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Abstract—Base station deployment costs pose a significant
challenge for operators, especially in regions without 5G infras-
tructure. Sharing radio access networks (RANs) has emerged as a
promising solution since it enables operators to lower installation
costs by sharing redundant and available resources. Open-RAN
(O-RAN) is a new RAN framework that aims for intelligence
and openness in hardware and software RAN sharing with the
help of virtualization technology and disaggregated architecture
of RANs. Multiple operators could coexist together and their
virtualized RAN components can be deployed on each other’s
computing resources. In this disaggregated architecture, MAC
scheduler fundamentally governs resource allocation to users
associated with a base station and resides in RAN’s distributed
unit (DU) that can be virtualized and deployed on O-RAN.
Traditionally, MAC scheduling is handled by static methods
that makes its adaptation to dynamic environments challenging.
While Deep Reinforcement Learning (DRL) offers a promising
solution to MAC scheduling; but, a global network view is
necessary for adapting new traffic patterns. However, information
sharing between operators compromise privacy and competition
between operators. Therefore, in this study, we explore the use
of Federated learning-based DRL (FDRL) for MAC scheduling
in RAN sharing in O-RAN.

Index Terms—Open RAN, RAN Sharing, MAC Scheduling,
Federated Learning, Reinforcement Learning

I. INTRODUCTION

The monolithic architecture and the proprietary nature of
RAN, which makes operators dependent on certain vendors in
terms of software and hardware, limits its applications in 5G.
Therefore, adding customized software or virtualized network
functions to its infrastructure is not possible or very difficult.
For instance, they cannot easily integrate artificial intelligence-
based solutions in order to optimize or automate some opera-
tions such as resource allocation due to the dependence on the
vendor. Cloud and virtualization allow operators to virtualize
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disaggregated RAN operations and locate them on top of cloud
servers, but the monolithic and traditional architecture of RAN
prevents this from happening. Therefore, Open-RAN (O-RAN)
approach is proposed to overcome these issues.

O-RAN adopts a ‘3rd Generation Partnership Project’s
(3GPP) disaggregated RAN architecture’ for handling mono-
lithic architecture [1]. As opposed to the traditional approach,
each component can be developed by different vendors, and
operators can customize their infrastructure from any vendor
in O-RAN. Further, O-RAN provides xApps and rApps com-
ponents to operators for software automation and artificial
intelligence. These components are managed by an entity
called RAN Intelligent Controllers (RIC) [2].

With the adoption of virtualization and disaggregation in O-
RAN, operators could deploy their infrastructure on the cloud
and to share their computing resources with other operators.
This alleviates the installation burden of base stations on
operators, especially in a region where the operator does not
have any infrastructure [3]. This effective solution, which
offers the sharing of the infrastructure site with other operators,
is known as RAN sharing in the literature. With RAN sharing,
the guest operators who do not have the infrastructure in a
region could locate their components in an infrastructure of
the host operator, which has redundant resources to achieve
that in the same region. Hence, RAN sharing paves the way
for multiple operators to serve their users in the same region
and by using the same computing resources [4].

Since traffic patterns of each operator could vary, and the
MAC scheduler is customized to the operator’s business plan
and user profile [5], [6], the allocation of resources in the MAC
scheduler could be assisted by Deep Reinforcement Learning
(DRL) due to its adaptability to dynamic environments [7].
However, it may take time for the DRL agent of the MAC
scheduler to adapt to a new environment, i.e. when new traffic
patterns such as high amount of traffic, and long intervals of
communication among users with sparse activity are encoun-
tered [8]. Sharing information between MAC schedulers to
create a global network view could be the solution to make979-8-3503-0252-3/23/$31.00 ©2023 IEEE



the adaptation smoother for agents. However, since the MAC
scheduler contains information about the operator’s business
policy, sharing information directly between operators could
compromise their privacy and competition among themselves.
Therefore, in this study, for solving this problem, we propose
a Federated Learning (FL)-based solution, where only local
models are shared between DRL agents rather than the con-
fidential information of operators. The main contributions of
this study are summarized in the following:

• The use of FL for RAN sharing in O-RAN where multiple
operators coexist and use the same computing resources
is investigated.

• A stable and robust simulation environment for RAN
sharing in O-RAN has been built. Comprehensive simu-
lations are carried out both in static and dynamic environ-
ments to evaluate the effect of mobility on the proposed
approach and its scalability.

The paper is organized as follows. Section II gives back-
ground information. The related studies are discussed in detail
in Section III. Section IV presents the proposed approach.
The experimental settings and results are given in Section V.
Finally, the findings of this study are concluded in Section VI.

II. BACKGROUND

A. RAN sharing in O-RAN

The three major components of the disaggregated RAN
are named Central Unit (CU), Distributed Unit (DU) and
Radio Unit (RU) [9]. CU handles Radio Resource Control
(RRC), Service Data Adaptation Protocol (SDAP), and Packet
Data Convergence Protocol (PDCP); DU handles Radio Link
Control (RLC), Media Access Control (MAC), and a part of
the Physical interface (PHY); while RU handles the Physical
layer (PHY) operations like signaling [1]. These components
in O-RAN frameworks are named O-CU, O-DU, and O-
RU respectively. All communication among these components
is provided by the interfaces defined in O-RAN standards.
Non-Real Time (NRT) and near Real Time (nRT) RIC are
the two main building blocks for the integration of artificial
intelligence into 5G and they handle operations require time
in above 1 ms and below 1 ms respectively. NRT-RIC collects
data from components via interface O1 and nRT-RIC obtains
information from components with E2 interface.

An exemplar RAN sharing scenario is in Fig. 1. Some Vir-
tual Network Functions (VNFs) are shown by different colours
than the host operators’ VNFs’s colour, which corresponds to
redundant resources of the host operators. The host operator
could use them under heavy data loads, or share them with
other operators who do not have resources in this region as
shown in the figure. The host operator provides resources to
guest operators to deploy their VNFs and the guest operators
manage their remote resources in an isolated way by using a
remote E2 interface.

B. Federated Deep Reinforcement Learning

MAC scheduler in each TTI has to decide which user is
granted resources by observing the system at that TTI. From
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Fig. 1: RAN Sharing in O-RAN [4].

this point of view, MAC scheduling could be identified as
a sequential decision-making problem. Reinforcement Learn-
ing (RL) is a suitable approach for dealing with sequential
decision-making problems since it does not require hard-coded
actions and operates better when uncertainty exists in the
environment [10]. RL can be modeled by the Markov Decision
Process (MDP). MDP consists of a quintuple (S, A, P, r,
γ). S represents the state of the environment, A is the set
of actions taken according to the corresponding states. The
probability of transition from state s to s′ is represented by
P. The Reward function (r) provides the reward value of the
environment after taking action A in state s which results
into the transition to state s′; while γ is a discount factor
used to balance between short- and long-term rewards. The
objective of RL is to generate a policy (π) which yields action
information for a given state s. After taking an action, the
agent enters into a new state of the environment, s′, and the
reward is obtained after the action. In each step, policy aims
to maximize the cumulative reward.

RL methods mainly fall into three categories [11]. In i)
an actor-only method, the main aim is to develop policy that
provides action information such as probability distribution,
thus, the action would be the state with the highest probability.
On the other hand, ii) critic-only network develops policy
that determine value for each state, hence, the action could
be chosen with the best value. A combination of actor-only
and critic-only methods generates a better performance. iii)
Actor-critic method enables actor-only method to learn with
parameterized policy on a continuous action space without
requiring the optimization method. In addition, it allows critic-
only method to give feedback about the quality of the actor’s
action with low variance, resulting in higher learning speed
and lower variance [12].

RL might not perform well in order to determine an optimal
policy that maximizes rewards, especially as the dimension of
input domain grows. In such a scenario, it takes a considerable



amount of time before a satisfactory model is learned. To avoid
that, DRL has been proposed in the literature as a promising
solution [13]. In this approach, a neural network (NN) is
incorporated into the RL to approximate the RL policy π.

Federated learning (FL), which enables entities in dis-
tributed learning to share only the learning model updates
rather than data itself, has become a popular topic in the litera-
ture. The reasons behind its popularity is its capability to solve
problems such as privacy and centrally storage issues [14]. By
sharing only model updates instead of raw data, the entity’s
privacy is ensure and the problem of storing data in central
servers is handled.

III. RELATED WORK

There are recent proposals based on DRL for solving the
MAC scheduling problem in the literature [15]–[20]. There
are also studies [21] [22] [23] that explore the use of FL
for solving various resource management problems in the O-
RAN framework. However our focus is here RAN sharing
in O-RAN. Computation and communication resources of the
edge server and the base station are sliced to users for ultra-
reliable low-latency communication (URLLC) services using
DRL in an recent study [24]. In [25], resource allocation
in RAN slicing for dynamic environments is studied in a
distributed manner in order to handle scalability issues that
result from the use of centralized slice controller. Since the
spatio-temporal nature of mobile traffic and the distribution
of RAN components make the training hard for Decision
Agents (DAs), they need to cooperate without gathering their
data in a centralized entity. Therefore, FL is employed here.
For the application of FL, similar DAs in terms of their
traffic demand and temporal data are clustered so that the
collaboration of DAs that have similar environments is aimed.
With the help of FL, DAs are able to perform better on
the unseen environment than standalone. While this study
focuses on inter-slice scheduling, our study works on intra-
slice scheduling.

The most similar work to our study is given in [26]. They
studied the RAN slicing scenario in O-RAN where multiple
slices coexist in computing resources of a single infrastructure.
In each slice’s owner called mobile virtual network operator
(MVNO), the RL agent assists with the bandwidth allocation
problem and FL is involved in the framework in order to
help share information among MVNOs in a private and
secure way. In each MVNO, users are entitled to use the
following services: enhanced mobile broadband (eMBB) and
ultra-reliable low-latency communication (URLLC) services.
Tests are conducted on varying numbers of users for each
service, i.e. eMBB and URLLC, and on varying numbers of
total users. Both the global model created by FL and the single
model are evaluated in testing. However the tests are only
carried out by using only 3 MVNOs, in which they have
a maximum of 5 users. In our study, the number of users
and the number of operators that share the same resources
are rigorously tested. An environment with static and mobile
users is also considered, and the impact of mobility on the

performance is analyzed. In [25] [26], only mobile users are
taken into consideration. we carefully chose the aggregation
point for FL not to violate privacy problems.

IV. THE PROPOSED APPROACH

The study proposes a federated deep reinforcement learning
(FDRL)-based approach for MAC scheduling in O-RAN.
Hence, information can be shared in a privacy-preserving
way to enhance the MAC schedulers of each operator in
an O-RAN sharing scenario. In the system model, multiple
operators (M ) exist in the same region and are hosted by
a host operator. Each operator uses Orthogonal Frequency
Division Multiple Access (OFDMA) scheme. Each operator
has N users with varying network traffic and mobility patterns.
In each operator’s environment, a MAC scheduler is assigned
to allocate resources to users in the frequency domain.

MAC schedulers can schedule resources in both time and
frequency domains. The scheduling is operated in transmission
time intervals (TTI) in the time domain. In each TTI, data from
users and the environment is collected and the scheduling de-
cision is made by the scheduler. Since it shows similarity with
sequential decision-making, it is modelled as Markov Decision
Process (MDP) and RL is employed to make decisions based
on the environment and users. Since MAC scheduling has a
high dimension of state spaces and with the growth of the
number of users the complexity increases, the RL agent is
incorporated with deep learning and becomes a DRL agent in
this study.

A DRL agent in the MAC scheduler allocates resources
to the corresponding operator’s users, hence the scheduling
operations are highly customized to each operator. It becomes
especially important to allocate resources effectively when a
sudden increase in traffic occurs in a region, such as during a
football match or a concert [27]. To make resource allocation
more effective, DRL agents of MAC schedulers should share
information to create a global view of the network. However,
since MAC schedulers contain business information, sharing
them would be a violation of privacy. Therefore, this study
explores the use of FDRL to share and use this information
among DRL agents in a privacy-preserving way.

A. FDRL-Based MAC Scheduling in RAN Sharing

Each operator has an DRL agent, which is placed next to O-
DU as an xApp. When the DRL agent receives the information
from the scheduler, its task is to explore the information deliv-
ered and to produce an action to the scheduler, which grants
resources to users. When the produced action of the agent
is applied to the system by the scheduler, the environment’s
transition to new state occurs. In this new state, an agent
is informed about the details of new state and the reward
value of the previous action. This process continues until the
termination condition is met. The same setting is applied to
the MAC scheduler of all operators, hence each operator has
a DRL agent that assists MAC scheduling. However, varying
types of users, mobility patterns, and base station ranges
are designed for each operator. Then the federation among



DRL agents is set, hence MAC schedulers can share their
information with one another. With the integration of FL, each
operator’s MAC scheduler is now ready to share information
with each other in a private way and to utilize each other’s
experience to enrich their knowledge and decisions.

1) DRL Agents: MAC scheduling is modeled as MDP so
that the FDRL agent within each operator generates scheduling
actions based on the current states in each TTI. Due to its
advantages, actor-critic method is employed. In the following;
the state, action, reward, and, policy components of an agent
are explained in details:

State Space S : In MAC scheduling, the state information
should contain data about user’s condition in the environment
that could be observable by the gNB such as channel quality,
buffer status, past allocation log, and past throughput. In
this study, the following state information are utilized for an
effective scheduling decision:

1) Channel Quality Indicator (CQI): It is reported from
the associated user to gNB and indicates how good the
channel between the user and the gNB is.

2) Current Buffer Status (CBS): It represents the amount
of data (in bits) currently queued in the buffer of users
that is waiting to be sent. The scheduler could use this
information to make decisions and prioritize UEs with
larger queues.

Action A: It is used as an indicator for the DRL agent to
select a user within a group of users in each TTI. The output
of neural network is the resource allocation probability for
each user. Since the DRL agent selects only one user with the
highest probability, the action space is discrete, consisting of
1s (for the selected user) and 0s (for non-selected users).

Reward R: In learning, the most important part is giving
feedback to the DRL agent about how well the last decision
was made. It is provided by the reward function, and the
reward value for the decision made at time time t is obtained
at time t+ 1.

The reward function should consider all the users’ satisfac-
tion in a fair way. For example, considering only CQI value
will ignore the users with low CQI value or will reward the
resource allocation to users with high CQI but with an empty
buffer, which results in wasting of resources. Therefore both
CBS and transport block size (TBS) are utilized in the reward
function. TBS refers to maximum deliverable bit amount of
data, and its calculation is affected by bandwidth, allocated
resource blocks (RB), modulation and coding scheme (MCS).
There is a correlation between MCS and CQI. Therefore, with
the reward function given below, we can consider both users’
CQI and CBS.

Rt+1 =
CBSt − CBSt+1

TBS
(1)

Policy π: Since the action space is discrete in this study, the
policy gives the resource allocation probability for n users.

2) Federating DRL Agents: In this phase, the policy models
learned separately by DRL agents of each operator is sent to

a central server synchronously. Here, the models are aggre-
gated and updated by using the federated averaging (FedAvg)
algorithm [28], which simply takes the average of all model
updates in order to return the final weights. Then the model
updates is sent back to DRL agents. The agents keep learning
until the next update period.

To sum up, in each TTI, each scheduler receives environ-
mental data, in other words, state information (CQI and CBS).
Then, actions are learned based on this information. With the
application of these actions, it is transitioned into a new state
and a reward value is calculated and delivered to the DRL
agent. Moreover, at each update period, the agent updates
its model according to the weights received from the central
server.

V. EXPERIMENTAL RESULTS

In this section, firstly we will give the simulation settings of
the proposed approach and then discuss the simulation results.

A. Simulation Settings

1) 5G Networks: 5G-LENA [29], which enables to create
of a customized scheduler for the downlink OFDMA-based
scheduling, is used in the experiment. We have simulated
three and five operators, which have up to 12 UEs. The other
network parameters used in simulations are listed in Table I.

TABLE I: Simulation Parameters.

Parameter Value
Simulator ns-3.35.1

DL bandwidth 15 MHz (for low latency traffic),
100 MHz (for VoIP traffic),

50 MHz (for mixture of two)
Number of gNodeBs 1 (for each operator)

eNobeB power transmission 43 dBm
Pathloss model UMi Street Canyon [30]

Center frequency 500 MHz (for each operator)
Mobility model Stationary/Mobile

Simulation duration 6 s
Traffic type CBR-UDP*

Packet interval 0.1 ms
*Constant Bit Rate-User Datagram Protocol

2) FDRL Agents: In this study, two NNs are designed, one
for the actor and the other for the critic networks, which are
used to approximate the agents’ policies. The input size of the
NNs is n ×m where n is the number of users associated to
the O-RU of a base station and m (= 2) is the dimension
of the state space (i.e., CQI and CBS). The NNs for both
networks are common in both the number of hidden layers and
neurons that are 256, 128, and 64 and the activation function
(i.e., ReLu). While n neurons with softmax function is used
the in actor network, only one neuron with linear function is
used in the critic network. ADAM optimizer is used, and the
learning rate and discount factor are chosen as 10−5 and 0.99,
respectively. As for the update period parameter (t) in FedAvg,
it is empirically chose as t = 100.

OpenAI gym [31] is used to develop and test DRL agents,
and ns3gym module [32], which uses the messaging tool



ZeroMQ [33], is utilized to provide data exchange between
5G environment and the DRL agent in each operator.

B. Simulation Scenarios

The simulations are run with different settings to evaluate
the proposed MAC scheduling approach rigorously. The four
parameters are taken into account in the experiments: i)
number of operators, ii) number of users, iii) mobility status
of users, and iv) the type of network traffic. The configuration
of these simulation scenarios is outlined in Table II.

The base station ranges are 1500 m (for OP1), 3000 m
(for OP2), and 6000 m (for OP3) in SCN1 through SCN3,
while they are 1500 m (for OP1), 2250 m (for OP2), 3000
m (for OP3), 4000 (for OP4), and 5000 (for OP5) in SCN4
and SCN5 to create diverse CQI patterns, which makes each
operator’s environment distinct. By doing so, we also ensure
the true nature of heterogeneous networks (HetNets) where
micro and macro base stations coexist. Three types of traffic
have been studied in this study: low latency [34], VoIP [35],
and mixture of two. To configure a mixture of low latency
and VoIP traffics, we configured three/six users to generate
low latency, and the remaining three/six users to generate
VoIP traffics in simulations that have six and twelve users,
respectively. To represent low-latency and VoIP traffics, 100
and 1252 bytes of data are generated, respectively.

While SCN1, SCN2 and SCN5 are simulated throughout
500 episodes, SCN3 and SCN4 are simulated for 900 episodes
in the experiments; and the decision for scheduling is made
at the beginning of each TTI. Since the environment is com-
pletely static in SCN1 and only one environment is dynamic in
SCN2, the scenarios are tested for 500 episodes to speed up the
tests. Other scenarios are tested for 900 episodes for experi-
encing enough mobility. The mobile nodes in the scenarios are
relocated every 25 episodes with varying mobility ranges (i.e.,
1 m through 73 m). Nodes are randomly located such that no
two nodes in all operators are positioned in the same location
to avoid a similar learning domain between the operators.
Please also note that the test environment of the scenarios
differ from the train environment in terms of the positions of
nodes. We train both FL-enhanced policy model and individual
policy models for all the scenarios given in Table II, and
then comparatively evaluated all the models. Therefore, for
a simulation scenario, we obtain M + 1 models, where M
stands for the number of operators, and the additional one
model represents the one from FL. It is worth noting that the
independent models are separately trained in a traffic type of
the respective operator, whereas FL-based model is trained by
aggregating the model weights of local trainers from different
traffics of operators. Speaking concretely, four models are
obtained from SCN1, three of which are locally trained in the
traffic of OP1 through OP3, and the other is learned from the
aggregation of the model weights learned in these operators.

In order to comparatively test the learned M + 1 models,
the independent model of each operator is transferred to other
operators’ environments different from its training environ-
ment. FL model is transferred to each operator’s environment

for testing as well. As a result, each independent trained
model is tested in an environment that is not exposed during
training and the aim is to observe these models’ performance
when the unseen environment is experienced. By doing so,
for example, we evaluate the performances of four models in
SCN1 in three different traffic environments of OP1 through
OP3. The Cumulative Reward (CR) is taken into account for
the performance comparison in this study. It is calculated from
the ‘moving average’ [36] strategy, where the reward values
obtained within the last 100 episodes are averaged:

CRe =

{
1

100

∑e
i=e−100 Ri e ≥ 100

Re otherwise
(2)

where e stands for the episode index, and so Ri represents
the reward value in ith episode obtained after 100 TTIs. Note
that our hypothesis is to have an FL model that often yields
higher CR values as compared to the local models because
it is trained by the aggregation of these local models, allow-
ing it to experience different types of network environment
simultaneously.

C. Experimental Results

The comparative CR values of the models obtained in SCN1
are illustrated in Fig. 2. Note that even though the learning
is not challenging in a static environment, each model does
not have knowledge about the CQI values of users in other
environments during training. This makes FL advantageous
in SCN1, which is also shown in the figure. Here, FL-
based model (abbreviated MFL) outperforms the models OP2
(abbreviated MOP2) and OP3 (abbreviated MOP3) in the
test environment of OP1 (Fig. 2a). For the OP2’s and OP3’s
environment, MFL outperforms the others. In the OP3’s envi-
ronment, MOP2 is close to MFL because the initial location
of the users in OP2 environment is very similar to that in
OP3. In OP2’s environment, MOP3 has better performance
than MOP1 due to same reason.

The results of scenario SCN2 could be seen in Fig. 3. In
this scenario, only the users in OP1 are mobile, and the others
are static. That’s why, the OP1’s environment should be very
challenging for MOP2 and MOP3 that experience almost the
same CQI pattern during training, which is also proven in the
results where MFL outperforms others for all environments.
So, it could be stated that MOP2 and MOP3 show even worse
performance over the time in OP1’s environment. This results
clearly show that the use of static model is not suitable for
mobile environments.

The comparative performances obtained from SCN3 is
shown in Fig. 4. It should be denoted that all the users
throughout the operators are mobile here. Therefore, we here
primarily aim to reveal how well MFL can perform scheduling
in comparison to the individual local models when they are
tested on an environment having different mobility patterns.
Unlike the earlier findings, MOP3 performs slightly better than
MFL in OP1’s environment, because, it is observed that the
MOP3 witnessed frequent relocation patterns in its training



TABLE II: The network parameter settings of simulated scenarios.

Scenario Setting Operator
OP1 OP2 OP3 OP4 OP5

SCN1
Number of Users 6 6 6
Mobility Static Static Static
Traffic Type Low Latency VoIP Mixture

SCN2
Number of Users 6 6 6
Mobility Mobile Static Static
Traffic Type Low Latency VoIP Mixture

SCN3
Number of Users 6 6 6
Mobility Mobile Mobile Mobile
Traffic Type Low Latency VoIP Mixture

SCN4
Number of Users 12 12 12
Mobility Mobile Mobile Mobile
Traffic Type Low Latency VoIP Mixture

SCN5
Number of Users 12 12 12 12 12
Mobility Mobile Mobile Mobile Mobile Mobile
Traffic Type Low Latency Low Latency VoIP VoIP Mixture
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Fig. 2: The comparative testing performance of the models in SCN1.

environment which is also the case for the OP1’s environment
in terms of the distance between users and the base station.
This makes MOP3 almost identical to MOP1. In the rest of
the environments MFL outperforms the others.

Unlike the previous scenarios, 12 UEs are involved in SCN4
to observe how large the number of users could affect the
learning performance. By increasing the number of users, we
aim to make the environment more challenging for learning
agents because the agent is required to end up with a decision
among 12 UEs. Note that all the UEs are also mobile in
each operator’s environment, so stochastic environments are
provided to agents. The simulation results are shown in Fig. 5.
It could be stated clearly from Fig. 5a, 5b that MFL outper-
forms competitor models in the environment of OP1 and OP2.
In the OP3’s environment, however, MFL again outperforms
MOP1 and MOP2 in almost 80% and 90% of all episodes,
respectively. This clearly indicates that the collaboratively
constructed MFL model is more convenient to use than the
local models, even if the running environment is complex.

We expanded our experiments by including two additional
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Fig. 4: The comparative testing performance of the models in SCN3.
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Fig. 5: The comparative testing performance of the models in SCN4.

operators (denoted as OP4 and OP5) in SCN5. This configura-
tion enables the MFL to obtain more diverse knowledge from
different environments. So we could evaluate the performance
of MFL when it is trained by the contribution of more local
models where each of them experiences different network
traffics. All the users throughout the operators are also set
mobile in this scenario. It is worth stressing that the network
configuration between OP1 and OP2 or between OP3 and OP4
differs from each other in the positions of the users. By doing
so, we ensure the users in these operators to have varying CQI
values. The comparative results are shown in Fig. 6. From the
results, it can be seen that MFL performs better than the com-
petitors in almost all the operators’ environments. Speaking
concretely, the worst performance of MFL is observed in the
environment of OP3 (see Fig. 6c) against MOP1. Nevertheless,
it again surpasses MOP1 in the 65% of all the episodes here.
This is followed by MOP2 in the same environment, and
again MFL yields higher reward value in 75% of all the
episodes. As for the other settings, it is at least 85% of all the
episodes that MFL gives much better performance than the
competitor models do. This also suggests that the FL-based
scheduling gives satisfying performance when more diverse
network environments are involved.

To sum up, FL is a promising distributed learning method
due to its privacy-preserving and low overhead way of sharing
data. The implementation of the MAC scheduler is not defined
by the standards and left to the operators. Therefore, its
implementation is vendor-specific and operators might prefer
not to share data in this component. Therefore, the privacy-
preserving feature of FL is important for operators. Addition-
ally, the potential of real-time learning offered by 5G’s ultra-
low latency is an important feature that eases the integration
of federated learning. This characteristics of 5G allows for im-
mediate adaptive responses to dynamic conditions, a capability
that is increasingly important in today’s data-driven landscape.
However, in this study, all operators are assumed to share their
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Fig. 6: The comparative testing performance of the models in SCN5.

models synchronously for effective results. However, every
operator might not be available at the federation time or have
fresh data. Such issues should be considered in further studies.

VI. CONCLUSION

Since FL is a promising distributed learning method due
to its privacy-preserving and low overhead way of sharing
data, this study investigates the use of federated deep re-
inforcement learning-based MAC scheduling in O-RAN by
simulating extensive scenarios that differ from each other in
terms of number of UEs, number of operators, mobility and
traffic patterns. It is shown that FL outperforms local models,
especially in highly mobile and complex environments that
differentiate from the training environment. This is highly
critical for real life scenarios where sudden increase in traffic
occurs in a region. In addition, the proposed approach is shown
to be scalable as users and operators increase.
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