
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Encapsulation

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi
TAs:	Selma	Dilek,	Selim	Yılmaz,	Selman	Bozkır

2

Today

¢ Information	Hiding
¢ Encapsulation
¢ Pre- and	Postcondition Comments
¢ The	public	and	private	Modifiers
¢ UML	Class	Diagrams
¢ Overloading
¢ Packages

3

Information	Hiding

¢ Programmer	using	a	class	method	need	not know	
details	of	implementation
§ Only	needs	to	know	what the	method	does

¢ Information	hiding:
§ Designing	a	method	so	it	can	be	used	without	knowing	details

¢Also	referred	 to	as	abstraction

¢Method	design	should	separate	what from	how

4

Encapsulation

¢ Encapsulation:	 Hiding	implementation	 details	of	an	
object	from	its	clients.
§ Encapsulation	provides	abstraction.

§ separates	external	view	(behavior) from	internal	view	(state)
§ Encapsulation	protects	the	integrity	of	an	object's	data.

5

When	Creating	Classes

¢ When	creating	the	public	interface	of	a	class, give	careful	
thought	and	consideration	to	the	contract you	are	creating	
between	 yourself	and	users	(other	programmers)	of	your	class

¢ Use	preconditions to	state	what	you	assume	to	be	true	before a	
method	 is	called
§ caller	of	the	method	is	responsible	 for	making	sure	these	are	true

¢ Use	postconditions to	state	what	you	guarantee	to	be	true	after
the	method	 is	done	 if	the	preconditions	are	met
§ implementer	of	the	method	is	responsible	 for	making	sure	these	are	true

6

Pre- and	Postcondition Comments

¢ Precondition	 comment
§ States	conditions	that	must	be	true	before	method	 is	invoked

¢ Example

7

Pre- and	Postcondition Comments

¢ Postcondition comment
§ Tells	what	will	be	true	after	method	 is	executed

¢ Example

8

Visibility	Modifiers

¢ All	parts	of	a	class have	visibility	modifiers
§ Java	keywords
§ public,	protected,	private
§ do	not	use	these	modifiers	on	local	variables	 (syntax	error)

¢ public means	that	constructor,	method,	 or	field	may	be	accessed
outside	of	the	class.	
§ part	of	the	interface
§ constructors	and	methods	are	generally	public

¢ private means	that	part	of	the	class	is	hidden	and	inaccessible by	
code	outside	of	the	class
§ part	of	the	implementation
§ data	fields	are	generally	private

9

The	public and	privateModifiers

¢ Type	specified	as	public
§ Any	other	class	can	directly	access	 that	object	by	name

¢ Classes	are generally	specified	as	public

¢ Instance	variables	are usually	not public
§ Instead	 specify	as	private

10

Private	fields

¢ A	field	can	be	declared	private.
§ No	code	outside	the	class	can	access	or	change	it.

private type name;

§ Examples:

private int id;
private String name;

¢ Client	code	sees	an	error	when	accessing	private	fields:

PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

11

Accessing	private	state

¢ We	can	provide	methods	to	get	and/or	set	a	field's	value:
// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

¢ Client	code	will	look	more	like	this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

12

Programming	Example
public class Rectangle
{

private int width;
private int height;
private int area;

public void setDimensions (int newWidth, int newHeight)
{

width = newWidth;
height = newHeight;
area = width * height;

}
public int getArea ()
{

return area;
}

}

Note setDimensions method :
This is the only way the width
and height may be altered
outside the class

¢ Statement	such	as
box.width = 6;

is	illegal since	width	is private
¢ Keeps	remaining	elements	of	the	class	consistent

13

Point	class// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

14

Client	code

public class PointMain4 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}
} OUTPUT :

p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

15

Encapsulation

¢ Consider	example	of	driving	a	car
§ We	see	and	use	break	pedal,	accelerator	pedal,	steering	wheel	
– know	what they	do

§ We	do	not see	mechanical	details	of	how they	do	their	jobs

¢ Encapsulation	 divides	class	definition	into
§ Class	interface
§ Class	implementation

16

Encapsulation

¢ Class	interface
§ Tells	what the	class	does
§ Gives	headings	for	public	methods and	comments	about	them

¢ Class	implementation
§ Contains	private	variables
§ Includes	definitions	of	public	and	private	methods

17

Encapsulation
¢ A	well	encapsulated	 class	definition

Programmer
who uses the

class

18

Encapsulation – Best	Practices
¢ Preface	class	definition	with	comment	on	how	to	use	class

¢ Declare	all	instance	variables	 in	the	class	as	private.

¢ Provide	public	accessor	methods	to	retrieve	 data	and	
provide	public	methods	to manipulate data
§ Such	methods	could	include	public	mutator methods.

¢ Place	a	comment	before	each	public	method	heading	that	
fully	specifies	how	to	use	method.

¢ Make	any	helping	methods	private.

¢ Write	comments	within	class	definition	 to	describe	
implementation	 details.

19

Benefits	of	encapsulation

¢ Provides	abstraction between	 an	object	and	its	clients.

¢ Protects	an	object	from	unwanted	access	by	clients.
§ A	bank	app	forbids	a	client	to	change	an	Account's	balance.

¢ Allows	you	to	change	the	class	implementation.
§ Point could	be	rewritten	 to	use	polar	coordinates
(radius	r,	angle	θ),	but	with	the	same	methods.

¢ Allows	you	to	constrain	objects'	state	(invariants).
§ Example:	Only	allow	Points	with	non-negative	coordinates.

20

Software	Development	Observations

¢ Interfaces	 change	less	frequently	 than	implementations.

¢When	an	implementation	 changes,	 implementation-
dependent	 code	must	change	accordingly.	

¢Hiding	the	implementation	 reduces	 the	possibility	that	
other	program	parts	will	become	dependent	 on	class-
implementation	 details.

21

Outline

Time1.java
(1 of 2)

 1 // Fig. 8.1: Time1.java	

 2 // Time1 class declaration maintains the time in 24-hour format.	

 3 	
 4 public class Time1

 5 {

 6 private int hour; // 0 – 23	

 7 private int minute; // 0 - 59	

 8 private int second; // 0 - 59	

 9 	
10 // set a new time value using universal time; ensure that 	
11 // the data remains consistent by setting invalid values to zero	
12 public void setTime(int h, int m, int s)
13
14 hour = ((h >= 0 && h < 24) ? h : 0); // validate hour	
15 minute = ((m >= 0 && m < 60) ? m : 0); // validate minute	
16 second = ((s >= 0 && s < 60) ? s : 0); // validate second	
17 } // end method setTime	
18 	

private instance
variables

Declare public method
setTime

Validate parameter values before
setting instance variables

22

Outline

Time1.java
(2	of	2)

19 // convert to String in universal-time format (HH:MM:SS)

20 public String toUniversalString()

21 {

22 return String.format("%02d:%02d:%02d", hour, minute, second);

23 } // end method toUniversalString

24

25 // convert to String in standard-time format (H:MM:SS AM or PM)

26 public String toString()

27 {

28 return String.format("%d:%02d:%02d %s",

29 ((hour == 0 || hour == 12) ? 12 : hour % 12),

30 minute, second, (hour < 12 ? "AM" : "PM"));

31 } // end method toString

32 } // end class Time1
	

format
strings

23

Outline
Time1Test.java
(1 of 2)

 1 // Fig. 8.2: Time1Test.java
 2 // Time1 object used in an application.
 3
 4 public class Time1Test

 5 {

 6 public static void main(String args[])

 7 {

 8 // create and initialize a Time1 object
 9 Time1 time = new Time1(); // invokes Time1 constructor
10
11 // output string representations of the time
12 System.out.print("The initial universal time is: ");
13 System.out.println(time.toUniversalString());
14 System.out.print("The initial standard time is: ");
15 System.out.println(time.toString());
16 System.out.println(); // output a blank line
17
	

Create a Time1
object

Call toUniversalString
method

Call toString
method

24

Outline
Time1Test.java
(2 of 2)

18 // change time and output updated time
19 time.setTime(13, 27, 6);
20 System.out.print("Universal time after setTime is: ");
21 System.out.println(time.toUniversalString());
22 System.out.print("Standard time after setTime is: ");
23 System.out.println(time.toString());
24 System.out.println(); // output a blank line
25
26 // set time with invalid values; output updated time
27 time.setTime(99, 99, 99);
28 System.out.println("After attempting invalid settings:");
29 System.out.print("Universal time: ");
30 System.out.println(time.toUniversalString());
31 System.out.print("Standard time: ");
32 System.out.println(time.toString());
33 } // end main
34 } // end class Time1Test
	
The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

	
Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

	
After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM
	

	

Call setTime
method

Call setTime
method with
invalid values

25

Performance	Tip

¢ Java	conserves	 storage	by	maintaining	only	one	copy	
of	each	method	per	class
§ this	method	 is	invoked	 by	every	object	of	the	class.	

¢ Each	object,	on	the	other	hand,	has	its	own	copy	of	
the	class’s	 instance	variables	(i.e.,	non-static	fields).	

¢ Each	method	of	the	class	implicitly	uses	this to	
determine	 the	specific	object	of	the	class	to	
manipulate.

26

Software	Development	Observations &	Tips
¢ When	one	object	of	a	class	has	a	reference	to	another	object	of	
the	same	class,	the	first	object	can	access	all	the	second	object’s	
data	and	methods	(including	those	that	are	private).

¢ When	 implementing	a	method	of	a	class,	use	the	class’s	set and	
getmethods	to	access	the	class’s	private data.	This	simplifies	
code	maintenance	and	reduces	the	likelihood	of	errors.

¢ This	architecture	helps	hide	the	implementation	 of	a	class	from	its	
clients,	which	improves	program	modifiability

27

Default	and	No-Argument	Constructors	

¢ Every	class	must	have	at	least	one	constructor

§ If	no constructors	are	declared,	the	compiler	will	create	a	
default	constructor
§ Takes	no	arguments	and	initializes	instance	variables	to	their	
initial	values	specified	in	their	declaration	or	to	their	default	
values
– Default	values	are	zero for	primitive	numeric	types,	false for	
boolean values	and	null for	references

§ If	constructors	are	declared,	the	default	 initialization for	
objects	of	the	class	will	be	performed	by	a	no-argument	
constructor	(if	one	is	declared)

28

Common	Programming	Error

¢ If	a	class	has	constructors,	 but	none	of	the	public
constructors	 are	no-argument	 constructors,	 and	a	
program	attempts	to	call	a	no-argument	 constructor	
to	initialize	an	object	of	the	class,	a	compilation	error	
occurs.	

¢A	constructor	 can	be	called	with	no	arguments	only	if	
the	class	does	not	have	any	constructors (in	which	
case	the	default	constructor	 is	called)	or	if	the	class	
has	a	public no-argument	 constructor.

29

final Instance	Variables	

¢final instance	variables
§ Keyword	final

§ Specifies	that	a	variable	is	not	modifiable	(is	a	constant)
§ final instance	variables	can	be	initialized	at	their	declaration

§ If	they	are	not	initialized	in	their	declarations,	they	must	be	
initialized	in	all constructors

¢ If	an	instance	variable	should	not	be	modified,	declare	
it	to	be	final to	prevent	any	erroneous	 modification.

30

static final Instance	Variables	

¢ A	final field	should	also	be	declared	static if	it	is	initialized	
in	its	declaration.	

¢ Once	a	final field	is	initialized	in	its	declaration,	 its	value	can	
never	change.	

¢ Therefore,	 it	is	not	necessary	to	have	a	separate	copy	of	the	field	
for	every	object	of	the	class.	

¢ Making	the	field	static enables	all	objects	of	the	class	to	share	
the	final field.

¢ Example:	public static final double PI = 3.141592;

31

Software	Reusability	
¢ Rapid	application	development

§ Reusability speeds	the	development	of	powerful,	high-quality	software

¢ Java’s	API
§ provides	an	entire	framework	in	which	Java	developers	 can	work	to	
achieve	true	reusability	and	rapid	application	development

§ Documentation:
§ java.sun.com/j2se/5.0/docs/api/index.html
§ Or	java.sun.com/j2se/5.0/download.html to	download

¢ Good	Programming	 Practice:	Avoid	reinventing	the	wheel.	
Study	the	capabilities	of	the	Java	API.	If	the	API	contains	a	class	
that	meets	your	program’s	requirements,	 use	that	class	rather	
than	create	your	own.	

32

UML	Class	Diagrams

¢ An	automobile	class	outline	as	a	UML	class	diagram

33

UML	Class	Diagrams

¢ Example:
Purchase
class	

Plus signs
imply public

access

Minus signs
imply private

access

34

UML	Class	Diagrams

¢ Contains	more	than	interface,	 less	than	full	
implementation

¢Usually	written	before class	is	defined

¢Used	by	the	programmer	 defining	the	class
§ Contrast	with	the	interface used	by	programmer	who	uses	
the	class

35

Packages	and	Importing

¢A	package is	a	collection	of	classes	grouped	 together	
into	a	folder

¢Name	of	folder	is	name	of	package

¢ Each	class
§ Placed	in	a	separate	file
§ Has	this	line	at	the	beginning	of	the	file
package Package_Name;

¢ Classes	use	packages	by	use	of	import statement

36

Package	Names	and	Directories

¢ Package	name	tells	compiler	path	name	for	directory	
containing	classes	of	package

¢ Search	for	package	begins	 in	class	path	base	directory
§ Package	name	uses	dots	in	place	of	/	or	\

¢Name	of	package	uses	relative	path	name	starting	
from	any	directory	 in	class	path

37

Package	Names	and	Directories
¢ A	package	name

38

Time	Class	Case	Study:	Creating	Packages	

¢ To	declare	a	reusable	 class

§ Declare	a	public class

§ Add	a	package declaration	to	the	source-code	file

§ must	be	the	very	first	executable	statement	 in	the	file

– Package	name	example:	 com.deitel.jhtp6.ch08

– package name	is	part	of	the	fully	qualified	class	name
» Distinguishes	between	multiple	classes	with	the	same	
name	belonging	to	different	packages

» Prevents	name	conflict	(also	called	name	collision)

39

Example
¢ Time1.java 1 // Fig. 8.18: Time1.java	

 2 // Time1 class declaration maintains the time in 24-hour format.	

 3 package com.deitel.jhtp6.ch08;

 4 	
 5 public class Time1

 6 {

 7 private int hour; // 0 - 23	

 8 private int minute; // 0 - 59	

 9 private int second; // 0 - 59	

10 	
11 // set a new time value using universal time; perform 	
12 // validity checks on the data; set invalid values to zero	
13 public void setTime(int h, int m, int s)
14 {
15 hour = ((h >= 0 && h < 24) ? h : 0); // validate hour	
16 minute = ((m >= 0 && m < 60) ? m : 0); // validate minute	
17 second = ((s >= 0 && s < 60) ? s : 0); // validate second	
18 } // end method setTime	
19 }	

package
declaration

Time1 is a public class so it can
be used by importers of this
package

40

Time	Class	Case	Study:	Creating	Packages	(Cont.)

§ Compile	the	class	so	that	it	is	placed	in	the	appropriate	package	
directory	structure
§ Example:	our	package	should	be	in	the	directory

com
deitel

jhtp6
ch08

§ javac command-line	option	–d
– javac creates	appropriate	directories	based	on	the	class’s	
package declaration

– A	period	(.)	after	–d represents	 the	current	directory

41

Time	Class	Case	Study:	Creating	Packages	(Cont.)

¢ Import	the	reusable	 class	into	a	program

§ Single-type-import	 declaration
§ Imports	a	single	class
§ Example:	import java.util.Random;

§ Type-import-on-demand	 declaration
§ Imports	all	classes	in	a	package
§ Example:	import java.util.*;

42

Name	Clashes

¢ Packages	help	in	dealing	with	name	clashes
§ When	two	classes	have	same	name

¢ Different	programmers	may	give	same	name	to	two	classes
§ Ambiguity	resolved	by	using	the	package	name

43

Overloading	Basics

¢When	two	or	more	methods	have	same	name	within	
the	same	class

¢ Java	distinguishes	 the	methods	by	number	and	types	
of	parameters
§ If	it	cannot	match	a	call	with	a	definition,	 it	attempts	to	do	
type	conversions

¢A	method's	 name	and	number	and	type	of	
parameters	 is	called	the	signature

44

Programming	Example
/** This class illustrates overloading. */
public class Overload {

public static void main (String [] args) {
double average1 = Overload.getAverage (40.0, 50.0);
double average2 = Overload.getAverage (1.0, 2.0, 3.0);
char average3 = Overload.getAverage ('a', 'c');

System.out.println ("average1 = " + average1);
System.out.println ("average2 = " + average2);
System.out.println ("average3 = " + average3); }

public static double getAverage (double first, double second) {
return (first + second) / 2.0; }

public static double getAverage (double first, double second,
double third) { return (first + second + third) / 3.0; }

public static char getAverage (char first, char second) {
return (char) (((int) first + (int) second) / 2); }

} average1= 45.0

average2= 2.0

average3 = b

45

Overloading	and	Type	Conversion
¢Overloading	and	automatic	type	conversion	 can	conflict

¢ Remember	 the	compiler	attempts	to	overload	before	it	
does	type	conversion

¢Use	descriptive	method	names,	 avoid	overloading	
when	possible

46

Overloading	and	Return	Type

¢ You	must	not	overload	a	method	where	the	only	
difference	 is	the	type	of	value	returned

47

Summary

¢ Precondition	 comment	 states	conditions	 that	must	be	
true	before	method	invoked

¢ Postcondition comment	describes	 resulting	effects	of	
method	execution

¢Usage	of	visibility	modifiers	 for	encapsulation
¢ Separation	of	interface	and	implementation	 is	
important

¢ Class	designers	 use	UML	notation	to	describe	 classes
¢Use	packages	 for	software	reusability
¢Overloading	must	be	done	with	care

48

Acknowledgments

¢ The	course	material	used	to	prepare	this	presentation	 is	mostly	
taken/adopted	 from	the	list	below:
§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012

§ Java	- How	to	Program,	Paul	Deitel and	Harvey	Deitel,	Prentice	Hall,	2012
§ Mike	Scott,	CS314	Course	notes,	University	of	Texas	Austin

