
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi
TAs:	Selma	Dilek,	Selim	Yılmaz,	Selman	Bozkır

Introduction	to	Object Orientation

2

Today

¢ Software	as	a	Complex	Thing
§ Dealing	with	Complexity

§ Functional	Decomposition

§ Structured	Programming

¢ Object	Oriented	Paradigm
§ Principles	of	Object	Orientation

§ Classes	and	Objects

§ Sample	Object	Designs

3

Today

¢ Software	as	a	Complex	Thing
§ Dealing	with	Complexity

§ Functional	Decomposition

§ Structured	Programming

¢ Object	Oriented	Paradigm
§ Principles	of	Object	Orientation

§ Classes	and	Objects

§ Sample	Object	Designs

4

Software	in	Modern	World

¢We	can’t	run	the	modern	world	without	software.	

§ National	infrastructures	and	utilities are	controlled	by	
computer-based	 systems	

§ Most	electrical	products	include	a	computer	and	controlling	
software

§ Industrial	manufacturing	and	distribution	 is	completely	
computerized,	 as	is	the	financial	system.	

§ Entertainment,	 including	the	music	industry,	computer	
games,	and	film	and	television,	 is	software	intensive



5

Software	in	Modern	World:	
Examples

6

Software	is	a	Complex	Thing

¢ Software	development	 is	a	serious	business.

¢ We	are	not	talking	about	a	program	that	finds	N	Fibonacci	
numbers	anymore.

¢ We	are	talking	about	industrial-strength	(professional)	software.
§ It	is	intensely	difficult,	if	not	impossible,	for	the	individual	developer	 to	
comprehend	all	the	subtleties	of	its	design.	

¢ “The	complexity	of	software	is	an	essential	property,	 not	an	
accidental	one.”	 -- F.P.	Brooks	

7

Professional	Software	Development	

¢ Professional	software,	intended	for	use	by	someone	apart	
from	its	developer,	 is	usually	developed	by	teams rather	than	
individuals.	
§ It	is	maintained	and	changed	throughout	its	life.	

¢ Software	development is	referred to	mean professional	
software	development,	rather	than	individual	programming.	
§ It	includes	techniques	that	support	program	specification,	design,	and	
evolution,	none	of	which	are	normally	relevant	 for	personal	software	
development.	

8

Professional	Software	Development	

¢ Many	people	think	that	software	is	simply	another	word	for	
computer	programs.	

¢ However,	software is	not	just	the	programs	themselves but	also
all	associated	documentation	and	configuration	data that	is	
required	to	make	these	programs	operate	correctly.	

¢ This	is	one	of	the	important	differences	between	professional	
and	amateur	software	development.	



9

Quality of	Software

¢ When	we	talk	about	the	quality of	professional	software,	we	
have	to	take	into	account	that	the	software	is	used	and	changed	
by	people	apart	from	its	developers.	
§ Quality is	therefore	 not	just	concerned	with	what	the	software	does; it	has	
to	include	the	software’s	behaviorwhile	it	is	executing and	the	structure	
and	organization	of	the	system	programs and	associated	documentation.	

¢ This	is	so-called	quality or	non-functional	software	attributes.	
§ Examples	of	these	attributes	are	the	software’s	response	time	to	a	user	
query	and	the	understandability	of	the	program	code.	

§ Depends on	its	application domain.	Therefore,	 a	banking	system	must	be	
secure,	an	interactive	game	must	be	responsive,	a	telephone	switching	
system	must	be	reliable,	and	so	on.	

10

Essential	Attributes of	Quality Software

Reference: I.Sommerville, Software Enginering (9th ed), Pearson, 2011.

11

Inherent	Complexity	of	Software

¢ The	complexity	of	the	problem	domain

¢ The	difficulty	of	managing	the	development	 process

¢ The	flexibility	possible	through	software

¢ The	problem	of	characterizing	the	behavior	of	discrete	systems

12

The	Complexity	of	the	Problem	Domain

¢ The	problem	often	involves	elements	of	
inescapable	complexity,	in	which	we	find	
a	myriad	of	competing,	perhaps	even	
contradictory,	requirements.

§ Consider	the	requirements	 for	an	
autonomous	robot.	Its	raw	functionality	is	
difficult	enough	to	comprehend.

§ Also	consider	nonfunctional	 requirements	
such	as	usability,	performance,	
survivability,	and	reliability.

¢ The	requirements	 of	a	software	system	
often	change	during	its	development.	



13

The	Difficulty	of	Managing	the	Development	Process	

¢ Industrial-strength	 software	typically	consists	of	hundreds	and	
sometimes	thousands	of	separate	modules.	

¢ No	one	person	can	ever	understand	such	a	system	completely.

¢ This	amount	of	work	demands	that	we	use	a	team	of	
developers,	and	ideally	we	use	as	small	a	team	as	possible.	

¢ There	are	challenges	associated	with	team	development.
§ Having	more	developers	means	more	complex	communication	 and	more	
difficult	coordination,	 particularly	if	the	team	is	geographically	dispersed.

§ With	a	team	of	developers,	 the	key	management	challenge	is	always	to	
maintain	a	unity	and	integrity	of	design.

14

The	Difficulty	of	Managing	the	Development	Process	

15

Software	(Development)	Process

The	systematic	approach	to software	development is	called	a	
software	process which is defind as a	sequence	of	activities	that	
leads	to	the	production	of	a	software	product:
¢ Software	specification,	where	 customers	and	engineers	define	the	
software	that	is	to	be	produced	and	the	constraints	on	its	operation.	

¢ Software	development,	where	 the	software	is	designed	and	
programmed.	

¢ Software	validation,	where	 the	software	is	checked	to	ensure	that	it	
is	what	the	customer	requires.	

¢ Software	evolution,	where	the	software	is	modified	 to	reflect	
changing	customer	and	market	requirements.	

16

Software	(Development)	Processes

¢ Different	types	of	systems	need	different	development	 processes.	
§ For	example,	real-time	software in	an	aircraft	has	to	be	completely	specified	
before	development	begins.	

§ In	e-commerce	systems,	the	specification	and	the	program	are	usually	
developed	 together.	

¢ Consequently,	 these	generic	activities	may	be	organized	in	
different	ways	and	described	at	different	levels	of	detail	
depending	on	the	type	of	software	being	developed.	
§ There	are	many	different	 types	of	software.	There	 is	no	universal	 software	
engineering	method	or	technique	 that	is	applicable	for	all	of	these.	



17

The	Flexibility	Possible	through	Software	

¢ Software	 is	abstract and changeable.

¢ A	home-building	company	generally	does	not	operate	 its	own	
tree	farm	from	which	to	harvest	trees	for	construction. In	the	
software	industry	such	practice	is	common.

§ Software	offers	 the	ultimate	flexibility,	so	it	is	possible	for	a	developer	 to	
express	almost	any	kind	of	abstraction.

§ This	flexibility	forces	 the	developer	 to	craft	virtually	all	the	primitive	
building	blocks	on	which	these	higher-level	 abstractions	stand.

§ While	the	construction	industry	has	uniform	building	codes	and	standards	
for	the	quality	of	raw	materials,	 few	such	standards	exist	in	the	software	
industry due to abstactness of	the software.

18

Characterizing	the	Behavior	of	Discrete	Systems
- Difficulties

¢ There	may	be	hundreds	or	thousands	of	variables	as	well	
as	more	than	one	thread	of	control.

§ The	entire	collection	of	these	variables,	their	current	
values,	and	the	current	address	and	calling	stack	of	
each	process	within	the	system	constitute	 the	
present	state	of	 the	application.

¢ Each	event	external	to	a	software	system	has	the	
potential	of	placing	that	system	in	a	new	state

§ The	mapping	 from	state	to	state	is	not	always	
deterministic.

§ The	event	may	corrupt	the	state	of	a	system	
because	its	designers	 failed	to	take	into	account	
certain	interactions	among	events.

¢ Vigorous	testing	is	essential	but	not	possible	 to	model	
the	complete	behavior	of	large	discrete	systems.

§ We	must	survive	with	acceptable	levels	of	confidence.

19

How	to	Deal	with	Complexity?

¢ The	technique	of	mastering	complexity	
has	been	known	since	ancient	times:	
divide	et	impera (divide	and	rule)

§ When	designing	a	complex	software	system,	it	is	
essential	 to	decompose	 it	into	smaller	and	
smaller	parts,	each	of	which	we	may	then	refine	
independently.

§ In	this	manner,	we	satisfy	the	very	real	
constraint	that	exists	on	the	channel	capacity	of	
human	cognition: To	understand	any	given	level	
of	a	system,	we	need	only	comprehend	a	few	
parts	(rather	than	all	parts)	at	once.	

20

How	Did	You	Decompose	So	Far?

¢ Functional	Decomposition
§ A	natural	way	to	deal	with	complexity

§ Break	down	(decompose)	 the	problem	into	the	functional	 steps	that	
compose	it.

¢ Example:	Write	a	code	to
§ Access	a	description	of	shapes	that	were	stored	 in	a	database

§ Display	those	shapes

àHow	do	you	decompose	these	tasks?



21

Functional	Decomposition	- Example

¢ It	would	be	natural	to	think	in	terms	of	the	steps	required:
1. Locate	the	list	of	shapes	 in	the	database.

2. Open	up	the	list	of	shapes.

3. Sort	the	list	according	to	some	rules.

4. Display	the	individual	shapes	on	the	monitor.

22

Functional	Decomposition	- Example	(cont’d)

¢ Further	breaking	down	of	Step	4	is	possible:
1. Locate	the	list	of	shapes	 in	the	database.

2. Open	up	the	list	of	shapes.

3. Sort	the	list	according	to	some	rules.

4. Display	the	individual	shapes	on	the	monitor.

a) Identify	the	type	of	shape.

b) Get	the	location	of	shape.

c) Call	the	appropriate	 function	that	will	display	the	shape by	giving	the	
shape’s	 location.

We	will	revisit	this	algorithm	(Step	4.c	more	precisely)	few	slides	later.

23

Is	Functional	Decomposition	Perfect?

¢ It	does	not	help	us	much	prepare	the	code	for	possible	changes	
in	the	future.

¢ Many	bugs	originate	with	changes	to	the	code.
§ Change	creates	opportunities	for	mistakes	and	unintended	consequences.

¢ Nothing	you	can	do	will	stop	change.	
§ You	can	never	get	all	of	requirements	 from	the	user.

§ When the business domain	changes,	so the software.

§ Future is	unknown – things	will change.

24

Unwanted	Side	Effect

¢ Make	a	change	to	a	function
or a	piece	of	data	in	one	area	
of	the	code.
§ Then,	have	an	unexpected	 impact	
on	other	pieces	of	code.

¢ Wrong	focus:	Changes	to	one	
set	of	functions	or	data	
impact	other	sets	of	functions	
and	other	sets	of	data.
§ Like	a	snowball	that	picks	up	
snow	as	it	rolls	downhill!



25

Problem	with	Requirements

26

Problem	with	Requirements

¢ Requirements	from	users	are

§ incomplete,	usually	wrong,	misleading,	not	telling	the	whole	story.

¢ Requirements	change	for	a	very	simple	set	of	reasons:

§ The	users	see	new	possibilities	for	the	software	after	discussions	
with	developers.

§ Developers	become	more	familiar	with	users’	problem	domain.

§ The	environment	in	which	the	software	 is	being	developed	changes.

¢ You	must	write	your	code	to	accommodate	change

§ Not	give	up	on	gathering	good	requirements

27

Let’s	Take	a	Close	Look	on	Step	4.c

¢ Step	4.c	of	displaying	shapes
§ Call	appropriate	 function	that	will	display	shape

¢ Use	modularity to	contain	variation

function: display shape
input: type of shape, description of shape
action:�switch (type of shape)

case square: �
put display function for square here

case circle:
put display function for circle here

28

Modularity

¢ May	or	may	not	be	possible	to	have	a	consistent	description	of	
shapes	that	will	work	for	all	shapes

¢ Modularity
§ Makes	the	code	more	understandable

§ Understandability	makes	the	code	easier	 to	maintain

§ Does	not	deal	with	all	of	the	variation	it	might	encounter

¢ The	goal	is	to	create	routines	with
§ internal	integrity	(strong	cohesion	- how	closely	

the	operations	in	a	routine	are	related)	and

§ small,	direct,	visible,	and	flexible	relations	to	
other	routines	(loose	coupling	-connection	
between	routines)



29

Structured	Programming	Approach	Example

¢ Students	in	your	class	are	having	another	class.	They	are	going	to	attend	to	
another	class,	but	they	do	not	know	where	 their	next	class	is	located.

¢ Algorithm:
1. Get	a	list	of	students	 in	the	class.

2. For	each	student	on	this	 list:

a) Find	the	next	class	she/he	 is	taking

b) Find	the	 location	of	that	class

c) Find	the	way	to	get	from	your	classroom	to	the	student’s	next	class

d) Tell	 the	student	how	to	get	to	their	next	class

¢ Would	you	actually	follow	this	approach?
§ Post	directions	 in	the	back	of	the	room

§ Expect	everyone	would	know	what	their	next	class	was

30

What	is	the	Difference?

¢ First	case
§ Give	explicit	directions	to	everyone.

§ No	one	other	than	you	is	responsible	 for	anything.

¢ Second	case
§ Give	general	instructions

§ Each	person	 figure	out	how	to	do	the	task	himself	or	herself

¢ Shift	of	responsibility	may	not	be	a	bad	thing

31

Srtuctured versus Object-Oriented
Programming	Constructs

Structured

Object-oriented

32

Modularity:	Structured vs.	Object-oriented



33

Today

¢ Software	as	a	Complex	Thing
§ Dealing	with	Complexity

§ Functional	Decomposition

§ Structured	Programming

¢ Object	Oriented	Paradigm
§ Principles	of	Object	Orientation

§ Classes	and	Objects

§ Sample	Object	Designs

34

“Sir	Isaac	Newton	secretly	admitted	to	some	friends:
He	understood	how	gravity	behaved,	but	not	how	it	
worked!”

LILY	TOMLIN

The	Search	for	Signs	of	Intelligent	Life	in	the	Universe

35

Object-Oriented	Paradigm

¢ Centered	 on	the	concept	of	the	object

¢ Object

§ Is	data	with	methods

§ Data	(attributes)	 can	be	simple	things	
like	number	or	character	strings,	or	they	
can	be	other	objects.

§ Defines	 things	that	are	responsible	 for	
themselves

§ Data	to	know	what	state	the	object	is	in.

§ Method (code)	 to	function	properly.

36

What	is	an	Object?

¢ Informally,	an	object	represents	 an	entity	which	is	either	
physical,	conceptual	or	software.

§ Physical	entity���

§ Conceptual	entity�
��

§ Software	entity

Truck

Chemical Process

Linked List

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software

Bank Account



37

Basic	Principles	of	Object	Orientation

Object Orientation

En
ca

ps
ul

at
io

n

Ab
st

ra
ct

io
n

Hi
er

ar
ch

y

Mo
du

lar
ity

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software 38

What	is	Abstraction?

Salesperson

Not	saying

which	salesperson

just	a	salesperson	in	general!

Customer
Product

Dahl,	Dijkstra,	and	Hoare	suggest	that	“abstraction	arises	from	a	recognition	of	similarities	
between	certain	objects,	situations,	or	processes	in	the	real	world,	and	the	decision	to	

concentrate	upon	these	similarities	and	to	ignore	for	the	time	being	the	differences”.

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software

Abstraction	is	one	of	the	fundamental	
ways	that	we	as	humans	cope	with	
complexity.

39

What	is	Abstraction?

Abstraction focuses upon the essential characteristics of some object, 
relative to the perspective of the viewer. 

40

What	is	Encapsulation?
¢ Hide	implementation	 from	clients

§ Clients	depend	on	interface

Information Hiding:
How does an object encapsulate?

What does it encapsulate?

Abstraction	and	encapsulation	are	complementary	concepts:	Abstraction	focuses	on	the	observable	

behavior	of	an	object,	whereas	encapsulation	focuses	on	the	implementation	that	gives	rise	to	this	behavior.	

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software



41

What	is	Encapsulation?

42

What	is	Modularity?

¢ The	breaking	up	of	something	complex	into	manageable	pieces.

Order	Processing	
System

Billing

Order	Entry

Order	Fulfillment

43

What	is	Hierarchy?

Decreasing	
abstraction

Increasing	
abstraction Vehicle

Truck

SUV

Car

MPV Mini

Bus

Midi

Elements	at	the	same	level	of	the	hierarchy	should	be	at	the	same	level	of	abstraction.
44

What	is	Really	an	Object?

¢ Formally,	an	object	 is	a	concept,	abstraction,	or	thing	with	sharp	
boundaries	and	meaning	for	an	application.

¢ An	object is	something	that	has:
§ State (property,	attribute)	

§ Behavior (operation,	method)

§ Identity



45

Representing	Objects

¢ An	object	is	represented	 as	rectangles	with	underlined	names.

:	Professor

Professor	Clark

a	+	b	=	10

ProfessorClark :	
Professor

ProfessorClark
Class	Name	Only

Object	Name	Only

Class	and	Object	Name

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software 46

What	is	a	Class?

¢ A	class	is	a	description	of	a	group	of	objects	with	common	
properties	 (attributes),	behavior	 (operations),	relationships,	and	
semantics
§ An	object	is	an	instance	of a	class

¢ A	class	is	an	abstraction	in	that	it:
§ Emphasizes	 relevant	characteristics

§ Suppresses	other	characteristics

47

Example	Class

a	+	b	=	10

Class
Course

Properties
Name

Location
Days	offered
Credit	hours
Start	time
End	time

Behavior
Add	a	student

Delete	a	student
Get	course	roster

Determine	 if	it	is	full

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software 48

Representing	Classes

¢ A	class	is	represented	 using	a	compartmented	 rectangle

Professor

Professor	Clark

a	+	b	=	10

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software



49

Class	Compartments

¢ A	class	is	comprised	of	three	sections
§ The	first	section	contains	the	class	name

§ The	second	section	shows	the	structure	 (attributes)

§ The	third	section	shows	the	behavior (operations)

Professor

name
empID

submitGrades(	)
setQuota4Class(	 )
takeSabbatical(	 )

Class	Name

Attributes

Operations

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software 50

How	Many	Classes	do	you	See?

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software

51

Relationship	between	Classes	and	Objects

¢ A	class	is	an	abstract	definition	of	an	object
§ It	defines	 the	structure	and	behavior	of	each	object	in	the	class

§ It	serves	 as	a	template	for	creating	objects	

¢ Objects	are	grouped	into	classes

Objects
Class

Professor

Professor	Smith

Professor	Jones

Professor	Mellon

52

State	of	an	Object	(property	or	attribute)

¢ The	state	of	an	object	encompasses	all	of	the	(usually	static)	
properties	of	the	object	plus	the	current	(usually	dynamic)	
values	of	each	of	these	properties.

:CourseOffering

number	=	101
startTime =	900
endTime =	1100

:CourseOffering

number	=	104
startTime =	1300
endTime =	1500

CourseOffering

number
startTime
endTime

Class

Attribute

Object Attribute	
Value			



53

Behavior	of	an	Object	(operation	or	method)

¢ Behavior	is	how	an	object	acts	and	reacts,	in	terms	of	its	state	
changes	and	message	passing.

CourseOffering

addStudent
deleteStudent
getStartTime
getEndTime

Class

Operation

54

Identity	of	an	Object

¢ Each	object	has	a	unique	 identity,	even	 if	the	state	is	identical	to	
that	of	another	object.

Professor “J Clark” teaches 
Biology

Professor “J Clark” teaches 
Biology

OOAD Using the UML - Introduction to Object Orientation, v 4.2, 1998-1999 Rational Software

55

A	Class

56

Sample	Class:	Automobile

¢ Attributes
§ manufacturer’s	 name

§ model	name

§ year	made

§ color

§ number	of	doors

§ size	of	engine

¢ Methods
§ Define	attributes	 (specify	manufacturer’s	name,	model,	year,	etc.)

§ Change	a	data	item	(color,	engine,	etc.)

§ Display	data	items

§ Calculate	cost



57

Sample	Class:	Circle

¢ Attributes
§ Radius

§ Center	Coordinates

§ X	and	Y	values

¢ Methods
§ Define	attributes	 (radius	and	center	coordinates)

§ Find	area	of	the	circle

§ Find	circumference	of	the	circle

58

Sample	Class:	Baby

¢ Attributes
§ Name

§ Gender

§ Weight

§ Decibel

§ #	poops	so	far

¢ Methods
§ Get	or	Set	specified	attribute	value

§ Poop

59

Sample	Class:	Person

60

Summary

¢ So	far,	we	covered	basics	of	objects	and	object	oriented	
paradigm.
§ We	tried	to	think	in	terms	of	objects.

¢ From	now	on,	we	should	be	seeing	objects	everywhere	J
§ Or,	we	should	be	realizing	that	we	were	seeing	objects	everywhere	 already.

§ This	is	actually	something	you	do	naturally.	Why	not	do	programming	that	
way?

¢ We	will	continue	next	week	with	actually	creating	objects	by	using	
Java.



61

Acknowledgments

¢ The	course	material	used	to	prepare	this	presentation	 is	mostly	
taken/adopted	 from	the	list	below:
§ Software	Enginering (9th	ed) by I.Sommerville,	Pearson,	2011.

§ Object	Oriented	Analysis	and	Design	with	Applications,	Grady	Booch,	
Robert	A.	Maksimchuk,	Michael	W.	Engle,	Bobbi	J.	Young,	Jim	Conallen
and	Kelli	A.	Houston,	Addison	Wesley,	2007.

§ OOAD	Using	the	UML	- Introduction	to	Object	Orientation,	v	4.2,	1998-
1999	Rational	Software

§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012.

§ Ku-Yaw	Chang,	Da-Yeh University.


