
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Classes	and	Objects	in	Java

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi
TAs:	Selma	Dilek,	Selim	Yılmaz,	Selman	Bozkır

2

Today

¢ Defining	Classes,	Objects	and	Methods
¢ Accessor and	Mutator Methods
¢ Constructors
¢ Static	Members
¢ Wrapper	Classes
¢ Parameter	Passing
¢ Delegation

3

Class	and	Method	Definitions

¢ Java	program	consists	of	objects
§ Objects	of	class	types
§ Objects	that	interact	with	one	another

¢ Program	objects	can	represent
§ Objects	in	real	world
§ Abstractions

4

Java	Classes

¢ A	class	is	a	collection	of	fields	(data)	and	methods	(procedure	or	
function)	that	operate	on	that	data.

Circle

center
radius

circumference()
area()

Class	Name

Attributes

Operations

5

Defining	a	Java	Class

¢ Syntax:

¢ Bare	bone	class	definition:

class ClassName{
[fields declaration]
[methods declaration]

}

/* This is my first java class.
It is not complete yet. */
class Circle {

// fields will come here
// methods will come here

}

6

Adding	Fields	to	Class	Circle

¢ Add	fields

¢ The	fields	are	also	called	the	instance variables.
§ Each	object,	or	instance	of	the	class	has	its	own	copy	of	these	 instance	
variables	

¢ Do	not	worry	about	what	publicmeans	at	the	moment.
§ Access	modifiers	(public,	private and	protected	will	be	covered	 in	the next	
weeks)

class Circle {
public double x, y; // center coordinates
public double r; // radius of the circle

}

7

Adding	Methods	to	a	Class

¢ A	class	with	only	data	fields	has	no	life.
§ Objects	created	by	such	a	class	cannot	respond	 to	any	messages.

¢ Methods are	declared	inside	the	body	of	the	class.

¢ The	general	form	of	a	method	declaration	 is:

¢ methodName(parameter-list)	 part	of	the	declaration	is	also	
known	as	the	method	signature.	
§ Method	signatures	in	a	class	should	be	unique!

type MethodName (parameter-list)
{

Method-body;
}

8

Adding	Methods	to	Class	Circle

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

// Method to return circumference
public double circumference() {

return 2 * 3.14 * r;
}

// Method to return area
public double area() {

return 3.14 * r * r;
}

}

9

Defining	Objects	of	a	Class

¢ A	class	can	be	thought	as	a	type

¢ A	variable	(object)	can	be	defined	as	of	that	type	(class)

Circle circleA, circleB;

circleA

Points	to	nothing	(Null	Reference)

circleB

Points	to	nothing	(Null	Reference)

null null

10

Creating	Objects	of	a	Class

¢ Objects	are	created	by	using	the	new keyword

Circle circleA;
circleA = new Circle();

Circle circleB = new Circle();

circleA circleB

Two	different
circle	objects!

11

Creating	Objects	of	a	Class
circleA = new Circle();
circleB = new Circle() ;
circleB = circleA;

circleA circleB circleA circleB

This	object	does	not	have	a	
reference	anymore:	inaccessable!

12

Garbage	Collection
¢ The	object	which	does	not	have	a	reference	cannot	be	used	
anymore.

¢ Such	object	becomes	a	candidate	for	automatic	garbage	
collection.

¢ Java	collects	garbage	periodically	and	releases	the	memory	
occupied	by	such	objects	to	be	used	in	the	future.

13

Using	Objects

¢ Object’s	data	is	accessed	by	using	the	dot	notation

¢ Object’s	methods	are	invoked	by	sending	messages

Circle circleA = new Circle();

circleA.x = 25.0;
circleA.y = 25.0;
circleA.r = 3.0;

double area = circleA.area();

14

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

// Methods to return circumference and area
public double circumference() {

return 2 * 3.14 * r;
}
public double area() {

return 3.14 * r * r;
}
public static void main(String[] args) {

Circle circleA = new Circle();
circleA.x = 25.0;
circleA.y = 25.0;
circleA.r = 3.0;

double area = circleA.area();
System.out.println("Area of the circle is " + area);

}
}

Circle	Class	Alltogether

15

Class	Files	and	Separate	Compilation

¢ Each	Java	class	definition	is	usually	written	in	a	file	by	itself
§ File	begins	with	the	name	of	the	class
§ Ends	with	.java

¢ Class	can	be	compiled	separately

¢ Helpful	to	keep	all	class	files	used	by	a	program	in	the	same	
directory

16

Java	has	Two	Kinds	of	Methods

¢ Methods	that	return	a	single	item

¢ Methods	that	perform	some	action rather than	returning	an	
item
§ void	methods

17

public class Dog {
public String name; // Instance variables
public String breed;
public int age;

public void writeOutput() {
System.out.println("Name: " + name);
System.out.println("Breed: " + breed);
System.out.println("Age in calendar years: " + age);
System.out.println("Age in human years: " +

getAgeInHumanYears());
}

public int getAgeInHumanYears() {
int humanAge = 0;
if (age <= 2) {

humanAge = age * 11;
} else {

humanAge = 22 + ((age - 2) * 5);
}
return humanAge;

}
}

// Method that returns nothing: void method

// Method that returns a value

Example	Dog	Class

18

Name: Balto
Breed: Siberian Husky
Age in calendar years: 8
Age in human years: 52

Scooby is a Great Dane.
He is 42 years old, or 222 in human years.

public class DogDemo {
public static void main(String[] args) {

Dog balto = new Dog();
balto.name = "Balto";
balto.age = 8;
balto.breed = "Siberian Husky";
balto.writeOutput();

Dog scooby = new Dog();
scooby.name = "Scooby";
scooby.age = 42;
scooby.breed = "Great Dane";
System.out.println(scooby.name + " is a " + scooby.breed + ".");
System.out.print("He is " + scooby.age + " years old, or ");

int humanYears = scooby.getAgeInHumanYears();
System.out.println(humanYears + " in human years.");

}
}

DogDemo class	contains	
only	a	main	method.

Program’s	output

19

public class Dog {
public String name;
public String breed;
public int age;

public void writeOutput() {
// method body

}

public int getAgeInHumanYears() {
// method body

}

public static void main(String[] args) {
Dog balto = new Dog();
balto.name = "Balto";
balto.age = 8;
balto.breed = "Siberian Husky";
balto.writeOutput();
...

}
}

Dog	class	could	contain	a	
main	method,	too.

20

Multiple	Classes	in	a	Single	File

class Computer {

void computer_method() {
System.out.println("Power gone! Shut down your PC soon...");

}

public static void main(String[] args) {
Computer my = new Computer();
Laptop your = new Laptop();

my.computer_method();
your.laptop_method();

}
}

class Laptop {
void laptop_method() {
System.out.println("99% Battery available.");

}
}

The	file	Computer.java
contains	two	class	
definitions.

$ javac Computer.java
// will generate Computer.class and Laptop.class files.

21

Accessor and	Mutator Methods

¢ A	public	method	that	returns	data	from	a	private	instance	
variable	is	called	an	accessor method,	 a	get	method,	or	a	getter.	
§ The	names	of	accessor methods	typically	begin	with	get.

¢ A	public	method	that	changes	the	data	stored	in	one	or	more	
private	instance	variables	is	called	a	mutator method,	a	set	
method,	or	a	setter.
§ The	names	of	mutator methods	typically	begin	with	set.

22

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

public double getX() { return x; }
public void setX(double centerX) { x = centerX; }
public double getY() { return y; }
public void setY(double centerY) { y = centerY; }
public double getR() { return r; }
public void setR(double radius) { r = radius; }

// Methods to return circumference and area
…

}

Circle	Class	with	Getters/Setters

23

Constructors

¢ Constructor	 is	a	special	method	that	gets	invoked	
“automatically”	 at	the	time	of	object	creation.

¢ Constructor	 is	normally	used	for	initializing	objects	with	default	
values	unless	different	values	are	supplied.

¢ Constructor	has	the	same	name	as	the	class	name.

¢ Constructor	cannot	return	values.

¢ A	class	can	have	more	than	one	constructor	as	long	as	they	have	
different	signature (i.e.,	different	input	arguments	syntax).

24

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

// Constructor
public Circle(double centerX, double centerY, double radius) {

x = centerX;
y = centerY;
r = radius;

}

// Methods to return circumference and area
...

}

Circle	Class	with	Constructor

Circle aCircle = new Circle(10.0, 20.0, 5.0);

25

Multiple	Constructors

¢ Sometimes	we	may	want	to	initialize	in	a	number	of	different	
ways,	depending	on	the	circumstance.

¢ This	can	be	supported	by	having	multiple	constructors	having	
different	input	arguments.

26

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

// Constructor
public Circle(double centerX, double centerY, double radius) {

x = centerX;
y = centerY;
r = radius;

}

public Circle(double radius) {
x = 0; y = 0; r = radius;

}

public Circle() {
x = 0; y = 0; r = 1.0;

}

// Methods to return circumference and area
...

}

Circle	Class	with	Multiple	Constructors

Circle aCircle = new Circle(10.0, 20.0, 5.0);
Circle bCircle = new Circle(5.0);
Circle cCircle = new Circle();

27

The	Keyword	this

¢ this keyword	can	be	used	to	refer	to	the	object	itself.
¢ It	is	generally	used	for	accessing	class	members	 (from	its	own	
methods)	when	they	have	the	same	name	as	those	passed	as	
arguments.

public class Circle {
public double x, y; // center of the circle
public double r; // radius of the circle

public double getX() { return x; }
public void setX(double x) { this.x = x; }
public double getY() { return y; }
public void setY(double y) { this.y = y; }
public double getR() { return r; }
public void setR(double r) { this.r = r; }

// Methods to return circumference and area
…

}

28

Static	Variables

¢ Java	supports	definition	of	global	variables	that	can	be	accessed	
without	creating	objects	of	a	class.
§ Such	members	are	called	Static	members.

¢ This	feature	 is	useful	when	we	want	to	create	a	variable	
common	to	all	instances	of	a	class.

¢ One	of	the	most	common	example	is	to	have	a	variable	that	
could	keep	a	count	of	how	many	objects	of	a	class	have	been	
created.

¢ Java	creates	only	one	copy	for	a	static	variable	which	can	be	
used	even	 if	the	class	is	never	instantiated.

29

Using	Static	Variables

¢ Define	the	variable	by	using	the	static keyword

public class Circle {
// Class variable, one for the Circle class.
// To keep number of objects created.
public static int numCircles;

// Instance variables, one for each instance
// of the Circle class.
public double x,y,r;

// Constructor
Circle (double x, double y, double r){

this.x = x;
this.y = y;
this.r = r;
numCircles++;

}
} Circle circleA = new Circle(10, 12, 20);

// numCircles = 1
Circle circleB = new Circle(5, 3, 10);
// numCircles = 2

30

Instance	vs.	Static	Variables

¢ Instance	variables:		One	copy	per	object.	Every	object	has	its	
own	instance	variables.
§ e.g.	x,y,r (center	and	radius	of	the	circle)

¢ Static	variables:	One	copy	per	class.
§ e.g.	numCircles (total	number	of	circle	objects	created)

31

Static	Methods

¢ A	class	can	have	methods	that	are	defined	as	static.

¢ Static	methods	can	be	accessed	without	using	objects.	Also,	
there	 is	NO need	to	create	objects.

¢ Static	methods	are	generally	used	to	group	related	library	
functions	that	don’t	depend	on	data	members	of	its	class.
§ e.g.,	Math	library	functions.

32

Using	Static	Methods

class Comparator {
public static int max(int a, int b) {

if (a > b)
return a;

else
return b;

}

public static String max(String a, String b) {
if (a.compareTo(b) > 0)

return a;
else

return b;
}

}

// Max methods are directly accessed using ClassName.
// NO Objects created.
System.out.println(Comparator.max(5, 10));
System.out.println(Comparator.max(“ANKARA”, “SAMSUN”));

33

More	Static	Methods:	The	Math Class

¢ It	is	like	including	libraries	in	C	language
¢ It	contains	standard	mathematical	methods

§ They	are	all	static
§ Java.lang.Math

Math.pow(2.0, 3.0) // 8
Math.max(5, 6) // 6
Math.round(6.2) // 6
Math.sqrt(4.0) // 2.0

34

Object	Cleanup	(Destructor)

¢ Recall:	Memory	deallocation is	automatic	in	Java
§ No	dangling	pointers	and	no	memory	leak	problem.

¢ Java	allows	to	define	finalize method,	which	is	invoked	(if	
defined)	just	before	the	object	destruction.

¢ This	presents	an	opportunity	 to	perform	record	maintenance	
operation	or	clean	up	any	special	allocations	made	by	the	user.

¢ The	finalize	method	will	be	called	by	the	Garbage	Collector,	but	
when	this	will	happen	 is	not	deterministic.	Try	to	avoid	finalize.	

protected void finalize() throws IOException {
Circle.numCircles = Circle.numCircles--;
System.out.println(“Number of circles:”+ Circle.num_circles);

}

35

Wrapper	Classes
¢ Each	of	Java's	primitive	data	types	has	a	class	dedicated	to	it.

§ Boolean,	Byte,	Character,	 Integer,	Float,	Double,	Long,	Short
§ These	are	known	as	wrapper	classes,	because	 they	"wrap"	the	primitive	data	
type	into	an	object	of	that	class.

§ They	contain	useful	predefined	 constants	and	methods
§ The	wrapper	classes	are	part	of	the	java.lang package,	which	is	imported	by	
default	into	all	Java	programs.	

§ Since	Java	5.0	we	have	autoboxing	and	unboxing.	
// Defining objects of wrapper class
Integer x = new Integer(33);
Integer y = 33; // Autoboxing
int yInt = y; // Unboxing

// Convert string to an integer
String s = "123”;
int i = Integer.parseInt(s);

//Converting from hexadecimal to decimal
Integer hex2Int = Integer.valueOf("D", 16);

36

Parameter	Passing

¢ Method	parameters	which	are	objects	are	passed	by	reference.

¢ Copy	of	the	reference	to	the	object	is	passed	into	method,	
original	value	unchanged (e.g.	circleB	parameter	 in	next	slide)

37

public class ReferenceTest {

public static void main (String[] args){
Circle c1 = new Circle(5, 5, 20);
Circle c2 = new Circle(1, 1, 10);
System.out.println (“c1 Radius = “ + c1.getRadius());
System.out.println (“c2 Radius = “ + c2.getRadius());

parameterTester(c1, c2);

System.out.println (“c1 Radius = “ + c1.getRadius());
System.out.println (“c2 Radius = “ + c2.getRadius());

}

public static void parameterTester(Circle circleA, Circle circleB){
circleA.setRadius(15);
circleB = new Circle(0, 0, 100);

System.out.println (“circleA Radius = “ + circleA.getRadius());
System.out.println (“circleB Radius = “ + circleB.getRadius());

}

}
c1 Radius = 20.0
c2 Radius = 10.0
circleA Radius = 15.0
circleB Radius = 100.0
c1 Radius = 15.0
c2 Radius = 10.0

38

Delegation

¢ Ability	for	a	class	to	delegate	 its	responsibilities	to	another	class.

¢ A	way	of	making	an	object	invoking	services	of	other	objects	
through	containership.	

39

public class Point {
private double xCoord;
private double yCoord;

public double getXCoord(){
return xCoord;

}
public double getYCoord(){

return yCoord;
}

}

public class Circle {
private Point center;
public double getCenterX(){

return center.getXCoord(); // Delegation
}
public double getCenterY(){

return center.getYCoord(); // Delegation
}

}

Using	Delegation

40

Summary

¢ Classes,	objects,	and	methods	are	the	basic	components	 used	in	
Java	programming.

¢ Constructors	allow	seamless	initialization	of	objects.

¢ Classes	can	have	static	members,	which	serve	as	global	members	
of	all	objects	of	a	class.

¢ Objects	can	be	passed	as	parameters	and	they	can	be	used	for	
exchanging	messages.

¢ We	will	continue	next	week	with	encapsulation
§ which	helps	in	protecting	data	from	accidental	or	wrong	usage	and	also	
offers	better	 security	for	data.

41

Acknowledgments

¢ The	course	material	used	to	prepare	this	presentation	 is	mostly	
taken/adopted	 from	the	list	below:
§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012.

§ Rajkumar Buyya,	University	of	Melbourne.

