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Abstract—In recent years, Internet of Things (IoT) security
has attracted significant interest by researchers due to new
characteristics of IoT such as heterogeneity of devices, resource
constraints, and new types of attacks targeting IoT. Intrusion
detection, which is an indispensable part of a security system, is
also included in these studies. In order to explore the complex
characteristics of IoT, machine learning methods, which rely on
long training time to generate intrusion detection models, are
proposed in the literature. Furthermore, these systems need to
learn a new/fresh model from scratch when the environment
changes. This study explores the use of transfer learning in order
to generate intrusion detection algorithms for such dynamically
changing IoT. Transfer learning is an approach that stores
knowledge learned from a problem domain/task and applies that
knowledge to another problem domain/task. Here, it is employed
in the following two settings: transferring knowledge for gener-
ating suitable intrusion algorithms for new devices, transferring
knowledge for detecting new types of attacks. In this study,
Routing Protocol for Low-Power and Lossy Network (RPL), a
routing protocol for resource-constrained wireless networks, is
used as an exemplar protocol and specific attacks against RPL are
targeted. The experimental results show that the transfer learning
approach gives better performance than the traditional approach.
Moreover, the proposed approach significantly reduces learning
time, which is an important factor for putting devices/networks
in operation in a timely manner. Even though transfer learning
has been considered a potential candidate for improving IoT
security, to the best of our knowledge, this is the first application
of transfer learning under these two settings in RPL-based IoT
networks.

Index Terms—IoT, security, transfer learning, intrusion detec-
tion, genetic programming, RPL

I. INTRODUCTION

IoT is one of the most popular research topics in commu-
nication due to significantly increasing numbers of heteroge-
neous devices connecting to each other and to the Internet.
According to Statista [1], the total installed base of IoT devices
is expected to be around 75 billion globally by 2025, which
shows a five-fold increase in ten years. Cisco projects that
Machine-to-Machine (M2M) connections will constitute half
of the global connected devices and connections by 2023 [2].
While nearly half of these connections result from home appli-
cations, the number of connections resulting from connected

work and connected city applications has been showing an
increasing trend in recent years [2].

The Low Power and Lossy Networks (LLN) are a special
type of IoT, which have different application areas from
smart homes to industry. In these networks, devices have
generally resource constraints such as energy, memory, and
processing power. Moreover, such resource-constrained de-
vices are connected over lossy links. These special charac-
teristics of LLNs have resulted in the emergence of new
communication protocols. One of the standardized protocols
for these resource-constrained networks is Routing Protocol
for Low Power and Lossy Networks (RPL) [3]. RPL builds
Destination Oriented Directed Acyclic Graphs (DODAG) in
order to represent network topology. However this topology
could be susceptible to attacks. Although RPL has some
security mechanisms for external attackers, it is still open
to insider attacks such as version number and rank attacks.
Therefore, developing suitable intrusion detection systems for
such resource-constrained networks is vital, which is the main
aim of this study.

This study investigates the use of transfer learning (TL)
for automatically generating suitable intrusion detection algo-
rithms for a variety of devices in RPL-based IoT networks.
Transfer learning simply helps move the knowledge learned
in a task/domain to a new task/domain. It helps reduce the
learning time needed in the new task/domain. Moreover, it
is expected to produce higher initial and final performances
for the learned model in the new task/domain compared to
learning without transfer. This study investigates the use of TL
in IoT security in two different ways: transferring knowledge
for generating suitable intrusion algorithms for new devices,
transferring knowledge for detecting new types of attacks. In
the literature, TL is proposed as a promising approach for se-
curing IoT systems, since they consist of different components
such as devices, wireless sensor networks (WSNs), and cloud
computing [4]. However, to the best of our knowledge, there
is no study that covers both settings in the research area yet.

One of the main characteristics of LLNs is that it in-
terconnects a number of heterogeneous, resource-constrained
devices. Therefore, the main hypothesis in transferring knowl-
edge for new devices is that an intrusion detection algorithm
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developed for a particular type of device might not be suitable
for other types of devices. Moreover, developing suitable in-
trusion detection algorithms for each type of device is a costly
approach. Hence, by using TL, the knowledge of an intrusion
detection algorithm could be transferred for generating new
algorithms for devices with different constraints. For example,
an effective algorithm on a device could be transferred to a
more resource-constrained device. With this approach, it is
expected to find a good balance between accuracy and resource
consumption in a shorter time than learning an intrusion
detection algorithm from scratch for a new device.

In transferring knowledge for new types of attacks, the
knowledge is transferred from one domain to a new domain.
With the increasing popularity of IoT networks, we expect
new attacks to emerge. So, the developed intrusion detection
algorithms might not be effective enough on such new attacks.
Therefore, in this study, the knowledge obtained during the
automatic generation of an intrusion detection algorithm by
using machine learning techniques is proposed to be trans-
ferred for detecting new types of attacks. With this approach,
it is expected to obtain effective intrusion detection algorithms
for new attacks in a shorter time than traditional learning.

Here, genetic programming (GP) is employed for evolving
intrusion detection algorithms due to their capability of explor-
ing search space efficiently for complex environments such as
LLNs. Moreover, it allows us to manually analyze evolved
detection programs to some degree. Last but not least, it eases
performing validation and testing automatically by producing
detection programs written in C, hence they could be run
directly on simulated devices running on Contiki operating
system. GP is a population-based optimization algorithm.
Hence, it outputs a group of candidate solutions for the
problem at hand, and the best one is usually selected for
testing. This characteristic of GP allows us to transfer a group
of individuals in the last population in evolution to a new
task/domain.

The contribution of this current study could be summarized
as follows:
• The use of genetic programming is explored in detecting

specific attacks against RPL-based IoT networks. The
results show that GP could evolve effective algorithms for
detecting rank, DODAG Information Solicitation (DIS)
flooding, version, and worst parent attacks in a given
time.

• Transfer learning is explored for detecting new types
of attacks on three scenarios: single-to-single, single-to-
multi, multi-to-multi. In single-to-multi scenario, single
corresponds to an environment with a single attack, where
learning takes place, and multi corresponds to a network
with multiple attacks, where the learned detection al-
gorithm is transferred to. In all scenarios, the positive
effect of transfer learning is clearly shown. TL reduces
the learning time and produces more effective detection
algorithms.

• Finally, the application of transfer learning is investigated
on generating separate algorithms for the different types
of devices with different constraints. The results show
that the proposed approach produces better results and

converges faster than the traditional approach, which is
important for putting devices/networks in operation in a
timely manner.

• The use of transfer learning on IoT security is firstly
explored for the following two settings: transferring
knowledge for new types of attacks and transferring
knowledge for new devices.

The paper is organized as follows. The overview of RPL
and internal attacks against RPL is given in Section II. The
background information about genetic programming and trans-
fer learning is also given in this section. Section III discusses
related studies in the field of intrusion detection on RPL and
in the area of transfer learning in IoT security. The proposed
approach is given in detail in Section IV. Experimental settings
and results are evaluated and discussed in Section V. Section
VI discusses the limitations of the proposed approach and
the possible future studies. Finally, Section VII concludes the
findings of this study.

II. BACKGROUND

A. RPL and Target Attacks

RPL is one of the most popular routing protocols for
LLNs [3]. It is a distance-vector and source routing pro-
tocol based on building DODAG in order to represent the
network topology. RPL is mainly proposed for supporting
multipoint-to-point communication (MP2P), however, it also
supports point-to-multipoint (P2MP) and point-to-point (P2P)
communication. Each DODAG has a single root node. Hence,
in a typical scenario, sensor nodes periodically send their
information to the root node. The route from these sensor
nodes to the root node is determined based on objective
functions such as expected transmission count (ETX), hop
count, and energy.

RPL has four types of routing control messages. The root
node initially broadcasts DODAG Information Object (DIO)
messages in order to create routes in an upward direction. By
using DIO messages, a node determines a set of candidate
parents, selects one of them, and determines its rank. Rank
represents the position of a node with respect to the root
node. The objective function specifies how a node computes
its rank value for the selection of its parent. Destination
Advertisement Object (DAO) messages are used for reversal
route construction. DAO Acknowledgement (DAO-ACK) is
used to acknowledge the receipt of a DAO message. DIS
messages are sent when a new node wants to join the DODAG
and asks for DIO messages from its neighbors.

Although RPL has some countermeasures against external
attackers, it is still vulnerable to attacks from inside. Attacks
against RPL are covered in three classes in the literature [5]:
attacks against resources, attacks on topology, and attacks on
traffic. In this study, the following four attacks are targeted.
The detection of these attacks is investigated by using transfer
learning. Even though transfer learning could be applied for
detecting variations of existing attacks, here, the main aim is
to detect new types of attacks by using transfer learning due
to being a more complex problem.
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• Decreased Rank (DR): In this attack, attacker nodes
illegitimately advertise a lower rank value to other nodes
in the network. This results in many legitimate nodes
in the network connecting to the DODAG graph over
attacker nodes. Hence, a great portion of the network
traffic might pass through attackers, which can be the
initial step for future harmful attacks.

• DIS Flood (DF): This attack aims at exhausting nodes’
resources. The attacker nodes generate a large number of
DIS messages to nodes in their neighborhood to consume
their resources (e.g., energy) and to cause congestion in
the network. In this attack scenario, the attacker sends 20
DIS packets consecutively.

• Increased Version (IV): While version number in DIO
messages is increased by only the root node and propa-
gated throughout the network for global repair in RPL,
it is illegitimately increased and broadcast by attackers,
which results in an unnecessary effort for rebuilding the
graph. In this attack scenario, the attacker increases the
value of the version field by one every time he sends a
DIO packet.

• Worst Parent (WP): In order to forward incoming packets,
a node chooses a parent node with respect to the objective
function. However, it is not the case in this attack sce-
nario. Attacker node contrarily prefers the worst parent to
send or forward packets, which degrades the performance
of the network (e.g., end-to-end delay, delivery ratio).

B. Genetic Programming

GP [6] is an evolutionary computation technique inspired
by biological evolution. In its simplest form, it is based on
the Darwinian survival of the fittest theory where individuals
compete with each other for survival and reproduction in an
environment that can only host a limited number of individuals
[7]. It is a population-based search algorithm in order to
evolve better individuals that correspond to candidate solutions
for a targeted problem at each generation. It applies genetic
operators such as crossover, mutation, and selection on the
individuals in order to provide better solutions in the new
population and to find the optimum (or close to the optimum)
solution for the problem at hand. Since GP is capable of
representing different types of complex problems, we see a
wide variety of successful GP applications in the literature.

LLNs are complex environments due to their special char-
acteristics such as having low power nodes and lossy links.
Moreover, different trade-offs should be considered while de-
signing a security solution for this complex environment such
as accuracy, being lightweight and so stability. Humans are
not particularly adept at selecting good choices when complex
trade-offs have to be made. Mobility makes this environment
more difficult to perceive. While RPL was not designed with
mobility in mind, real-life applications could include mobile
nodes. Evolutionary computation (EC) based approaches could
be suitable for such complex and/or dynamic environments.
Among various artificial intelligence techniques that have been
proposed for intrusion detection, EC is considered one of
the most promising approaches. It makes fewer assumptions

about the solution space as other heuristic computation tech-
niques. Intrusion detection programs derived using GP are
open to manual analysis to some degree. Moreover, we can
directly derive detection programs written in C, which eases
to run them directly on Contiki. Last but least, since it is a
population-based approach, it allows us to transfer a group
of individuals to a new domain/task at the end of one run.
These characteristics are among the main motivations behind
using GP in this research. Furthermore, by using a multi-
objective evolutionary algorithm, evolving detection programs
that are both effective and also efficient (i.e., energy-aware) is
explored.

The general steps of GP algorithm are given below. The
algorithm starts with generating the first population. The indi-
viduals, which represent candidate solutions for the problem
at hand, are usually generated randomly in the first population.
Then, these individuals are transformed into a new, hopefully
for the better, population of individuals by using genetic
operators. The better the fitness value of an individual is, the
more likely it is to be selected for the application of genetic
operators. Fitness function represents how good or how close
to the optimal the candidate solution is. In practice, since
the optimal solution cannot be achieved in a timely manner,
the algorithm is generally run up to the maximum number of
generations or up to the attainment of a solution with sufficient
quality.

Algorithm 1: General steps of GP

1 Initialize population;
2 repeat
3 Evaluate the fitness of each individual;
4 Rank the population according to fitness values;
5 Apply genetic operators (crossover, mutation, etc.)

and reproduce new population;
6 until a termination criterion is satisfied;
7 return best-of-run individual

In GP, individuals are represented as trees. At each iteration,
the individuals are evaluated by using the fitness function
and selected for genetic operators. The selection mechanism
provides a great opportunity for fitter individuals to survive
by picking out individuals from the current population. One
or two individuals, depending on the type of operator, are
selected as the parent. Two main genetic operators applied
upon parent individuals are crossover and mutation. In the
crossover operator, two offspring are created by replacing
the sub-trees of parent individuals. In the mutation operator,
a mutation point in a parent tree is randomly selected and
the sub-tree already rooted there is substituted by a new,
randomly generated sub-tree. Mutation introduces diversity
into the population. As the final step of each generation,
individuals who will survive in the next generation are selected
based on their fitness values. Please see the tutorial in [8] for
further information on genetic programming.
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C. Transfer Learning
The volume of training data is one of the most important

factors that affect the learning capability of a machine learning
algorithm. In that sense, while supervised learning is generally
preferred over unsupervised learning, labeling a high volume
of data is tiring, time-consuming, and even prone to errors in
the case of manual labeling. A semi-supervised algorithm can
address this issue as it needs a large amount of unlabeled data
instead. However, since gathering unlabeled data can be also
unrealistic for some problems, traditional machine learning
may not be effective to solve them. Transfer learning is a way
to handle this problem by transferring the information from a
source domain to a target domain [9] that has limited data.

A domain D is defined by a feature space X and a marginal
distribution P (X) (i.e., D = {X , P (X)}). Here, X denotes an
object (instance) set (i.e., X = {x | xi ∈ X , i = 1, 2, . . . ,m}).
A task, however, T is composed of a label space Y and an
objective predictive function f (i.e., T = {Y, f}). Given a
source domain (DS), a source task (TS), a target domain (DT ),
and a target task (TT ); transfer learning is defined as learning
an efficient objective predictive function (f ) for DT by using
information from DS and TS , where DS 6= DT or TS 6= TT .
Traditional machine learning tasks deal with the same task and
domain in training and testing data (i.e., DS = DT and TS =
TT ). The model is obtained by using training data and then is
applied to testing data in order to evaluate the model. However,
transfer learning is quite different from the traditional ML in
a way that task and domain in training and testing data can
be different.

Based on the definitions above, DS 6= DT implies that
either feature space or marginal distribution between source
and target must be different from each other (i.e., XS 6= XT

∨ P (XS) 6= P (XT )). In homogeneous transfer learning, the
feature space of source and target domains must be the same
(i.e., XS = XT ); otherwise, (i.e., XS 6= XT ), it is called
heterogeneous transfer learning [10]. Another type of TL is the
one where conditional probability distributions are different
(i.e., P (YS |XS) 6= P (YT |XT )). The output label space can
also be different, YS 6= YT . If one of these two conditions
is satisfied, then we can say that source and target tasks are
different (i.e., TS 6= TT .)

III. RELATED WORK

There is a good amount of works in the literature in order
to prevent and detect external and internal attacks against
RPL. Besides intrusion detection systems, there are security
protocols which are grouped into cryptography-, trust-, and
threshold-based solutions in the literature for enhancing the
RPL security [11]. However, here, we mainly focus on studies
proposed for detecting and mitigating RPL specific attacks.

SVELTE [12] is the first intrusion detection system (IDS)
for IoT, which employs the combination of signature and
anomaly-based systems. Since then, researchers mainly focus
on mitigating or detecting particular types of attacks against
RPL. While, rank and version number attacks are among
the most analyzed attacks against RPL, RPL-specific flooding
attacks such as DIS flooding [13], newly developed attacks
such as DIO suppression [14] need more attention [11].

Version number attacks have been analyzed in [15][16].
Both analyses show that the attack increases the network
overhead considerably. Moreover, it is shown that the more the
attacker is away from the root node, the more damage it could
give to the network [15]. Therefore, in a technique for mitigat-
ing this attack type [17], the version number update messages
coming from nodes other than the root node and nodes in its
neighborhood are dropped. In order to validate other update
messages, the majority of nodes with better rank values are
expected to have the same version number. In [18], a separate
network consisting of the monitoring nodes is constructed
by taking advantage of the multiple instance feature of RPL.
Hence, each monitoring node shares its information in order to
detect version number attacks. The effects of the rank attack
are analyzed in [19]. It is shown that implementing attacks
in an area with a high forwarding load such as where nodes
have a limited choice of parents has a higher impact on the
network. An analytical model of Sybil attackers is proposed
to increase the evasiveness of Sybil attack by using artificial
bee colony algorithm [20]. Then, a lightweight threshold-based
Sybil attack detection system is proposed for the bounded
region, scattered, and mobile attacker scenarios by introducing
new fields into DIO messages such as control message counter
and timestamps.

While most of the proposed IDS for RPL is anomaly-
based, there are few specification-based IDS [21][22] in the
literature. In the last few years, few machine learning-based
IDS have been proposed for RPL. Compression Header An-
alyzer Intrusion Detection System (CHA-IDS) [23] employs
features collected from IPv6 over Low-Power Wireless Per-
sonal Area Network (6LoWPAN) compression header, then
applies six classification algorithms after the feature selection
phase. Even though the proposed approach performs better
than SVELTE [12] and [24], it has high power and memory
consumption. Moreover, it is proposed for only WSN-based
attacks. In [25], a neural network-based approach is applied for
detecting hello flood, version, and rank attacks, and it is shown
to be very effective in detecting hello flood attacks. In a recent
study [26], intrusion detection algorithms are automatically
generated by using evolutionary computation. Both central
and distributed intrusion detection architectures are explored.
Recently, a neural network-based intrusion detection system
is proposed for RPL [27]. The effects of link-layer features
on detecting RPL attacks were firstly explored and shown to
reduce false positives.

Modeling the normal behavior of IoT devices has also
been exploited to develop intrusion detection systems targeting
general attacks. In [28], the operations of devices are moni-
tored, and a model that determines the ‘normal’ behavior of
a device is extracted by using system statistics like central
processing unit (CPU) usage, memory consumption of the
monitored devices. They employ methods based on neural
networks, linear regression, and recurrent neural networks. In
another anomaly-based security model [29], changes in the
energy pattern of IoT devices are monitored to detect cyber and
physical attacks in the network. Here, a convolutional neural
network, one of the popular deep learning (DL) algorithms, is
employed to identify deviations from the normal behavior of
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Fig. 1: The conceptual scheme of the proposed approach.

the system.
In the literature, transfer learning has been applied in various

problems such as text classification, sentiment classification,
image classification, WiFi localization, anomaly detection,
spam filtering up to date [9]. However, there are only a
few studies that explore the application of transfer learning
on IoT security. Very recently, a DL-based attack detection
system is proposed [30]. Due to the difficulty of having labeled
data, they propose a transfer learning approach in which the
latent representation of an autoencoder trained on a labeled
dataset is transferred to another autoencoder trained on an
unlabeled dataset. It aims to detect general attacks such as
scanning, Transmission Control Protocol (TCP) flooding, and
User Datagram Protocol (UDP) flooding, hence no specific
IoT protocol is targeted. Nine datasets from N-BaIoT are
employed [31]. 115 statistical features are extracted from the
packet stream. Area Under Curve (AUC) score is used for
performance comparison. Furthermore, the effectiveness of
transferring information and processing time is analyzed. The
results show that the proposed TL-based approach performs
better than the baseline DL technique. Although the target
datasets include attacks that do not exist in the source datasets,
the effect of the proposed approach on only the new attacks
is not shown explicitly in the results.

In another recent study [32], transfer learning is employed
in order to encode high-dimensional features applied for multi-
class classification for building a binary classifier. A detection
model is trained in order to detect four attacks (i.e., denial-
of-service (DoS), distributed DoS (DDoS), reconnaissance,
and information theft) in IoT networks. In the study, no
specific IoT protocol is targeted, but features related to internet
protocol (IP), TCP, UDP, hypertext transfer protocol (HTTP)
are extracted. It is shown that high accuracy is obtained for
binary classification by using TL. In N-BaIoT [31], a network-
based botnet detection for IoT, transferring knowledge of the
detection model to other identical devices is left as future
work.

In this study, the aim is not only to detect attacks against
RPL, but also to develop suitable solutions for this environ-
ment: developing effective detection algorithms in a timely

manner for new attacks and developing efficient algorithms for
new devices. To the best of our knowledge, there is no such
study in the literature. While anomaly-based systems [12][18]
could be effective against new attacks, their performance
on unknown attacks has not been evaluated. Furthermore,
although the energy consumption of the proposed algorithms is
given in some studies [12][23], their applicability to different
devices is not taken into account as done in this study. Last
but not least, although there are a few recent studies [30][32]
that employ transfer learning for IoT security in the literature,
these studies do not target RPL attacks. They do not use
transfer learning both for new attacks and for new devices as
in the current study. Moreover, the deep TL approach [30] only
focuses on attacks belonging to the same class (i.e. DDoS).

IV. EVOLVING INTRUSION DETECTION ALGORITHMS

In this study, the use of transfer learning for intrusion
detection in resource-constrained IoT networks is investigated.
The conceptual scheme of the proposed approach is depicted
in Fig. 1. Firstly, intrusion detection algorithms are evolved
by using GP for the source domain. The features used in
individuals are extracted from networks simulated by Cooja,
a Java-based network simulator of sensor nodes running the
Contiki operating system [33]. Please note that the first popu-
lation in the source domain is initialized randomly. However,
the first population in the target domain is constructed by
transferring knowledge from the source domain. The fittest
individuals learned in the source domain are transferred into
the target domain. In this regard, we adopted FullTree ap-
proach proposed in [34], which selects a given percentage
of best individuals of the last generation for transferring to
the target domain. With transfer learning, it is expected to
evolve better individuals in a shorter time than the traditional
approach. Moreover, it generally performs better initial and
final performance compared to learning without transfer.

In the source task/domain, the initial population is randomly
constructed. The individuals in the population are candidate
algorithms for detecting RPL-specific attacks. Each individual
is represented by a GP tree. An exemplar GP tree is shown in
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Fig. 2. Terminal (or leaf) nodes represent the features collected
from RPL control and data packets. The feature set proposed
in our previous study [35], which covers most of the features
related to RPL control messages and data packets, together
with randomly generated numbers has been employed as leaf
nodes. The features are listed in Table I. While data-related
features include information about data packets received by the
root node in a time interval, topology-related features include
information about routing control messages received by the
root node, which could give useful insights for detecting RPL-
specific attacks.

TABLE I: The feature set

No Feature Description
1 COUNT_DATA Number of data packets
2 COUNT_DIO Number of DIO packets
3 COUNT_DIS Number of DIS packets
4 COUNT_DAO Number of DAO packets
5 COUNT_DAOACK Number of DAO-ACK packets
6 MAX_VERSION Max. of versions
7 MIN_VERSION Min. of versions
8 AVG_VERSION Avg. of versions
9 MAX_RANK Max. of ranks

10 MIN_RANK Min. of ranks
11 AVG_RANK Avg. of ranks
12 MAX_INTERVAL_MIN Max. of DIO interval min.
13 MIN_INTERVAL_MIN Min. of DIO interval min.
14 AVG_INTERVAL_MIN Avg. of DIO interval min.
15 MAX_INTERVAL_DOUB Max. of DIO interval doublings
16 MIN_INTERVAL_DOUB Min. of DIO interval doublings
17 AVG_INTERVAL_DOUB Avg. of DIO interval doublings
18 MAX_RPL_INS Max. of rpl instances
19 MIN_RPL_INS Min. of rpl instances
20 AVG_RPL_INS Avg. of rpl instances
21 MAX_TIME_BTW_DATA Max. time between data packets
22 MIN_TIME_BTW_DATA Min. time between data packets
23 AVG_TIME_BTW_DATA Avg. time between data packets
24 MAX_TIME_BTW_DIO Max. time between DIO packets
25 MIN_TIME_BTW_DIO Min. time between DIO packets
26 AVG_TIME_BTW_DIO Avg. time between DIO packets
27 MAX_TIME_BTW_DIS Max. time between DIS packets
28 MIN_TIME_BTW_DIS Min. time between DIS packets
29 AVG_TIME_BTW_DIS Avg. time between DIS packets
30 MAX_TIME_BTW_DAO Max. time between DAO packets
31 MIN_TIME_BTW_DAO Min. time between DAO packets
32 AVG_TIME_BTW_DAO Avg. time between DAO packets
33 MAX_TIME_BTW_DAOACK Max. time between DAO-ACK packets
34 MIN_TIME_BTW_DAOACK Min. time between DAO-ACK packets
35 AVG_TIME_BTW_DAOACK Avg. time between DAO-ACK packets

Mathematical operators such as addition, multiplication, and
subtraction, together with the logical operators such as ‘and’,
‘or’ are used as non-terminal (intermediate) nodes to form
a GP tree, as illustrated in Fig. 2. The root node, however,
is constrained to be a comparison or logical operator so that
the evolved tree returns a boolean expression. Each individual
produces an if statement for detecting the attack and raising
an alarm.

The intrusion detection algorithm corresponding to the tree
in Fig. 2 is given below:

1 if ((COUNT_DIS + MAX_RANK) < COUNT_DIO) &&
(COUNT_DATA == MAX_RPL_INS) then

2 alert(intrusion)
3 end

The parameter settings including the operators and functions
are given in Table II. The number of generations is set as the
termination criterion of evolution in the experiments. In order
to evaluate evolved algorithms, accuracy is employed as the

&&

< ==

+

COUNT_DIS MAX_RANK

COUNT_DATA MAX_RPL_INSCOUNT_DIO

Fig. 2: An example GP-tree.

fitness function. As for the implementation of GP algorithm,
a Java-based evolutionary computation toolkit (ECJ) [36] is
used in the experiments. The other settings of GP not listed
in the table are the default parameters of ECJ.

TABLE II: GP parameters and their values.

Parameters Value

Non-terminals
+, -, *, /, sin, cos, log, ln, sqrt, abs, exp,
ceil, floor, max, min, pow, mod, <, ≤,
>, ≥, ==, ! =, and, or

Terminals features in [35] and rnd(0,1)
Generationsa 1000 (source), 500 (target)
Generationsb 100 (source), 25 (target)
Population Sizea 100 (source), 50 (target)
Population Sizeb 20 (source), 20 (target)
Elite Fraction 10%a, 20%b

Crossover probability 0.9
Mutation probability 0.1
Selection strategy Tournament with the size of 7
Max. depth of the tree 17
a: transferring knowledge for new types of attacks
b: transferring knowledge for new devices

The running time of evolving an intrusion detection algo-
rithm is proportional to the running time of genetic program-
ming, which is mainly determined by the individual/generation
size and the fitness evaluation cost. Hence, the time complexity
of the proposed approach is O(G× I × F ); where G, I , and
F denote the number of generations, the number of individ-
uals evaluated in each generation, and the fitness evaluation
respectively. In the fitness evaluation of each individual, the
average of running the individual on five network simulations,
in each which consist of 300 records collected in 60s window
intervals, is calculated. Please note that each individual is
extracted by tree traversal in GP. If the number of nodes in
the individual tree is n, the time complexity of the tree in-
order traversal by using traditional algorithms is O(n). Here,
the number of nodes in the tree is limited by the maximum
tree depth as given in Table II.

Depending on the placement strategy (i.e., centralized,
distributed, and hybrid), the evolved IDS algorithms can be
deployed to any node in a network. In this study, a central
intrusion detection system is proposed, where the evolved
algorithm is deployed on the root node. So, the features are
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collected from packets sent from/received by the root node. As
stated earlier, the applicability of the transfer learning-based
approach is investigated under two different settings:

Transferring knowledge for new types of attacks: Here,
the effect of transfer learning on detecting new RPL attacks
is explored. For this purpose, RPL attacks other than those
used in learning in the source domain are employed at the
target domain. Three different scenarios are explored in this
setting. In the first scenario, called single-to-single, a different
single attack takes part in both source and target domains. In
the second scenario, called single-to-multi, while the source
domain evolves a detection algorithm for a single attack, it
is transferred for detecting multiple attacks in the target do-
main. Finally, in the third scenario, called multi-to-multi, both
domains include different combinations of multiple attacks.

In this setting, the same feature space is used in both source
and target problems, i.e. XS = XT . However the marginal
distribution is different from each other as the source and
target attacks are different, i.e. P (XS) 6= P (XT ), which
changes data distribution. The same output label is used for
both tasks, i.e. YS = YT . Lastly, the predictive function used
in both source and target problems is the same. Based on these
definitions, source and destination tasks are the same, source
and target domains are different from the transfer learning
point of view.

Transferring knowledge for new devices: In this setting,
the detection algorithms are transferred to a new environment
where a new type of devices takes part. Here, both detection
ability and energy consumption of evolved detection algo-
rithms are taken into account on transferring. Here, the main
motivation is the need to deploy intrusion detection algorithms
on more resource-constrained devices. Therefore, while the
generated algorithms in the source domain are evolved by
using only the accuracy of the algorithms, in the target domain
both accuracy and energy consumption of evolved algorithms
are taken into consideration in the fitness function. Therefore,
the problem at hand becomes a multi-objective problem with
the goals of higher accuracy and lower energy consumption.

In the literature, a great deal of effort has been put in order
to extend evolutionary-based algorithms for solving multi-
objective problems. Now, evolutionary-based multi-objective
algorithms (EMOAs) are known to be very successful in
finding well-converged and –diversified solutions. In contrast
to single-objective problems where the best individual is found
for that objective; for the multi-objective problem, the solution
is usually not unique, but a set of optimal solutions called
Pareto-dominant solutions. To define formally, a solution (say
u) is a Pareto-dominant solution in comparison to other
solution (say v) (denoted as u ≺ v) if its objective set, f(u), is
partially less than that of v, f(v) for a minimization problem,
i.e., ∀i : fi(u) ≤ fi(v) ∧ ∃i : fi(u) < fi(v) | i ∈ {1, . . . , k};
where k is the number of objectives. Therefore, Pareto-
dominant solutions are better than non-dominant solutions
in every objective but not comparable to each other. Here,
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [37],
one of the most popular Pareto-based EMOAs, is employed.
In this algorithm, in contrast to the fitness proportionate
selection in single-objective GP, Pareto ranking and crowding

distance measurements of candidate solutions obtained from
their objective values, are taken into account for selecting an
individual to survive in next generations.

In this setting, the same type of RPL attacks takes part
in both domains; however, energy consumed by an intrusion
detection agent becomes more critical. In order to simulate a
more constrained device, the frequency of sending data packets
sent from sensor nodes is increased, which also increases the
network traffic to be handled by the root node. While the time
interval is 15 s in the source domain, it is set as 5 s in the
target domain. Since the root node consumes more energy to
handle the increased traffic, the intrusion detection algorithm is
expected to consume less energy in order to tolerate additional
energy cost caused by the data packets without sacrificing its
detection accuracy, if possible. So, even though the same input
feature space and the same attacks are used in both source
and target domains (i.e., XS = XT ), the marginal distribution
becomes different (i.e., P (XS) 6= P (XT )). Again, the same
output space is employed (i.e., YS = YT ). However, unlike
the previous setting, energy consumption is added as another
objective for the target problem, which makes the source and
target task different. To sum up, from the transfer learning
perspective, both domain and tasks are different in this setting.

V. EXPERIMENTAL RESULTS

A. Simulation Environment
In this study, Cooja simulator [38] is used to simulate IoT

networks. Cooja is the most used simulator in the literature.
In addition, since it includes RPL implementation, it is pre-
ferred to be used in this study. It is capable of simulating
wireless sensor networks consisting of different mote types.
Here, Zolertia Z1 platform is adopted as a mote type in
all simulations due to its bigger read-only memory (ROM)
capacity than other platforms. Targeted attacks described in
Section II-A are implemented by using the RPL attacks
framework [39]. In order to measure the power consumption
of evolved algorithms, Powertrace [40] tool is integrated into
the Cooja simulator.

In the experiments, 15 different network topologies are
employed for each scenario, where five topologies are used
for training, and the remaining 10 topologies are used for
testing. Each topology is run twice for generating benign and
malicious traffic. Each topology is run for five hours and has
300 samples since features are collected every 60 s as given
in the subsequent section. In simulations involving attacker
nodes, malicious nodes attack the network during the whole
simulation time; hence, the dataset is balanced. In order to
see the multi-hop characteristics of RPL, at least 25 nodes are
suggested to be used in RPL-based networks [41]. Therefore,
30 nodes are deployed in each simulation. There is a trade-off
between the number of nodes and the simulation time. That’s
why bigger networks were not preferred in order to be able to
run many simulations and to get statistically significant results.
While 5 nodes (≈ 15%) are set as an attacker performing
malicious activities, the rest are set as sensor nodes, except the
root node where the evolved detection algorithms are placed
on. Sensor nodes send periodic data packets (every 15 s) as
in a typical sensor network application.
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B. Performance Evaluation

In the evolution of intrusion detection algorithms by GP, we
adopted the window-based approach where the network traffic
is collected in a time interval and the detection algorithm is
triggered at the end of each interval. Otherwise, it would be
too costly to run a detection algorithm after every incoming
packet. Therefore, firstly, the optimal length of this time
window is explored. To do that, GP is run five times for
each attack type with five different network configurations in
various time intervals (5, 15, 30, 60, and 90 s). The effects
of various time intervals are compared by using detection
accuracy. According to the overall findings, the detection
performance proportionally increases with the time interval
until 60 s, after which it slightly degrades. Therefore, the
length of the time window is set as 60 s in the following
experiments.

1) Transferring knowledge for new types of attack: In
this setting, a detection algorithm evolved for RPL attack(s)
at the source domain is transferred to the target domain where
another RPL attack(s) is implemented. Different attack com-
binations are explored under three different scenarios: single-
to-single, single-to-multi, and multi-to-multi. Each model is
trained by using five different networks and tested by using
10 networks having varying topologies. GP is run 10 times
for every setting due to the stochastic nature of evolutionary
computation-based algorithms, then the evolved best detection
algorithm of each run is used for testing. Pre-trained models
are obtained at the 1000th generation. Then, the individuals
of the last population are transferred to the target domain
and the evolution goes on in the new environment. Here,
instead of the whole population, only elite individuals (10%
of the population) are transferred to the target domain and
the remaining part of the population is randomly generated to
protect diversity in the population. A detection algorithm is
also evolved by using traditional learning (without transfer)
for comparison. In traditional learning, GP is initialized with
a random population. Both learning process continues for 500
generations and the best algorithms (with/without transfer)
are obtained at the 500th generation for a fair comparison.
Fig. 3 shows the average results of 10 GP runs for each
setting. The accuracy of each transfer for different attack
cases is represented in the figure. Each attack case is given
on the x-axis. For instance, DR→DF denotes that the pre-
trained models are evolved in an environment where DR takes
place and is transferred to the target domain where DF attack
is implemented. The results show that the proposed transfer
learning-based approach yields better performance than the
traditional learning approach on 8 out of 12 attack cases in
the single-to-single scenario, 18 out of 24 attack cases in the
single-to-multi scenario, and 26 out of 30 attack cases in the
multi-to-multi scenario. The overall accuracy results obtained
by averaging all the attack cases (given as dashed lines in the
figure) also affirm the improvements yielded by the proposed
TL-based approach.

In addition to the overall performance comparison,
Wilcoxon signed-rank test has been applied with a statis-
tical significance level of 95% to reveal whether there is

TABLE III: Performance of the proposed TL-based approach
based on the signed Wilcoxon rank test.

Scenario Total count (+/=/-)
single-to-single 7/4/1
single-to-multi 15/5/4
multi-to-multi 22/8/0
Sum 44/17/5

a statistically difference between two approaches (i.e., TL-
based and traditional) and if so, the number of simulations
where the proposed TL-based approach exhibits superior or
inferior performance than the traditional approach are listed.
The total number of cases for each scenario where TL-based
approach has shown superior (+), equal (=), and inferior (-
) performance is given in Table III. The results show that
findings obtained by the rank test are highly correlated with the
overall performance given in Fig. 3. It is statistically proven
that the proposed approach shows much better performance
than the traditional approach. The results also support that
there is no meaningful difference observable in cases, in which
the average performances are very similar to each other as
depicted in Fig. 3.
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Fig. 3: Overall accuracy performance of the proposed transfer-
based learning approach.

The attack cases where the proposed approach is less
effective on average than the traditional learning are further
analyzed through statistical box plots given in Fig. 4. In
the single-to-single scenario (Fig. 4a), the proposed approach
yields very similar detection accuracy on DR→WP case. It
even outperforms the traditional approach on the remaining
two cases (i.e., DF→DR and IV→DF) in which only two
runs bring about a degradation to the overall performance.
However, an apparent degradation is observable in IV→DR
case. The overall testing results show that GP shows its best
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Fig. 4: Detailed comparative analysis.

and worst performance on IV (93.4%) and DR (79.7%) attacks,
respectively. It is observed that the feature set is less separable
on DR than IV. This might make the situation more difficult in
order to find optimal solutions when we transfer solutions from
IV to DR. Therefore, a randomly initialized population could
perform better in few simulations, which affects the average
results as observed in the results. As shown in Fig. 7, the
average accuracy at the initial generation obtained by using
the traditional approach is higher than that achieved with the
proposed approach. In the single-to-multi scenario (Fig. 4b),
the proposed approach is highly competitive with the tradi-
tional approach on four cases (i.e., DR→DF_IV, DR→IV_WP,
DF→DF_WP, and DF→IV_WP) but becomes inferior on the
remaining cases (i.e., IV→DR_WP and WP→DR_DF). Fi-
nally, the proposed approach shows very similar performance
for all cases in the multi-to-multi scenario (Fig. 4c).

The performance of the proposed approach is also analyzed
in terms of the detection rate and false positive rate (FPR)
metrics, which are important indicators in order to show how
well the algorithm is able to distinguish malicious flows from
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Fig. 5: Overall detection rate and FPR.

benign flows. The overall detection and false positive rates
are given for each scenario in Fig. 5. As it is shown in the
figure, the proposed approach has a higher detection rate and
lower false positive rate than the traditional approach for each
scenario. Moreover, there is a trade-off between detection rate
and false positive rate among the scenarios in general. A case-
basis plot is given in Fig. 6 for detailed detection rate and
FPR metric values of the proposed approach. It can be seen
that the proposed approach assures a higher detection rate (or
lower FPR) performance in almost all cases, but it slightly
deteriorates when DR attack is implemented on either source
or target domain overall. DR is observed to generally degrade
the performance of the proposed approach.

In addition to the final performances, the pre-trained models
are expected to have better initial performances. Here, the
initial accuracy values are comparatively given in Fig. 7. The
figure clearly shows that the proposed approach has better
adaptability to a new domain overall. Concretely speaking,
it becomes superior to the traditional approach on 7 out of
12 attack cases used in the single-to-single scenario, 22 out
of 24 attack cases used in the single-to-multi scenario, and all
attack cases used in the multi-to-multi scenario. A much higher
performance difference is observed when multiple attacks take
part in the source domain, since the pre-trained IDS model that
is evolved from multiple attacks rather than a specific attack,
is more generic and includes more knowledge.

The comparative convergence behavior captured at the target
domain is also analyzed in Fig. 8. It is unsurprising to observe
that the comparative convergence capability of the proposed
approach is proportional to its initial performance by showing
early convergence behavior. Hence, these results easily suggest
that the time needed to evolve an intrusion detection algorithm
can dramatically be decreased when the proposed TL-based
approach is used, which is highly crucial in such a dynamically
changing environment.

Finally, a comparison with the recently proposed cross-layer
intrusion detection system (CL-IDS) [27] has been carried out
in order to further evaluate the effectiveness of transferring
knowledge for detecting new types of attacks. Since CL-
IDS shares its attack dataset [42], it provides a platform for
performing a comparison with other studies. CL-IDS is a
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Fig. 6: Detailed detection rate (red lines) and false positive
rate (blue lines) analysis.

neural network-based intrusion detection system that explores
the effects of both routing and link-layer features on detecting
RPL attacks. Here, DF, IV, and WP attacks are included in
the evaluations as in [27]. To ensure a fair comparison, the
same network traffic data used for the training and testing
of the CL-IDS and the same length of the time window
(5s) for collecting features is employed as given in [27].
The parameter setting shown in Table II is used for evolving
intrusion detection systems. The proposed approach is run 10
times for each attack scenario. The performances are compared
in terms of detection rate as given in [27] for each attack
with varying attacker densities. The comparison results are
given in Table IV. Please note that while CL-IDS uses all
attacks in one training, because of the use of transfer-learning
in our approach, separate models are generated separately for
each attack type. For example, the test results of WP are the
average testing results of the models trained for IV and DF,
and transferred for detecting WP. Hence it is the average result
of 20 runs for each attack.
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Fig. 7: Comparative accuracy values obtained at the initial
generation.

The comparison results show that the proposed transfer-
learning approach is able to detect attacks with varying
attacker densities at high detection rates. In addition, the
detection performance increases proportionally to the attack
density in general. While the proposed approach performs
better than CL-IDS on IV and WP attacks, it is slightly inferior
to CL-IDS on detecting DF attack. CL-IDS produces FPR
between 0.16% and 0.61% depending on the features included
in the training. While the former case has both the network
layer and the link-layer features in training, the latter case
includes the network layer feature set that contains the same
features used in our approach. The false positive rate of our
approach is given separately for each attack density in Table
IV. As shown in the results, our approach outperforms CL-IDS
in networks, where 10% and 20% of nodes are attackers. Even
though the FPR in networks with a lower density of attackers
is comparably high in our approach, this mainly results from
the high false positive outputs of few runs. However, in most
of the individual runs, high accuracy is achieved with 0% FPR.

To sum up, it is shown that the evolved intrusion detection
algorithms could be transferred for detecting the new type of
attacks by using transfer learning. It not only introduces more
effective intrusion detection algorithms for new attacks but
also achieves that in a timely manner. Both the initial and
final performances of the transfer learning-based approach are
better than the performances of the traditional approach. By
transferring knowledge from one domain to a new domain,
intrusion detection algorithms with high accuracy in a shorter
time are obtained. With transferring more knowledge such
as in multi-to-multi scenarios, better results are obtained.
Therefore, the proposed approach is a good candidate for IoT
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Fig. 8: Comparative convergence performance captured
throughout the evolution.

networks that are becoming popular every day and become the
target of new attacks.

2) Transferring knowledge for new devices: In this setting,
two conflicting objectives are optimized simultaneously in
order to evolve a detection algorithm that is energy-aware and
having high accuracy. In order to measure the energy overhead
of evolved algorithms, the energy consumption of the root

TABLE IV: Comparison of our approach with CL-IDS in [27].

Attack Attack CL-IDS [27] Proposed approach
Density Det. Rate (%) Det. Rate (%) FPR (%)

DF

2% 99.83 99.75 3.40
6% 100.00 97.32 2.53
10% 100.00 99.70 0.00
20% 100.00 99.41 0.00

IV

2% 86.66 98.56 4.24
6% 92.99 99.17 0.00
10% 98.58 99.49 0.00
20% 94.83 99.71 1.61

WP

2% N.A. 86.71 5.29
6% N.A. 95.58 0.00
10% 96.91 99.98 0.00
20% 99.42 100.00 0.00

N.A.: not available

node, where the central IDS is placed upon, is measured with
and without IDS.

It is worth stressing that elite individuals (algorithms) in
this setting are regarded as the Pareto dominant algorithms
where their objectives are better (i.e., gives high accuracy, low
energy increase) than the non-dominant algorithms. Therefore,
in this experiment, the Pareto-dominant algorithms found at
the final population at the target domain are transferred to
the testing environment. Contrary to the first setting, one
network topology is used for training, while four different
topologies are used in testing. The reason for that is to reduce
the excessive computation time caused by a separate real-time
simulation in which each candidate IDS is evaluated to obtain
its energy consumption.
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Fig. 9: Accuracy and energy increase performance of Pareto
dominant algorithms.

The accuracy and energy consumption performances of the
Pareto dominant algorithms are separately given in Fig. 9 for
every attack case. The markers in this figure indicate the per-
formance of these algorithms on four different networks used
in testing. The overall performances of the Pareto dominant
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algorithms are also comparatively given as dashed lines in this
figure.

The results show that the proposed transfer learning-based
framework gives better performance on all the attack cases ex-
cept DR. As also shown in the previous results, DR generally
degrades the performance of the evolved detection algorithms.
When it is analyzed in detail, it is found out that the current
feature set is not able to distinguish DR from benign traffic.
For detecting DF, the traditional approach produces slightly
better algorithms in terms of energy usage but they sacrifice
detection accuracy; whereas, the proposed approach ensures
much better detection accuracy. As for IV attack, the Pareto
dominant algorithms evolved by the proposed approach are
overwhelmingly better than the traditional approach according
to energy usage, while they produce very similar accuracy
performance on overall. Finally, both approaches give very
similar results overall on WP attack.

As it is aimed to evolve IDS algorithms that have high
detection accuracy but low energy usage, those located at the
upper-left region in the objective space (Fig. 9) are highly
attractive solutions. Therefore, a close view of the upper-
left region is given in Fig. 10. As it is stated above, an
IDS algorithm evolved by the traditional approach should be
preferred for DR. However, for detecting DF efficiently, the
proposed approach is superior to the traditional approach.
Although both approaches evolve algorithms with similar
energy usage for detecting IV, the TL-based approach obtains
algorithms with higher accuracy. Lastly, for WP attack, while
the proposed approach is much better in terms of accuracy
(around 98%) but slightly worse in terms of energy increase
(less than 1% increase) than the traditional approach.
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Fig. 10: Comparative best testing performance of Pareto dom-
inant algorithms.

In order to analyze convergence and diversity of multi-
objective solutions obtained by EMOA, the hyper-volume
(HV) metric is usually employed. HV reveals the diversity

and convergence performance of the Pareto-dominant indi-
viduals together by evaluating the space enclosed by the
worst reference point and the Pareto dominant individuals.
The higher HV value means a larger space in which the
Pareto-dominant individuals occupy. Hence, higher HV values
correspond to better convergence and diversity obtained by the
Pareto-dominant individuals. Here, jMetal framework [43], a
Java-based framework for multi-objective optimization with
metaheuristics, is used for implementation and calculation of
HV metric. It is worth stating that jMetal concatenates all the
Pareto dominant individuals found, then generates reference
points from them when there are no known reference points
of the problem (also called as true Pareto front), which is
the case in this setting. The comparative HV values are
given in Table V. The results show that the proposed TL-
based approach ensures a more convergent and diverse Pareto-
dominant detection algorithm overall than those evolved by the
traditional learning-based approach.

TABLE V: Comparative HV metric values.

HV values
Prop. Appr. Trad. Appr.

DR 3.84e-02 8.80e-02
DF 6.00e-02 1.20e-03
IV 1.24e-01 1.26e-02
WP 5.39e-01 5.34e-01

A comparative analysis is also made on convergence behav-
ior of the proposed and traditional approaches here. Unlike the
first setting where the accuracy of the best detection algorithm
at each generation is shown, HV metric is evaluated to
show the convergence behavior throughout the evolution. The
comparative convergence curves with respect to this metric are
given in Fig. 11 separately for every attack type addressed. It
is worth restating that the higher the HV value is, the better
an algorithm is able to converge to the true Pareto front of the
problem. It can be seen from the figure that the convergence
characteristic evaluated by HV verifies the findings shown in
Fig. 9 and 10. HV curves reveal that the proposed transfer
learning-based method converges better and earlier to the true
Pareto front of all attack types except that of DR.
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Fig. 11: Convergence characteristic on HV metric.

To sum up, while multi-objective evolutionary computation
allows us to discover trade-offs between accuracy and energy
consumption, with the use of transfer learning better trade-
offs for a new environment could be obtained in a shorter
time than the traditional multi-objective EC approach. For
each attack type other than DR, better accuracy or better
energy consumption is achieved in Pareto fronts of the trans-
fer learning-based approach. Hence, the proposed approach
could be used for developing suitable intrusion detection
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algorithms for new devices introduced to the system with
different constraints. The proposed approach complies with
the heterogeneous nature of IoT networks.

VI. LIMITATIONS AND FUTURE WORKS

In this study, a central intrusion detection system is proposed
for showing the effects of transfer learning on intrusion
detection. Because of that, it could be a single point of failure.
However, in real life, such central systems are always sup-
ported with backups. Moreover, other nodes could participate
in intrusion detection and take place of the root node in
case of a failure. For instance, one of the root’s neighbors,
which maintains local connectivity with the root node, could
be selected randomly for the sake of security in case the root
node fails.

The proposed system can be adapted to a distributed and/or
hybrid architecture. The main motivation of using a centralized
intrusion detection system in this work is its practicality
rather than choosing it over a distributed and cooperative
architecture. In [26], both central and distributed intrusion
detection architectures are explored and shown that since the
root node has more information, the proposed central intrusion
detection system presents higher accuracy than IDSs running
on nodes as stand-alone. On the other hand, by collaborating
with other IDSs, higher accuracy could be obtained. However,
in that case, the communication between IDS agents should be
investigated, a trade-off between accuracy and communication
cost should be discovered. As far as we know, this is not
explored yet in the literature. Since the main motivation of
this paper is to show the use of transferring knowledge on
intrusion detection, it is applied on a central node for the sake
of simplicity. However, due to taking into account multiple
objectives simultaneously, the proposed approach could easily
be enriched by including the communication cost as another
objective besides accuracy and energy usage. This is left as
future work.

GP could allow us to manually analyze the evolved pro-
grams to some degree. On the other hand, the code bloating
problem of GP, which increases the size of individuals due to
the long trees, could disrupt the readability of the evolved pro-
grams. This problem is not desired in many GP applications,
hence the tree depth parameter is often decreased. However,
it has a positive effect from the security point of view. By
increasing the tree depth parameter deliberately here, the
code bloating problem helps evolve longer and more complex
programs that are more robust against adversarial attacks. On
the other hand, this will increase the power consumption of
the detection programs. As it is seen, the problem at hand
has multiple objectives that conflict with each other. Multi-
objective evolutionary computation is a good candidate for
solving such complex problems having different trade-offs.

Although GP is employed in this study for various reasons
stated above, DL is one of the most popular algorithms used
for solving engineering problems. It has started to be used
extensively in many domains, particularly in image processing
and in computer vision. Unlike traditional machine learning
techniques, which extract meaningful features from raw data

and give them as input to the training process, DL techniques
use raw data directly and extract features on their own.
Furthermore, it is easily applicable for transferring knowledge
to another domain/task. Nowadays, we have started to see the
applications of DL in security as well. In the future, DL can
be easily employed as a replacement for GP. This replacement
can give us an advantage for saving on feature extraction time
as we could give raw traffic data directly as input to DL.

VII. CONCLUSION

In this study, the use of the transfer learning approach
is explored in order to detect RPL-specific attacks. To the
best of the authors’ knowledge, this is the first application
of transfer learning in IoT security in the following two
settings: transferring knowledge for new types of attacks and
transferring knowledge for new devices.

In transferring knowledge for new types of attacks, the
efficacy of transfer learning is analyzed for detecting different
attacks, where three attack scenarios are included: single-
to-single, single-to-multi, and multi-to-multi. In transferring
knowledge for new devices, the use of transfer learning is
explored for generating suitable intrusion detection algorithms
for new types of devices with varying energy constraints.
While only the accuracy of the generated intrusion detection
algorithms is considered for the first setting, the energy con-
sumption of these algorithms is also included in the second
setting. The experimental results in both settings prove that
the proposed transfer learning-based approach yields better
performance than the traditional learning approach in most
cases. In addition, it performs higher convergence speed and
hence a shorter training time for the evolution of new detection
algorithms in a new task/domain. This is especially important
for IoT, where new attacks emerge every day and new types
of devices can be added to the network. Although the pro-
posed approach targets attacks against RPL, it could be easily
adapted to other protocols and/or general attacks in IoT.
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