fig. 5 Code2Desc’s
architecture

Fig. 6 An example of the
post-process step on
Code2Desc’s predictions

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Table 12 Datasets used for source code summarization

Dataset Train Validation Test

Java 69,708 8714 8714

Android API (AAPI) 69,565 9831 9953

Android source code 0 0 400

dataset, is then used to increase the NCS model’s capabil-
ity to summarize source code written in the event-based
Java programming language for developing Android apps.
More specifically, this dataset is used for updating the fine-
tuned NCS [14] model weights and learning the AAPI and
Code2Desc models’ weights.

The Android source code dataset is the third dataset used
in the study. It contains Android methods that may include
security-sensitive behavior such as the use of dangerous per-
missions or leaking data. Unlike the first two datasets, the
Android source code dataset contains only the source code
of the library methods, and not their textual descriptions.
Therefore, it is only used for the testing of the models, with
the output of the models evaluated manually. The sizes of
each dataset are presented in Table 12.

The newly introduced Android API and Android source
code datasets were preprocessed [14] in the same way as the
Java dataset, by splitting the camel case notation into subto-
kens. Furthermore, natural language summaries shorter than
two words were excluded from the datasets, and Android
API summaries indicating that they were inherited from
other documentationwere also discarded. The remainingAPI
source code and summary pairs were shuffled and randomly
split into training, validation, and testing datasets based on a
proportion of 8:1:1, which was shown to be effective in [36].

4.3.4 Experiments

Three models were evaluated using the AAPI testing dataset.
Their resulting BLEU scores (see Table 13) showed that they
were comparable with the state-of-the-art approaches [36] in
terms of source code summarization. The results shows that
training the NCS model from scratch using the platform-
targeted AAPI dataset performed better than the fine-tuned
NCS model. This gap results from the training data that each
model used. As the fine-tuned model is based on the original
NCSmodel, and trained using source code written in the core
Java programming language, these results also prove the dif-
ferences between Android and Java core programming, and
the positive effect of API calls on source code summariza-
tion. The original NCS models delivered promising results
for Android source code summarization, which has not pre-
viously been addressed. The Code2Desc model revealed a
lower performance than the NCS-based models, although
differences between the architecturesmay go toward explain-

Table 13 Bleu scores of the models based on AAPI dataset

Model Bleu

Fine-tuned NCS model 43.56

AAPI Model 45.56

Code2Desc 27.93

ing this outcome. The deeper and more complex structure of
NCSs may help it to learn the problem more easily than seen
with the Code2Desc model.

The BLEU metric, which compares candidate textual
translation to one ormore reference translations, is a standard
metric applied in source code summarization.However, since
the Android source code dataset only contains the source
code of library methods that use dangerous permissions or
leak data, the quality of the generated descriptions on this
dataset were evaluated manually. In total, four evaluation
metrics were employed:

Readability valuates sentences that do not contain syntac-
tic errors and are deemed easy to read. It should be noted
here that a generated sentence could be easily converted to a
readable sentenceby applyingpost-processing, such as elimi-
nating repetitive sentences and sentenceswithout a predicate,
or removing non-alpha characters.

Correctness evaluates how well the generated sentences
describewhat the givenmethod does. Approaches in the liter-
ature generally evaluate models based on open source code;
however, the dataset used in the current study included obfus-
cated methods. As manual summarization of these methods
can prove tricky, these cases were also evaluated and shown
in the results.

Expressiveness of vulnerability evaluates if the sum-
marization has information related to the usage of dan-
gerous permissions or data leakage. Here, the expecta-
tion was that sentences would not explicitly refer to the
usage of permissions, such as “This method uses the
ACCESS_COARSE_LOCATION permission.”For danger-
ous permissions, sentences which implicitly refer to their
usage such as “get the location of restaurants nearby”are con-
sidered valid. The description-to-permission fidelity problem
[62] aims to find such permission sentences within the app
descriptions, else the problemwould be very straightforward
and readily solvable using a keyword-based approach. For
data leakage, sentences directly referring to the accessing of
sensitive data are tagged as valid sentences, as well as those
indicating a sink point that may cause data leakage.

Audience divides the target recipients for the gener-
ated summaries into two groups, as developers and users.
Although source code summarization techniques are mainly
targeted at developers, the current study also added gener-
ated sentences to app descriptions, which are mainly read
by users. It should be noted, however, that if the resulting

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

sentences are not readable, their audience is tagged as not
applicable.

In order to evaluate models using the aforementioned
metrics, two subset methods that leak data and use danger-
ous permissions were extracted from the dataset. Both of
the security behaviors, namely the usage of dangerous per-
mission and the existence of data leakage, were evaluated
using datasets consisting of 100 methods. The NCS-based
models were compared using the same datasets; however,
Code2Desc uses different subsets due to the elimination of
methods in the final step. In that step, sentences shorter
than two words, having stopwords occurring at the end of
a sentence, having consecutive repeating words, and found
to contain “nan”as a word, were all eliminated. This pro-
cess of elimination affects different methods for each model.
Moreover, it may also present an unfair advantage over cer-
tain architectures.

The analysis results of the sentences generated from
source code that uses dangerous permissions or has data leak-
age are presented in Tables 14 and 15, respectively.

Although the models were trained with the AAPI dataset,
a different dataset was used to conclude the developed mod-
els’ capability to generate security-centric annotations for
pure Android source code fragments. Moreover, the aver-
age length of methods/API calls (378 chars) in the AAPI
dataset was much shorter than those in the Android source
code dataset (659 chars for dangerous permissions, 910 chars
for leaking data). The results showed that the AAPI model,
where the proposed NCS method was trained using only the
AAPI dataset, outperformed the other models in each of the
applied metrics.

The performance gap between the NCS-basedmodels and
Code2Desc could be explained due to NCS’s deeper and
more complex architecture, and that some NCS mechanisms
such as copy-attention do not exist in Code2Desc. In most
cases, the dangerous permission usage was able to be easily
and directly extracted from calls such as SetGPSListeners():
set GPS listeners, GetLastKnownLocation(): get last known
locationHaving these types of API calls in themethods had a
positive effect on the results due to the copy-attention mech-
anism used in NCS-based models. This mechanism copies
words, which are source code fragments in terms of the cur-
rent study, to the target sequence with the help of attention.
When the copied words are directly related to the method’s
functionality and expressiveness of dangerous permission,
the model’s performance is increased. Moreover, since many
permissions directly relate to obfuscation-resilient API calls,
these models perform reasonably well even on obfuscated
methods.

It should be noted, however, that the readability score
covers sentences that become readable only after post-
processing. While the NCS-based models produce more
sentences that require post-processing (23–24% of all sen-

tences), only 12% of the sentences generated by Code2Desc
required post-processing, such as for the elimination of repet-
itive phrases.

The performance of the proposed models on the meth-
ods that leaked data was found to be much lower than
for those using dangerous permissions, especially in terms
of the the expressiveness of vulnerability metric. In the
manual analysis, it was observed that the methods using
dangerous permissions were more straightforward, shorter,
self-explanatory, and less obfuscated. Moreover, the usage
of permission might be explained with the existence of one
API call. However, generally speaking, it was not found to
be the case for those methods in the dataset that leaked data.

Methods that are identified as potentially leaking data
may also contain event-based methods such as onClick(),
onContextItemSelected() as they may listen to and capture
user events such as button clicks, which could arguably trig-
ger data leakage. These methods are generally considered
to be longer than those that utilize dangerous permissions.
Moreover, they were observed to have more than one func-
tionality,which could positively affect the performance of the
model (in terms of output correctness), since if one of them
is explained correctly in the generated output, the output is
tagged as being correct.

Obfuscation negatively influences generated sentences as
obfuscation replaces meaningful keywords that are possi-
bly descriptive of the functionalities held by the methods.
Besides, it hinders the copy-attention mechanism’s positive
contributions and even causes a negative influence in all of
the metrics. As shown in Table 15, when the obfuscation
increases, the readability and correctness of the NCS-based
models decrease. The length of methods might also nega-
tively affect the results. The length of methods in this test
dataset wasmuch higher than the average in theAAPI dataset
and those using dangerous permission in the API Source
Code dataset. One notable result was that Code2Desc was
found to be less affected by obfuscation and long meth-
ods, especially for the metrics of readability and correctness.
While the complex architecture of NCS, such as its use of
copy-attention, may negatively affect such cases, the more
simpler Code2Desc model was able to achieve results com-
parable with NCS-based models in explaining methods that
leak data, and as such this presents as stability.

It should be noted that the amount of naming obfuscation
applied to eachmethod in the evaluation was different.While
some methods have their names, parameters, return types,
and local variables obfuscated, other methods may only have
a single referenced variable’s package name obfuscated. In
the introduced Code2Desc model, the method was able to
be coarsely summarized, albeit accurately, when the self-
descriptive and relatively more informative parts of a method
such as its name, parameter names, and package names
responsible for the essential functionality of themethodwere

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

Table 14 Analysis of generated sentences for methods using dangerous permissions

Model Readability (%) Correctness (%) Expressiveness of Obfuscated (%) Audience Audience
vulnerability (%) user (%) developer (%)

Code2Desc 46 28 31 60 13 31

Fine-tuned NCS 75 35 39 56 15 62

AAPI 76 44 56 56 13 58

Table 15 Analysis of generated sentences for methods leaking data

Model Readability Correctness Expressiveness of Obfuscated Audience Audience
vulnerability user developer

Code2Desc 48 28 4 72 4 36

Fine-tuned NCS 64 32 5 74 0 59

AAPI 59 38 9 74 3 53

not obfuscated. Moreover, since API calls are difficult to
obfuscate [63] and self-descriptive, the amount of API calls
in a method also presents an important factor. It is observed
that most of the correctly summarized obfuscated methods
(63% formethods leaking data, 95% formethods having dan-
gerous permissions) have non-obfuscated Android API calls
and strings such as permission names that helps to summarize
the functionality of the method. For example, the proposed
model was able to successfully summarize a method named
“k”after naming obfuscation was applied, since the method
has responsibility for checking the enablement of the network
connection by using an API call. Thus, the proposed model’s
success in summarizing obfuscated methods depends on the
level of obfuscation applied and which method components
are renamed. Therefore, the proposed model does not guar-
antee to perform well when a large amount of obfuscation is
applied.

As shown in both Tables 14 and 15, generated sen-
tences are generally intended for developers. The main
reason behind this is that the training dataset was com-
posed ofmethod-summary pairs that had been extracted from
Android API documentation targeted at Android developers.
In addition, the copy-attention mechanism copies method-
distinctive keywords from the given input sequence (source
code). These keywords used in the methods were created by
developers and only targeted as being understood by other
developers, which follows the widely accepted tenets of code
writing. Accordingly, the sentences may not always appear
that clear for application users to understand. However, the
output could be evaluated by developers, and the informa-
tion regarding third-party libraries that apps use could be
summarized by developers. Due to a lack of documentation,
even developers are not fully aware of the security vulner-
abilities that such libraries could potentially introduce. As
future work, we would suggest the use of more user-friendly
descriptions in order to better train summarization mod-

els. Moreover, replacing some developer-specific words with
more user-friendly optionsmay help to resolve this issue. For
example replacing the developer-specific word return with
the get phrase could be seen to increase a phrase’s readabil-
ity amongst application users.

Lastly, all of the models were evaluated on a common
small dataset consisting of 30 samples for dangerous per-
mission usage and data leakage. The performance of each
model using these common datasets are presented Tables 16
and 17 As can be seen, the results are compatible with
those of the previous analysis. All of the methods performed
better in terms of explaining dangerous permission usage
rather than data leakage; and this was due to obfuscation
and the API calls used as well as their length. As expected,
the explanations mainly targeted developers. Even though
the NCS-based models produced better results, the intro-
duced Code2Desc model showed a distinct level of stability
and robustness against obfuscated or long/complex methods.
Table 18 presents examples of the explanations generated.

4.4 Limitations and future work

The most significant limitation that faced the current study
was that TPLs generally do not share their metadata or
they lacked sufficient detail. On the other hand, this proves
the necessity for the proposed approach, given its ability
to handle more complex data. For this reason, the meta-
data used in many natural language generation studies is
considered insufficient to be used as the only or essential
source according to the current study. Metadata often con-
tains only generalized introductory information, and lacks
details of API documentation. Therefore, such metadata was
only able to be used within two components in the current
study: extraction of general information and TPL classifi-
cation. The performance of the second component, which
outputs the library category, is significantly affected by the

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

Table 16 Analysis of generated sentences for 30 common methods using dangerous permissions

Model Readability (%) Correctness (%) Expressiveness of Obfuscated (%) Audience Audience
vulnerability (%) user (%) developer (%)

Code2Desc 36 23 20 56 16 46

Fine-tuned NCS 50 36 40 56 23 60

AAPI 70 53 53 56 20 60

Table 17 Analysis of generated sentences for 30 common methods leaking data

Model Readability (%) Correctness (%) Expressiveness of Obfuscated (%) Audience Audience
vulnerability (%) user (%) developer (%)

Code2Desc 40 16 0 73 6 60

Fine-tuned NCS 40 23 3 73 0 46

AAPI 40 46 6 73 10 46

Table 18 Exemplar generated texts

Library Generated text

Adyen SDK for Android Adyen Components for Android
allows you to accept in-app
payments. Its category is UTILS.
It gets the current device location.

Logback It is the reliable, generic, fast, and
flexible logging framework. Its
category is UTILS. It starts the
configuration for a user.

Baidu It is a route planner for traveling by
foot, car, or public transportation.
Its category is UTILS. It gets the
current network connection from
the device.

Maps SDK for Android It displays maps inside of your
Android application. Its category
is LOCATION. It sets the current
location of the last known
location.

AndroidSimpleLocation It is for easy access to the device
location on Android. Its category
is LOCATION. It gets the current
location in the list, if applicable.

Kofax Android SDK It engages your customers on their
preferred channel. Its category is
UTILS. It has a setter for the last
known location.

Mapzen Android SDK Mapzer Android SDK makes your
life easier. Its category is UTILS.
It returns whether the location of
this class has been set or not.

size of the dataset, where it consists of library metadata in
known categories. This was clearly shown in the results. It
could be said that the current study, which constructed a
dataset of libraries, made the first step in showing how to
overcome such limitations.

In terms of code summarization, the source code of
AndroidAPI calls and their descriptions given in theAndroid
API reference were used to generate summaries for Android
source methods. However, the source code of API calls and
their documentation is short. Therefore, in future works, this
dataset could be extended with methods-summary pairs col-
lected from software repositories such asGitHub.However, it
should be emphasized that usingAPI calls in the current study
had a positive effect, especially for summarizing methods
using dangerous permissions since some APIs are directly
related to certain permissions.

The primary aim of the current study was to generate
explanations on TPLs based on security sensitive behaviors.
In future research, these explanations could be extended with
additional information, such as adding TPL versions and
their best known vulnerabilities according to vulnerability
databases.

5 Conclusion

The current study aimed to enhance app descriptions with
information about the TPLs they use. In order to achieve that,
a library dataset was introduced and subsequently analyzed.
The dataset highlighted the limitations of the documentation
provided by TPL developers, and thereby the importance
of the proposed work. The study proposed three compo-
nents in order to generate descriptions automatically. Thefirst
component extracted general information about TPLs from
their documentation, whilst the second component detected
their categories. Finally, the third component generated a
textual summary of library methods that utilize danger-
ous permissions or may leak data. While the first model
is based on BERT, the second and third components pro-
pose new/adapted approaches to address the problem. The

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

B. Cevik et al.

results were analyzed extensively, and a manual evaluation
was conducted on the descriptions generated. The study’s
results were promising in what is arguably still a new field, as
the study approached the problem of app description genera-
tion from a different perspective. We believe that researchers
will benefit from both the introduced datasets and also the
proposed new approach.

Acknowledgements Wewould like to thank TUBITAK for its support.
This study is supported by the Scientific and Technological Research
Council of Turkey (TUBITAK-118E141).

Declarations

Conflict of interest Author Beyza Cevik declares that he has no conflict
of interest. Author Nur Altiparmak declares that she has no conflict of
interest. AuthorMurat Aksu declares that she has no conflict of interest.
Author Sevil Sen declares that she has no conflict of interest.

Ethical approval This article does not contain any study with human
participants or animals performed by any of the authors.

References

1. Sen, S., Can, B.: Android security using nlp techniques: a review.
Preprint arXiv:2107.03072, (2021)

2. Qu,Z.,Rastogi,V., Zhang,X.,Chen,Y., Zhu,T.,Chen,Z.:Autocog:
measuring the description-to-permission fidelity in android appli-
cations. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1354–1365 (2014)

3. Feng, Y., Chen, L., Zheng, A., Gao, C., Zheng, Z.: Ac-net: assess-
ing the consistency of description and permission in android apps.
IEEE Access 7, 57829–57842 (2019)

4. Alecakir, H., Kabukcu, M., Can, B., Sen, S.: Discovering incon-
sistencies between requested permissions and applicationmetadata
by using deep learning. In: 2020 International Conference on Infor-
mation Security and Cryptology (ISCTURKEY), pp. 56–56, IEEE
(2020)

5. Alecakir, H., Can, B., Sen, S.: Attention: there is an inconsistency
between android permissions and application metadata!, pp. 1–19
(2021)

6. Andow, B., Nadkarni, A., Bassett, B., Enck, W., Xie, T.: A study
of grayware on google play. In: 2016 IEEE Security and Privacy
Workshops (SPW), pp. 224–233, IEEE (2016)

7. Wang, H., Guo, Y.: Understanding third-party libraries in mobile
app analysis. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), pp. 515–516,
IEEE (2017)

8. Privacygrade: Grading the privacy of smartphone apps. (2021).
(Visited September 2021) [Online]. Available: http://privacygrade.
org/

9. Wang, H., Guo, Y., Ma, Z., Chen, X.: Wukong: a scalable and
accurate two-phase approach to android app clone detection. In:
Proceedings of the 2015 International Symposium on Software
Testing and Analysis, pp. 71–82 (2015)

10. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of
android ad library permissions. Preprint arXiv:1303.0857, (2013)

11. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investi-
gating user privacy in android ad libraries. In:Workshop onMobile
Security Technologies (MoST), vol. 10, Citeseer (2012)

12. Zhang, M., Duan, Y., Feng, Q., Yin, H.: Towards automatic
generation of security-centric descriptions for android apps. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 518–529, ACM (2015)

13. Wu, T., Tang, L., Zhang, R., Wen, S., Paris, C., Nepal, S., Grobler,
M., Xiang, Y.: Catering to your concerns: automatic generation of
personalised security-centric descriptions for android apps. ACM
Trans. Cyber-Phys. Syst. 3(4), 36 (2019)

14. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.: A
transformer-based approach for source code summarization.
CoRR, arXiv:abs/2005.00653, (2020)

15. Liu, X., Leng, Y., Yang, W., Zhai, C., Xie, T.: Mining android
app descriptions for permission requirements recommendation. In:
2018 IEEE 26th International Requirements Engineering Confer-
ence (RE), pp. 147–158, IEEE (2018)

16. Wu, T., Tang, L., Zhang, R., Wen, S., Paris, C., Nepal, S., Grobler,
M., Xiang, Y.: Catering to your concerns. ACMTrans. Cyber-Phys.
Syst. 3, 1–21 (2019)

17. John, O., Naumann, L., Soto, C.: Paradigm shift to the integra-
tive big five trait taxonomy: History, measurement, and conceptual
issues, pp. 114–158. 01 (2008)

18. Yu, L., Zhang, T., Luo, X., Xue, L.: Autoppg: towards automatic
generation of privacy policy for android applications. In: Proceed-
ings of the 5th Annual ACM CCS Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 39–50 (2015)

19. Chen,W., Aspinall, D., Gordon, A.D., Sutton, C.,Muttik, I.: A text-
mining approach to explain unwanted behaviours. In: Proceedings
of the 9th European Workshop on System Security, p. 4, ACM
(2016)

20. Tibshirani, R.: Regression shrinkage and selection via the lasso. J.
R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

21. Grace,M.C., Zhou,W., Jiang, X., Sadeghi, A.-R.: Unsafe exposure
analysis of mobile in-app advertisements. In: Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pp. 101–112 (2012)

22. He, Y., Yang, X., Hu, B., Wang, W.: Dynamic privacy leakage
analysis of android third-party libraries. J. Inf. Secur. Appl. 46,
259–270 (2019)

23. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app
behavior against app descriptions. In: Proceedings of the 36th
International Conference on Software Engineering, pp. 1025–1035
(2014)

24. Zhang, C., Wang, H., Wang, R., Guo, Y., Xu, G.: Re-checking
app behavior against app description in the context of third-party
libraries. In: SEKE, pp. 665–664 (2018)

25. Narayanan, A., Chen, L., Chan, C.K.: Addetect: automated detec-
tion of android ad libraries using semantic analysis. In: 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), pp. 1–6, IEEE (2014)

26. Liu, B., Liu, B., Jin, H., Govindan, R.: Efficient privilege de-
escalation for ad libraries in mobile apps. In: Proceedings of the
13th Annual International Conference on Mobile Systems, Appli-
cations, and Services, pp. 89–103 (2015)

27. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of
machine learning for big code and naturalness. ACM Comput.
Surv., vol. 51 (2018)

28. Haiduc, S., Aponte, J., Marcus, A.: Supporting program compre-
hension with source code summarization. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 2, ICSE ’10, (New York, NY, USA), pp. 223–226,
Association for Computing Machinery (2010)

29. LeClair, A., Jiang, S., McMillan, C.: A neural model for gener-
ating natural language summaries of program subroutines. CoRR,
arXiv:abs/1902.01954 (2019)

30. Sridhara, G., Pollock, L., Vijay-Shanker, K.: Automatically detect-
ing and describing high level actions within methods. In: 2011

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Lib2Desc: automatic generation of security-centric Android app descriptions using third-party...

33rd International Conference on Software Engineering (ICSE),
pp. 101–110 (2011)

31. McBurney, P., McMillan, C.: Automatic documentation genera-
tion via source code summarization of method context. In: 2nd
International Conference on Program Comprehension, ICPC 2014
- Proceedings, 06 (2014)

32. Alon, U., Levy, O., Yahav, E.: code2seq: Generating
sequences from structured representations of code. CoRR,
arXiv:abs/1808.01400, (2018)

33. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment
generation. In: Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, (New York, NY, USA), pp. 200–210,
Association for Computing Machinery (2018)

34. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning
with neural networks. CoRR, arXiv:abs/1409.3215, (2014)

35. Wang, W., Zhang, Y., Zeng, Z., Xu, G.: Trans ˆ3: A transformer-
based framework for unifying code summarization and code search.
CoRR, arXiv:abs/2003.03238, (2020)

36. Shi, E., Wang, Y., Du, L., Chen, J., Han, S., Zhang, H., Zhang, D.,
Sun, H.: Neural code summarization: How far are we? (2021)

37. Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z.: Summarizing
source code with transferred api knowledge. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18, pp. 2269–2275, International Joint Conferences
on Artificial Intelligence Organization, 7 (2018)

38. Rodeghero, P., McMillan, C., Shirey, A.: Api usage in descriptions
of source code functionality. In: 2017 IEEE/ACM 1st International
Workshop on API Usage and Evolution (WAPI), pp. 3–6, IEEE
(2017)

39. Shahbazi, R., Sharma, R., Fard, F.H.: Api2com: On the improve-
ment of automatically generated code comments using API docu-
mentations. CoRR, arXiv:abs/2103.10668, (2021)

40. Android arsenal: Android developer portal with tools, libraries, and
app. https://android-arsenal.com/. Online; last accessed on April 4
(2022)

41. Sonatype, Maven central repository search. https://search.maven.
org/, 2017. Online; last accessed on November 2 (2021)

42. JFrog, I.: Spring.io. https://repo.spring.io/, 2013. Online; last
accessed on November 2 (2021)

43. JFrog, I.: Jcenter is the place tofind and share popular apachemaven
packages. https://bintray.com/bintray/jcenter, 2016. Online; last
accessed on November 2 (2021)

44. JitPack, Jitpack | publish jvm and android libraries. https://jitpack.
io/, 2015. Online; last accessed on November 2 (2021)

45. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D.,
Weisgerber, S.: On demystifying the android application frame-
work: Re-visiting android permission specification analysis. In:
25th {USENIX} security symposium ({USENIX} security 16),
pp. 1101–1118 (2016)

46. Ma, Z., Wang, H., Guo, Y., Chen, X.: Libradar: Fast and accu-
rate detection of third-party libraries in android apps. In: 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing Companion (ICSE-C), pp. 653–656 (2016)

47. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R.,
Huo, W.: Libd: scalable and precise third-party library detection in
android markets. In: 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), pp. 335–346 (2017)

48. Zhang, Y., Dai, J., Zhang, X., Huang, S., Yang, Z., Yang, M.,
Chen, H.: Detecting third-party libraries in android applications
with high precision and recall. In: 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 141–152 (2018)

49. Derr, E., Bugiel, S., Fahl, S., Acar, Y., Backes, M.: Keep me
updated: An empirical study of third-party library updatability on
android. In: Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’17, (New York,
NY, USA), pp. 2187–2200, ACM (2017)

50. Zhang, J., Beresford, A.R., Kollmann, S.A.: Libid: reliable identi-
fication of obfuscated third-party android libraries. In: Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, (New York, NY, USA), p. 55-
65, Association for Computing Machinery (2019)

51. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D.,
Weisgerber, S.: On demystifying the android application frame-
work: Re-visiting android permission specification analysis. In:
25th {USENIX} security symposium ({USENIX} security 16),
pp. 1101–1118 (2016)

52. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le
Traon, Y., Octeau, D., McDaniel, P.: Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices 49(6), 259–269 (2014)

53. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training
of deep bidirectional transformers for language understanding.
CoRR, arXiv:abs/1810.04805, (2018)

54. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,Moi, A.,
Cistac, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger,
S., Drame, M., Lhoest, Q., Rush, A.M.: Transformers: State-of-
the-Art Natural Language Processing 10 (2020)

55. Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the
COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72
(2006)

56. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

57. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investi-
gating user privacy in android ad libraries. In:Workshop onMobile
Security Technologies (MoST), vol. 10, Citeseer (2012)

58. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need.
CoRR, arXiv:abs/1706.03762, (2017)

59. Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z.: Summarizing
source code with transferred api knowledge. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18, pp. 2269–2275, International Joint Conferences
on Artificial Intelligence Organization, 7 (2018)

60. LeClair, A., McMillan, C.: Recommendations for datasets for
source code summarization. CoRR, arXiv:abs/1904.02660, (2019)

61. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review
on feature selection in mobile malware detection. Digital Investig.
13, 22–37 (2015)

62. Qu, Z., Rastogi, V., Zhang, X., Zhu, T., Chen, Z.: Autocog: measur-
ing the description-to-permission fidelity in android applications.
In: Proceedings of the ACM Conference on Computer and Com-
munications Security, pp. 1354–1365, 11 (2014)

63. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: towards
obfuscation-resilient mobile application repackaging detection. In:
Proceedings of the 2014 ACMConference on Security and Privacy
in Wireless & Mobile Networks, pp. 25–36 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

