BBM 102 - Introduction to
Programming I

Spring 2017
& S
Classes and Objects in Java -

Java

Instructors: Ayca Tarhan, Fuat Akal, Géneng Ercan, Vahid Garousi
TAs: Selma Dilek, Selim Yilmaz, Selman Bozkir

Today

m Defining Classes, Objects and Methods
m Accessor and Mutator Methods

m Constructors

m Static Members

m Wrapper Classes

m Parameter Passing

m Delegation

Class and Method Definitions

m Java program consists of objects
" Objects of class types
= Objects that interact with one another

m Program objects can represent

" Objects in real world
= Abstractions

Java Classes

m A class is a collection of fields (data) and methods (procedure or
function) that operate on that data.

Class Name > Circle
Attributes cenFer
radius

circumference()
area()

Operations >

Defining a Java Class

m Syntax:

class ClassName{
[fields declaration]
[methods declaration]

m Bare bone class definition:

/* This is my first java class.
It is not complete yet. */
class Circle {
// fields will come here
// methods will come here

Adding Fields to Class Circle

m Add fields

class Circle {
public double x, y; // center coordinates
public double r; // radius of the circle

m The fields are also called the instance variables.

= Each object, or instance of the class has its own copy of these instance
variables

m Do not worry about what public means at the moment.

= Access modifiers (public, private and protected will be covered in the next
weeks)

Adding Methods to a Class

m A class with only data fields has no life.

= Objects created by such a class cannot respond to any messages.

m Methods are declared inside the body of the class.

m The general form of a method declaration is:

type MethodName (parameter-list)
{

Method-body;
}

m methodName(parameter-list) part of the declaration is also
known as the method signature.
= Method signatures in a class should be unique!

Adding Methods to Class Circle

public class Circle {

public double x, y; // center of the circle
public double r; // radius of the circle

// Method to return circumference
public double circumference () {
return 2 * 3.14 * r;

}

// Method to return area
public double area() {
return 3.14 * r * r;

}

Defining Objects of a Class

m A class can be thought as a type

m A variable (object) can be defined as of that type (class)

Circle circleA, circleB;

circleA circleB

3 2

Points to nothing (Null Reference) Points to nothing (Null Reference)

Creating Objects of a Class

m Objects are created by using the new keyword

Circle circleA;
circleA = new Circle() ;

Circle circleB = new Circle () ;

circleA circleB

3 3

Two different
circle objects!

@ @

Creating Objects of a Class

circleA
circleB
circleB

new Circle() ;
new Circle ()
circleA;

.
14

Before Assignment

circleA

circleB

After Assignment

circleA circleB

L 1

p

This object does not have a
reference anymore: inaccessable!

11

Garbage Collection

m The object which does not have a reference cannot be used
anymore.

m Such object becomes a candidate for automatic garbage
collection.

m Java collects garbage periodically and releases the memory
occupied by such objects to be used in the future.

12

Using Objects

m Object’s data is accessed by using the dot notation

Circle circleA = new Circle() ;

circleA.x 25.0;
circleA.y = 25.0;
circleA.r = 3.0;

m Object’s methods are invoked by sending messages

double area = circleA.area() ;

13

Circle Class Alltogether

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

// Methods to return circumference and area
public double circumference () {
return 2 * 3.14 * r;
}
public double area () {
return 3.14 * r * r;
}
public static void main(String[] args) {
Circle circleA = new Circle();
circleA.x = 25.0;
circleA.y = 25.0;
circleA.r = 3.0;

double area = circleA.area() ;
System.out.println ("Area of the circle is " + area);

14

Class Files and Separate Compilation

m Each Java class definition is usually written in a file by itself
" File begins with the name of the class
" Ends with .java

m Class can be compiled separately

m Helpful to keep all class files used by a program in the same
directory

15

Java has Two Kinds of Methods

m Methods that return a single item

m Methods that perform some action rather than returning an
item

" yvoid methods

16

public class Dog {
public String name; // Instance variables
public String breed;
public int age;

// Method that returns nothing: void method
public void writeOutput () {

System.out.println("Name: " + name)
System.out.println("Breed: " + breed);,
System.out.println ("Age in calendar years: " + age);,
System.out.println ("Age in human years: " +
getAgeInHumanYears ())
} Dog
// Method that returns a value +name: String
) _ + breed: String
public int getAgeInHumanYears () { +age :int

int humanAge = 0;
if (age <= 2) {

+ writeOutput(): void
+ getAgelnHumanYears(): int

humanAge = age * 11;
} else {
humanAge = 22 + ((age - 2) * 5);

}

return humanAge;

} Example Dog Class

17

public class DogDemo { DogDemo class contains
public static void main(String[] args) ({ 8)
Ten Bedie = @y Bes) - only a main method.

balto.name = "Balto";
balto.age = 8;

balto.breed "Siberian Husky";

balto.writeOutput() ; balto:Dog scooby:Dog

Dog scooby = new Dog(); g?en;fi;“g?tifrian Husky” tr;?en;z;%igg:) E’)ane"
scooby.name = '"Scooby"; age =8 age = 42
scooby.age = 42;

scooby.breed = "Great Dane";

System.out.println (scooby.name + " is a " + scooby.breed + ".");,

System.out.print ("He is " + scooby.age + " years old, or "),

int humanYears = scooby.getAgeInHumanYears () ;
System. out.println (humanYears + " in human years.'");,

Name: Balto Program’s output
Breed: Siberian Husky

Age in calendar years: 8

Age in human years: 52

Scooby is a Great Dane.
He is 42 years old, or 222 in human years.

public class Dog {

public
public
public
public
}

public

public

String name;
String breed;

Dog class could contain a

main method, too.

int age;

void writeOutput() {
// method body

int getAgeInHumanYears() {
// method body

static void main(String[] args)
Dog balto = new Dog() ;
balto.name = "Balto";

balto.age = 8;
balto.breed = "Siberian Husky";
balto.writeOutput() ;

{

19

Multiple Classes in a Single File

class Computer ({

void computer method () {
System.out.println ("Power gone! Shut down your PC soon...");

}

public static void main (String[] args) {
Computer my = new Computer() ;
Laptop your = new Laptop() ;

my .computer method() ;
your.laptop method() ;

}

class Laptop {

void laptop method() ({

The file Computer.java
System.out.printlin("99% Battery available.");, .
y contains two class

} definitions.

$ javac Computer.java
// will generate Computer.class and Laptop.class files.

20

Accessor and Mutator Methods

m A public method that returns data from a private instance
variable is called an accessor method, a get method, or a getter.

"= The names of accessor methods typically begin with get.

m A public method that changes the data stored in one or more
private instance variables is called a mutator method, a set

method, or a setter.
" The names of mutator methods typically begin with set.

21

Circle Class with Getters/Setters

public class Circle {

public
public

public
public
public
public
public
public

double x, y; // center of the
double r; // radius of the

double getX() { return x; }
void setX(double centerX) { x
double getY() { return y; }
void setY (double centerY) ({
double getR() { return r; }

void setR(double radius) { r =

y

Cc
Cc

ircle
ircle

centerX;

centerY;

radius;

// Methods to return circumference and area

}

}
}

22

Constructors

m Constructor is a special method that gets invoked
“automatically” at the time of object creation.

m Constructor is normally used for initializing objects with default
values unless different values are supplied.

m Constructor has the same name as the class name.

m Constructor cannot return values.

m A class can have more than one constructor as long as they have

different signature (i.e., different input arguments syntax).

23

Circle Class with Constructor

public class Circle {

public double x, y; // center of the circle
public double r; // radius of the circle

// Constructor

public Circle (double centerX, double centerY, double radius)

X = centerX;
y = centerY;
r = radius;

}

// Methods to return circumference and area

{

Circle aCircle = new Circle(10.0, 20.0, 5.0);

24

Multiple Constructors

m Sometimes we may want to initialize in a number of different
ways, depending on the circumstance.

m This can be supported by having multiple constructors having
different input arguments.

25

Circle Class with Multiple Constructors

public class Circle ({
public double x, y; // center of the circle
public double r; // radius of the circle

// Constructor

public Circle (double centerX, double centerY, double radius) ({
X = centerX;
Yy = centerY;
r = radius;

}

public Circle (double radius) ({
x =0; y=0; r = radius;

}

// Methods to return circumference and area

) S Circle aCircle
Circle bCircle

new Circle(10.0, 20.0, 5.0);
new Circle(5.0) ;

new Circle() ;

Circle cCircle

The Keyword this

m this keyword can be used to refer to the object itself.

m It is generally used for accessing class members (from its own
methods) when they have the same name as those passed as
arguments.

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

public double getX() { return x; }

public void setX(double x) { this.x = x; }
public double getY() { return y; }
public void setY¥(double y) { this.y =vy; }

public double getR() { return r; }
public void setR(double r) { this.r = r; }

// Methods to return circumference and area

Static Variables

m Java supports definition of global variables that can be accessed
without creating objects of a class.

= Such members are called Static members.

m This feature is useful when we want to create a variable
common to all instances of a class.

m One of the most common example is to have a variable that

could keep a count of how many objects of a class have been
created.

m Java creates only one copy for a static variable which can be
used even if the class is never instantiated.

28

Using Static Variables

m Define the variable by using the static keyword

public class Circle {
// Class variable, one for the Circle class.
// To keep number of objects created.
public static int numCircles;

// Instance variables, one for each instance
// of the Circle class.
public double x,y,r;

// Constructor

Circle (double x, double y, double r) {
this.x = x;

this.y = y;
this.r = r;
numCircles++;

Circle circleA = new Circle (10, 12, 20);
// numCircles =1

Circle circleB = new Circle(5, 3, 10);
// numCircles = 2

Instance vs. Static Variables

m /Instance variables: One copy per object. Every object has its
own instance variables.

" e.g.x,y,r (center and radius of the circle)

m Static variables: One copy per class.

" e.g. numCircles (total number of circle objects created)

30

Static Methods

m A class can have methods that are defined as static.

m Static methods can be accessed without using objects. Also,
there is NO need to create objects.

m Static methods are generally used to group related library
functions that don’t depend on data members of its class.

= e.g., Math library functions.

31

Using Static Methods

class Comparator ({
public static int max(int a, int b) {

if (a > b)
return a;
else
return b;

}

public static String max(String a, String b) {
if (a.compareTo(b) > 0)
return a;

else
return b;

// Max methods are directly accessed using ClassName.
// NO Objects created.

System.out.println (Comparator.max (5, 10));
System.out.println (Comparator.max (“ANKARA”, "“SAMSUN")) ;

32

More Static Methods: The Math Class

m It is like including libraries in C language

m It contains standard mathematical methods
= They are all static
= Java.lang.Math

Math.pow (2.0, 3.0) // 8
Math.max (5, 6) // 6
Math.round (6. 2) // 6
Math.sqrt (4.0) // 2.0

33

Object Cleanup (Destructor)

m Recall: Memory deallocation is automatic in Java
" No dangling pointers and no memory leak problem.

m Java allows to define finalize method, which is invoked (if
defined) just before the object destruction.

m This presents an opportunity to perform record maintenance
operation or clean up any special allocations made by the user.

m The finalize method will be called by the Garbage Collector, but
when this will happen is not deterministic. Try to avoid finalize.

protected void finalize () throws IOException {
Circle.numCircles = Circle.numCircles--;
System.out.println ("Number of circles:”+ Circle.num circles);

}

34

Wrapper Classes

m Each of Java's primitive data types has a class dedicated to it.

Boolean, Byte, Character, Integer, Float, Double, Long, Short

These are known as wrapper classes, because they "wrap" the primitive data
type into an object of that class.

They contain useful predefined constants and methods

The wrapper classes are part of the java.lang package, which is imported by
default into all Java programs.

Since Java 5.0 we have autoboxing and unboxing.

// Defining objects of wrapper class
Integer x = new Integer(33);
Integer y = 33; // Autoboxing

int yInt = y; // Unboxing

// Convert string to an integer
Strings = "123";
int i = Integer.parselInt(s);

//Converting from hexadecimal to decimal
Integer hex2Int = Integer.valueOf("D", 16) ;

35

Parameter Passing

m Method parameters which are objects are passed by reference.

m Copy of the reference to the object is passed into method,
original value unchanged (e.g. circleB parameter in next slide)

36

public class ReferenceTest ({

public static void main (String[] args) {

Circle ¢l = new Circle(5, 5, 20);

Circle c2 = new Circle(l, 1, 10);

System.out.println (“cl Radius = “ + cl.getRadius())

}

public static void parameterTester (Circle circleA, Circle circleB) {

System.out.println (“c2 Radius

parameterTester(cl, c2);

“ + c2.getRadius()) ;

System.out.println (“cl Radius = “ + cl.getRadius())

System.out.println (“c2

circleA.setRadius (15) ;

Radius = “ + c2.getRadius()) ;

circleB = new Circle (0, O, 100);

System.out.println (“circleA Radius = “ + circleA.getRadius()) ;

System.out.println (“circleB Radius = “ + circleB.getRadius()) ;
cl Radius = 20.0

c2 Radius = 10.0

circleA Radius = 15.0
circleB Radius = 100.0
cl Radius = 15.0

c2 Radius = 10.0

37

Delegation

m Ability for a class to delegate its responsibilities to another class.

m A way of making an object invoking services of other objects
through containership.

38

Using Delegation

public

class Point {
private double xCoord;
private double yCoord;

public double getXCoord() {
return xCoord;

}
public double getYCoord() {

return yCoord;

}

public

class Circle {
private Point center;
public double getCenterX() {
return center.getXCoord() ;

}
public double getCenterY () {

return center.get¥YCoord() ;

}

// Delegation

// Delegation

39

Summary

m Classes, objects, and methods are the basic components used in
Java programming.

m Constructors allow seamless initialization of objects.

m Classes can have static members, which serve as global members
of all objects of a class.

m Objects can be passed as parameters and they can be used for
exchanging messages.

m We will continue next week with encapsulation

= which helps in protecting data from accidental or wrong usage and also
offers better security for data.

40

Acknowledgments

m The course material used to prepare this presentation is mostly
taken/adopted from the list below:

® Java - An Introduction to Problem Solving and Programming, Walter
Savitch, Pearson, 2012.

= Rajkumar Buyya, University of Melbourne.

4

