BBM 102 - Introduction to
Programming Il

Today

= Information Hiding

Spring 2017 m Encapsulation
m Pre- and Postcondition Comments
m The public and private Modifiers
m UML Class Diagrams
S) Overloadi
Encapsulation — m Pverloading
< ___— m Packages
Instructors: Ayca Tarhan, Fuat Akal, Géneng Ercan, Vahid Garousi
TAs: Selma Dilek, Selim Yilmaz, Selman Bozkir
Information Hiding Encapsulation

m Programmer using a class method need not know
details of implementation
® Only needs to know what the method does

m Information hiding:
® Designing a method so it can be used without knowing details

m Also referred to as abstraction

m Method design should separate what from how

m Encapsulation: Hiding implementation details of an
object from its clients.
® Encapsulation provides abstraction.

= separates external view (behavior) from internal view (state)

® Encapsulation protects the integrity of an object's data.

R4 R83

2N3394

e

A Measure—"fg
Resistor Voltage 'I'%

Here Here

When Creating Classes

m When creating the public interface of a class, give careful
thought and consideration to the contract you are creating
between yourself and users (other programmers) of your class

m Use preconditions to state what you assume to be true before a
method is called
= caller of the method is responsible for making sure these are true

m Use postconditions to state what you guarantee to be true after
the method is done if the preconditions are met
= implementer of the method is responsible for making sure these are true

Pre- and Postcondition Comments

m Precondition comment
® States conditions that must be true before method is invoked

m Example

Precondition: The instance variables of the calling
object have values.

Postcondition: The data stored in (the instance variables
of) the receiving object have been written to the screen.

pﬁb]ic void writeOutput()

Pre- and Postcondition Comments

m Postcondition comment
® Tells what will be true after method is executed

m Example

Precondition: years is a nonnegative number.
Postcondition: Returns the projected population of the
receiving object after the specified number of years.

pUb]ic int predictPopulation(int years)

Visibility Modifiers

m All parts of a class have visibility modifiers
= Java keywords
= public, protected, private
= do not use these modifiers on local variables (syntax error)

m public means that constructor, method, or field may be accessed
outside of the class.
= part of the interface
® constructors and methods are generally public

m private means that part of the class is hidden and inaccessible by
code outside of the class
= part of the implementation
= data fields are generally private

The public and private Modifiers

m Type specified as public
® Any other class can directly access that object by name

m Classes are generally specified as public

m Instance variables are usually not public
" Instead specify as private

Private fields

m A field can be declared private.
® No code outside the class can access or change it.

private type name;

= Examples:

private int id;
private String name;

m Client code sees an error when accessing private fields:

PointMain. java:11l: x has private access in Point
System.out.println("pl is (" + pl.x + ", " + pl.y + ")");

A

Accessing private state

m We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
public int getX () {
return x;

}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newX;

}

m Client code will look more like this:

System.out.println("pl: (" + pl.getX() + ", " + pl.get¥() + ")");
pl.setX(14);

Programming Example

public class Rectangle
{
private int width;
private int height;
private int area;

public void setDimensions (int newWidth, int newHeight)
{
width = newWidth;
height = newHeight;
area = width * height;

Note setDimensions method :
This is the only way the width
and height may be altered
outside the class

}
public int getArea ()

{

return area;

} } m Statement such as

box.width = 6;
is illegal since width is private

m Keeps remaining elements of the class consistent

Point class

Client code

OUTPUT :

pl is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Encapsulation

m Consider example of driving a car
® We see and use break pedal, accelerator pedal, steering wheel

—know what they do
= We do not see mechanical details of how they do their jobs

m Encapsulation divides class definition into

® Class interface
® Class implementation

Encapsulation

m Class interface

= Tells what the class does
= Gives headings for public methods and comments about them

m Class implementation
= Contains private variables
® Includes definitions of public and private methods

Encapsulation
m A well encapsulated class definition
Class Definition
Implementation:
Private instance variables Interface: Proarammer
g:::;:z ;:’:[:;:1‘? - g‘;::;::fg‘l‘;t public methods D whoguses the
Bodies of public methods Public named constants class

Encapsulation — Best Practices

m Preface class definition with comment on how to use class
m Declare all instance variables in the class as private.

m Provide public accessor methods to retrieve data and
provide public methods to manipulate data
= Such methods could include public mutator methods.

m Place a comment before each public method heading that
fully specifies how to use method.

m Make any helping methods private.

m Write comments within class definition to describe
implementation details.

Benefits of encapsulation

m Provides abstraction between an object and its clients.

m Protects an object from unwanted access by clients.

= A bank app forbids a client to change an Account'sbalance.

m Allows you to change the class implementation.

®" Point could be rewritten to use polar coordinates
(radius r, angle), but with the same methods.

m Allows you to constrain objects' state (invariants).

= Example: Only allow Points with non-negative coordinates.

Software Development Observations
m Interfaces change less frequently than implementations.

m When an implementation changes, implementation-
dependent code must change accordingly.

m Hiding the implementation reduces the possibility that
other program parts will become dependent on class-
implementation details.

Outline

1 // Fig. 8.1: Timel.java

Outline

19 // convert to String in universal-time format (HH:MM:SS)

2 // Timel class declaration maintains the time in 24-hour format. Tlmel'Java 20 public String touniversalstring() TImel'Java
3]] private instance | (10f2) 2 (2 of 2)
4 public class Timel variables 22 return String.format("%02d:%02d:%02d", hour, minute, second);
- - . 23 } // end method touniversalstring
6 private int hour; // 0 - 23 -
7 private int minute; // 0 - 59
8 private int seconds 7/ 0°="59 25 // convert to String in standard-time format (H:MM:SS AM oSUMIJS
9 26 public String toString(Q)
10 // set a new time value using universal time; ensure that 27 {
11 // the data remains consistent by setting invalid values to zero 28 return string.format("%d:%02d:%02d %s",
12 ublic void setTime(int h, int m, int s) A == == ? :
. p! Declare public method 29 C C hour 0 || hour 12°) ? 12 : hour % 12),
3 £Time 30 minute, second, (hour < 12 ? "AM" : "PM"));
14 hour = (Ch>= 08 h<24)?h:0); //validate hSSF $1 1 // end method tostring
15 minute = ((m>=0& p<60)?m:0); // validate minute 32} // end class Timel
16 second = ((s >=0& s\<60) ?s : 0); // validate second end class e
17 } // end method setTime
18
Validate parameter values before
setting instance variables
21 22
Ll
.o
Outline Outline
1 // Fig. 8.2: TimelTest.java Ti 1T . i // change time and output updated time | Call setTime | TimelTest.java
2 // Timel object used in an application. Ime eSt'Java) e s e i (27 iG) stho
3 (1 Of 2) 20 System.out.print("uUniversal time after setT'imerq?. q; (2 of 2)
4 public class TimelTest 21 System.out.printin(time.touniversalstring();
5 { 22 System.out.print("Standard time after setTime is: ");
6 public static void main(String args[]) Create a Timel | ;i :5:2::':::'g:}::}:E)T1T;'EZ:::lng(z1;;k Tine
; t /) P - object 25
create and initialize a . R . : 0
9 Timel time = new Timel(); // invokes Timel constructor 23 i_l{m:eze:r?:ev:";; 1;\;119; \)/?1ues, outputiupdateditine Call setTime
10 2 s) H .
1 . . A o 28 System.out.printin("After attempting invalid settings:"); method with
// output strTng repres?nFaF1ons M e wme " 29 System.out.print("Universal time: "); invalid values
12 system.out.print("The initial universal time 1is:); 0 System.out.printIn time;touniversalstringQ J;
13 System.out.printin(time:touniversalstring()); Call toUniversalString ” System-out.pr'int(e — o :
14 System.out.print("The initial standard time is: "); method - Sistem-out.grint1n(e tostriné()):
15 system.out.printin(time.tostring()); - S . ’
. . Call toString 33 } // end main
16 System.out.printin(); // output a blank Tine .
17 method 34 ¥ // end class TimelTest

23

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

universal time after setTime is: 13:27:06
standard time after setTime is: 1:27:06 PM

After attempting invalid settings:
Universal time: 00:00:00
Standard time: 12:00:00 AM

24

Performance Tip

m Java conserves storage by maintaining only one copy
of each method per class
® this method is invoked by every object of the class.

m Each object, on the other hand, has its own copy of
the class’s instance variables (i.e., non-static fields).

m Each method of the class implicitly uses this to
determine the specific object of the class to
manipulate.

25

Software Development Observations & Tips

m When one object of a class has a reference to another object of
the same class, the first object can access all the second object’s
data and methods (including those that are private).

m When implementing a method of a class, use the class’s set and
get methods to access the class’s private data. This simplifies
code maintenance and reduces the likelihood of errors.

m This architecture helps hide the implementation of a class from its
clients, which improves program modifiability

Default and No-Argument Constructors

m Every class must have at least one constructor

® |f no constructors are declared, the compiler will create a
default constructor
= Takes no arguments and initializes instance variables to their
initial values specified in their declaration or to their default
values

— Default values are zero for primitive numeric types, false for
booleanvalues and null for references

® |f constructors are declared, the default initialization for
objects of the class will be performed by a no-argument
constructor (if one is declared)

27

Common Programming Error

m If a class has constructors, but none of the pubTic
constructors are no-argument constructors, and a
program attempts to call a no-argument constructor
to initialize an object of the class, a compilation error
occurs.

m A constructor can be called with no arguments only if
the class does not have any constructors (in which
case the default constructor is called) or if the class
has a publ1ic no-argument constructor.

final Instance Variables

m final instance variables
= Keyword final
= Specifies that a variable is not modifiable (is a constant)
® final instance variables can be initialized at their declaration

= If they are not initialized in their declarations, they must be
initialized in all constructors

m If an instance variable should not be modified, declare
itto be final to prevent any erroneous modification.

29

static final Instance Variables

m A final field should also be declared static ifitis initialized
in its declaration.

m Once a final field isinitialized in its declaration, its value can
never change.

m Therefore, itis not necessary to have a separate copy of the field
for every object of the class.

m Making the field static enables all objects of the class to share
the final field.

m Example: public static final double PI = 3.141592;

30

Software Reusability

m Rapid application development
= Reusability speeds the development of powerful, high-quality software

m Java’s API

= provides an entire framework in which Java developers can work to
achieve true reusability and rapid application development

® Documentation:
» java.sun.com/j2se/5.0/docs/api/index.html

= Orjava.sun.com/j2se/5.0/download.htm| to download

m Good Programming Practice: Avoid reinventing the wheel.
Study the capabilities of the Java API. If the API contains a class
that meets your program’s requirements, use that class rather
than create your own.

3

UML Class Diagrams

m An automobile class outline as a UML class diagram

Automobile

— fuel: double
— speed: double
— Tlicense: String

accelerate(double pedalPressure): void
decelerate(double pedalPressure): void

+ +

32

UML Class Diagrams

m Example:
Purchase

- Eame: String Minus signs
CIaSS - proupCount: int g

Purchase

roupPrice: double imply private
umberBought: int access

etName(String newName): void

etPrice(int count, double costForCount): void
etNumberBought(int number): void

eadInput(): void

riteQutput(): void

etName(): String

etTotalCost(): double

etUnitCost(): double

etNumberBought(): int

Plus signs
imply public
access

EE I i S S e

33

UML Class Diagrams

m Contains more than interface, less than full
implementation

m Usually written before class is defined

m Used by the programmer defining the class

® Contrast with the interface used by programmer who uses
the class

34

Packages and Importing

m A package is a collection of classes grouped together
into a folder

m Name of folder is name of package

m Each class
® Placed in a separate file

® Has this line at the beginning of the file
package Package Name;

m Classes use packages by use of import statement

35

Package Names and Directories

m Package name tells compiler path name for directory
containing classes of package

m Search for package begins in class path base directory
= Package name uses dots in place of /or \

m Name of package uses relative path name starting
from any directory in class path

36

Package Names and Directories

m A package name

0 myjavastuff

Tibraries

| «—— \myjavastuff\libraries
/ is a class path base directory
(is on the class path).

general

-<—— general.utilities
is the package name.

utilities

— AClass.java \
Classes in the package ——m ‘

\ =} AnotherClass.java

37

Time Class Case Study: Creating Packages

m To declare a reusable class
® Declare a public class
= Add a package declaration to the source-code file
= must be the very first executable statement in the file
— Package name example: com.deitel.jhtp6.ch08

— package name is part of the fully qualified class name

» Distinguishes between multiple classes with the same
name belonging to different packages

» Prevents name conflict (also called name collision)

38

{

© ® NG A WN 2

=

// Fig. 8.18: Timel.java
// Timel class declaration maintains the time_in 24-hour format.
package com.deitel.jhtp6.ch08;

public class Timel
\ Timel isa public class so it can

Example

m Timel.java

package
declaration

private int hour; // 0 - 23 be used by importers of this
private int minute; // 0 - 59 package
private int second; // 0 - 59

// set a new time value using universal time; perform
// validity checks on the data; set invalid values to zero
public void setTime(int h, int m, int s)
{
hour = C(h>0&& h<24)?h:0); // validate hour
minute = ((m>0&& m<60) ?m: 0); // validate minute
second = ((s> 08&& s <60)?s :0); // validate second
} // end method setTime

39

Time Class Case Study: Creating Packages (Cont.)

= Compile the class so that itis placed in the appropriate package
directory structure

= Example: our package should be in the directory

= jJavac command-line option —-d

— javac creates appropriate directories based on the class’s
package declaration

— A period (.) after —d represents the current directory

40

Time Class Case Study: Creating Packages (Cont.)

m Import the reusable class into a program

® Single-type-import declaration
= Imports a single class
= Example: import java.util.Random;

= Type-import-on-demand declaration

= Imports all classes in a package
= Example: import java.util.*;

4“1

Name Clashes

m Packages help in dealing with name clashes
= When two classes have same name

m Different programmers may give same name to two classes

= Ambiguity resolved by using the package name

42

Overloading Basics

m When two or more methods have same name within
the same class

m Java distinguishes the methods by number and types
of parameters

® If it cannot match a call with a definition, it attempts to do
type conversions

m A method's name and number and type of
parameters is called the signature

43

Programming Example

/** This class illustrates overloading. */
public class Overload {

public static void main (String [] args) {

double averagel = Overload.getAverage (40.0, 50.0);
double average2 = Overload.getAverage (1.0, 2.0, 3.0);

char average3 = Overload.getAverage ('a',

e

System.out.println ("averagel = " + averagel);
System.out.println ("average2 = " + average2);
System.out.println ("average3 = " + average3); }

public static double getAverage (double first, double second) {

return (first + second) / 2.0; }

public static double getAverage (double first, double second,
double third) { return (first + second + third) / 3.0; }

public static char getAverage (char first, char second) {
return (char) (((int) first + (int) second) / 2); }

averagel= 45.0
average2= 2.0

average3 = b

44

Overloading and Type Conversion

m Overloading and automatic type conversion can conflict

m Remember the compiler attempts to overload before it
does type conversion

m Use descriptive method names, avoid overloading
when possible

45

Overloading and Return Type

m You must not overload a method where the only
difference is the type of value returned

Returns ihe weight of the)pet.

pubTlic doubTe getWeight()

T

Returns '+' if oVerweight, "-' if
underwaight, and ' if weight is OK.

public char getWeight()

46

Summary

m Precondition comment states conditions that must be
true before method invoked

m Postcondition comment describes resulting effects of
method execution

m Usage of visibility modifiers for encapsulation

m Separation of interface and implementation is
important

m Class designers use UML notation to describe classes
m Use packages for software reusability
m Overloading must be done with care

47

Acknowledgments

m The course material used to prepare this presentation is mostly
taken/adopted from the list below:

= Java - An Introduction to Problem Solving and Programming, Walter
Savitch, Pearson, 2012

= Java - How to Program, Paul Deitel and Harvey Deitel, Prentice Hall, 2012
= Mike Scott, C5314 Course notes, University of Texas Austin

48

