
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Inheritance

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi
TAs:	Selma	Dilek,	Selim	Yılmaz,	Selman	Bozkır



2

Today

¢ Inheritance
¢ Notion	of	subclasses	 and	superclasses
¢ protected	members
¢ UML	Class	Diagrams	for	inheritance



3

Inheritance

¢A	form	of	software	reuse in	which	a	new	class	is	
created	by	absorbing	an	existing	class’s	members	 and	
embellishing	 them	with	new	or	modified	capabilities.	

¢ Can	save	time	during	program	development	 by	basing	
new	classes	on	existing	proven	and	debugged	high-
quality	software.	

¢ Increases	 the	likelihood	that	a	system	will	be	
implemented	 and	maintained	effectively.



4

Inheritance
¢When	creating	a	class,	rather	than	declaring	completely	
new	members,	 you	can	designate	 that	the	new	class	
should	inherit	the	members	 of	an	existing	class.	
§ Existing	class	is	the	superclass
§ New	class	is	the	subclass

¢ The	subclass exhibits	the	behaviors	of	its	superclass and	
can	add	behaviors	 that	are	specific	to	the	subclass.	
§ This	is	why	inheritance	 is	sometimes	referred	to	as	
specialization.	

¢A	subclass	 is	more	specific	than	its	superclass	 and	
represents	 a	more	specialized	group	of	objects.	



5

Inheritance

¢ The	direct	superclass is	the	superclass	 from	which	the	
subclass	explicitly	inherits.	

¢An	indirect	superclass is	any	class	above	the	direct	
superclass	 in	the	class	hierarchy.	

¢ The	Java	class	hierarchy	begins	with	class	Object	(in	
package	java.lang)
§ Every class	in	Java	directly	or	indirectly	extends (or	“inherits	
from”)	Object.	

¢ Java	supports	only	single	inheritance,	in	which	each	class	
is	derived	 from	exactly	one	direct	superclass.	

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



6

Advantages	of	inheritance
¢When	a	class	inherits	from	another	class,	there	are	
three benefits:

(1)	You	can	reuse the	methods	and	data	of	the	
existing	class
(2)	You	can	extend the	existing	class	by	adding	new	
data	and	new	methods
(3)	You	can	modify the	existing	class	by	overloading	
its	methods	with	your	own	implementations



7

Relationships	between	classes

¢We	distinguish	between	 the	is-a	relationship and	the	
has-a	relationship

¢ Is-a represents	 inheritance
§ In	an	is-a	relationship,	an	object	of	a	subclass	can	also	be	
treated	as	an	object	of	its	superclass	

¢Has-a represents	 composition
§ In	a	has-a	relationship,	an	object	contains	as	members	
references	to	other	objects

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



8

¢ Superclasses tend	to	be	“more	general”	and	subclasses	“more	
specific.”

Superclasses and	Subclasses

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



9

• A	sample	university	community	class	hierarchy
• Also	called	an	inheritance	hierarchy.	

• Each	arrow	in	the	hierarchy	represents	an	is-a	relationship.	
• Follow	the	arrows	upward	in	the	class	hierarchy

• “an	Employee	is	a	CommunityMember”	
• “a	Teacher	 is	a	Faculty	member.”	

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



10

Superclasses and	Subclasses	(Cont.)
¢ Below	is	Shape	inheritance	hierarchy.	
¢ Follow	the	arrows	from	the	bottom	of	the	diagram	to	the	
topmost	superclass	to	identify	several	is-a relationships.	
§ A	Triangle	is	a	TwoDimensionalShape and	is	a	Shape
§ A	Sphere is	a	ThreeDimensionalShape and	is	a	Shape.	

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



11

Superclasses and	Subclasses	(Cont.)

¢ Not every class relationship is an inheritance 
relationship. 

¢ Has-a relationship
§ Create classes by composition of existing classes. 
§ Example: Given the classes Employee, BirthDate

and TelephoneNumber, it’s improper to say that an 
Employee is a BirthDate or that an Employee is a
TelephoneNumber. 

§ However, an Employee has a BirthDate, and an 
Employee has a TelephoneNumber.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



12

protectedMembers

¢A	class’s	public members	 are	accessible	wherever	
the	program	has	a	reference	 to	an	object	of	that	class	
or	one	of	its	subclasses.	

¢A	class’s	private members	are	accessible	 only	
within	the	class	 itself.	

¢protected access	 is	an	intermediate	 level	of	access	
between	public	and	private.	
§ A	superclass’s	protected	members	can	be	accessed	by	
members	of	that	superclass,	by	members	of	its	subclasses	and	
by	members	of	other	classes	in	the	same	package

§ protected	members	also	have	package	access.

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



13

protectedMembers	(Cont.)

¢ A	superclass’s	private	members	are	hidden	in	its	subclasses	
§ They	can	be	accessed	only	through	the	public	or	protected	methods	
inherited	from	the	superclass

¢ Subclass	methods	can	refer	to	public	and	protected	members	
inherited	from	the	superclass	simply	by	using	the	member	
names.	

¢ When	a	subclass	method	overrides	an	inherited	superclass	
method,	the	superclass	method	can	be	accessed	from	the	
subclass	by	preceding	the	superclass	method	name	with	
keyword	super and	a	dot	(.)	separator.	

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



14

Case	Study:	Commission	Employees

¢ Inheritance	 hierarchy	containing	types	of	employees	
in	a	company’s	 payroll	application	

¢ Commission	 employees	 are	paid	a	percentage	 of	
their	sales

¢ Base-salaried	 commission	 employees	 receive	a	base	
salary	plus	a	percentage	of	their	sales.	

© Copyright 1992-2012 by Pearson Education, Inc. All Rights 
Reserved.



15

Creating and Using a CommissionEmployee Class

§ CommissionEmployee inherits Object’s methods.
§ If you don’t explicitly specify which class a new class extends, the 

class extends Object implicitly. 

Class	CommissionEmployee extends class	
Object (from	package	java.lang).	



16



17



18



19



20



21

Creating	and	Using	a	CommissionEmployee Class	
(Cont.)
¢ Constructors	 are	not	inherited.
¢ The	first	task	of	a	subclass	 constructor	 is	to	call	its	
direct	superclass’s	 constructor	 explicitly	or	implicitly
§ Ensures	that	the	instance	variables	inherited	from	the	
superclass	are	initialized	properly.	

¢ If	the	code	does	not	include	an	explicit	call	to	the	
superclass	 constructor,	 Java	implicitly	calls	the	
superclass’s	 default	or	no-argument	 constructor.	

¢A	class’s	default	constructor	 calls	the	superclass’s	
default	or	no-argument	 constructor.



22

Creating	and	Using	a	CommissionEmployee Class	
(Cont.)

¢ toString is	one	of	the	methods	 that	every	class	inherits	
directly	or	indirectly	from	class	Object.	
§ Returns	a	String	representing	 an	object.	
§ Called	implicitly	whenever	an	object	must	be	converted	to	a	
String	representation.	

¢ Class	Object’s	 toString method	 returns	a	String	that	
includes	 the	name	of	the	object’s	 class.	
§ This	is	primarily	a	placeholder	that	can	be	overridden	 by	a	
subclass	to	specify	an	appropriate	String	representation.



23

Creating	and	Using	a	CommissionEmployee Class	
(Cont.)

¢ To override a superclass method, a subclass must 
declare a method with the same signature as the 
superclass method

¢@Override annotation
§ Indicates that a method should override a superclass 

method with the same signature.
§ If it does not, a compilation error occurs.



24



25



26



27

Case	Study	Part	2:	Creating	and	Using	a	
BasePlus-CommissionEmployeeClass

¢ Class BasePlusCommissionEmployee contains a first 
name, last name, social security number, gross sales 
amount, commission rate and base salary. 
§ All but the base salary are in common with class 
CommissionEmployee.

¢ Class BasePlusCommissionEmployee’s public
services include a constructor, and methods earnings, 
toString and get and set for each instance variable
§ Most of these are in common with class CommissionEmployee.



28

Class	BasePlusCommissionEmployee does	
not	specify	“extends	Object”,	Implicitly	
extends	Object.	

BasePlusCommissionEmployee’s
constructor	invokes	class	Object’s	
default	constructor	implicitly.



29



30



31



32



33



34



35



36



37



38

Case	Study	Part	2:	Creating	and	Using	a	
BasePlus-CommissionEmployeeClass	(Cont.)

¢ Much of BasePlusCommissionEmployee’s code is 
similar, or identical, to that of CommissionEmployee.

¢ private instance variables firstName and 
lastName and methods setFirstName, 
getFirstName, setLastName and getLastName are 
identical.
§ Both classes also contain corresponding get and set methods. 

¢ The constructors are almost identical
§ BasePlusCommissionEmployee’s constructor also sets the 
base-Salary. 

¢ The toString methods are nearly identical
§ BasePlusCommissionEmployee’s toString also outputs 

instance variable baseSalary



39

Case	Study	Part	2:	Creating	and	Using	a	BasePlus-
CommissionEmployee Class	(Cont.)
¢ We	literally	copied	CommissionEmployee’s code,	pasted	it	into	
BasePlusCommissionEmployee,	 then	modified	the	new	class	to	
include	a	base	salary	and	methods	that	manipulate	the	base	salary.	
§ This	“copy-and-paste”	approach	is	often	error	prone	and	time	consuming.	
§ It	spreads	copies	of	the	same	code	throughout	a	system,	creating	a	code-
maintenance	nightmare.	



40

Case	Study	Part	3:	Creating	a	CommissionEmployee–
BasePlusCommissionEmployee Inheritance	Hierarchy

¢ Class	BasePlusCommissionEmployee class	extends	class	
CommissionEmployee

¢ A	BasePlusCommissionEmployee object	is	a	
CommissionEmployee
§ Inheritance	passes	on	class	CommissionEmployee’s capabilities.	

¢ Class	BasePlusCommissionEmployee also	has	instance	
variable	baseSalary.

¢ Subclass	BasePlusCommissionEmployee inherits	
CommissionEmployee’s instance	variables	and	methods
§ Only	the	superclass’s	public	and	protected	members	are	directly	
accessible	in	the	subclass.	



41



42



43



44



45



46

Case	Study	Part	3:	Creating	a	CommissionEmployee–
BasePlusCommissionEmployee Inheritance	Hierarchy	(Cont.)

¢ Each	subclass	constructor	must	implicitly	or	explicitly	call	its	
superclass	constructor	to	initialize	the	instance	variables	
inherited	from	the	superclass.	
§ Superclass	constructor	call	syntax—keyword	super,	followed	by	a	set	
of	parentheses	containing	the	superclass	constructor	arguments.	

§ Must	be	the	first	statement	in	the	subclass	constructor’s	body.	
¢ If	the	subclass	constructor	did	not	invoke	the	superclass’s	
constructor	explicitly,	Java	would	attempt	to	invoke	the	
superclass’s	no-argument	or	default	constructor.	
§ Class	CommissionEmployeedoes	not	have	such	a	constructor,	so	the	
compiler	would	issue	an	error.	

¢ You	can	explicitly	use	super()	to	call	the	superclass’s	no-
argument	or	default	constructor,	but	this	is	rarely	done.



47

Case	Study	Part	4:	CommissionEmployee–
BasePlusCommissionEmployee Inheritance	Hierarchy	Using	
protected	Instance	Variables

¢ To	enable	a	subclass	to	directly	access	superclass	 instance	
variables,	we	can	declare	those	members	as	protected	in	the	
superclass.	

¢ New	CommissionEmployee class	modified	only	lines	6–10	of	
Fig.	9.4	as	follows:

protected String	firstName;																														
protected String	lastName;																															
protected String	socialSecurityNumber;																			
protected double grossSales;	
protected double commissionRate;	

¢ With	protected	instance	variables,	 the	subclass	gets	access	
to	the	instance	variables,	but	classes	that	are	not	subclasses	
and	classes	that	are	not	in	the	same	package	cannot	access	
these	variables	directly.	



48



49



50



51

Case	Study	Part	4:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	
protected	Instance	Variables	(Cont.)

¢ Class BasePlusCommissionEmployee (Fig. 9.9) extends 
the new version of class CommissionEmployee with 
protected instance variables.
§ These variables are now protectedmembers of 
BasePlusCommissionEmployee. 

¢ If another class extends this version of class 
BasePlusCommissionEmployee, the new subclass also 
can access the protected members. 

¢ The source code in Fig. 9.9 (51 lines) is considerably shorter 
than that in Fig. 9.6 (128 lines)
§ Most of the functionality is now inherited from 
CommissionEmployee

§ There is now only one copy of the functionality. 
§ Code is easier to maintain, modify and debug—the code related to a 

commission employee exists only in class CommissionEmployee. 



52

Case	Study	Part	4:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	
protected	Instance	Variables	(Cont.)

¢ Inheriting	 	protected instance	variables	slightly	
increases	performance,	 because	we	can	directly	access	
the	variables	 in	the	subclass	without	incurring	the	
overhead	of	a	set	or	get	method	call.	

¢ In	most	cases,	 it’s	better	to	use	private instance	
variables	to	encourage	 proper	software	engineering,	 and	
leave	code	optimization	 issues	to	the	compiler.	
§ Code	will	be	easier	to	maintain,	modify	and	debug.



53

Case	Study	Part	4:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	
protected	Instance	Variables	(Cont.)

¢ Using	protected instance	variables	creates	several	potential	
problems.

¢ The	subclass	object	can	set	an	inherited	variable’s	value	directly	
without	using	a	set	method.	
§ A	subclass	object	can	assign	an	invalid	value	to	the	variable

¢ Subclass	methods	are	more	likely	to	be	written	so	that	they	
depend	on	the	superclass’s	data	implementation.	
§ Subclasses	should	depend	only	on	the	superclass	 services	and	not	on	the	
superclass	data	implementation.	

¢ We	may	need	to	modify	all	the	subclasses	of	the	superclass	if	the	
superclass	implementation	 changes.	
§ You	should	be	able	to	change	the	superclass	 implementation	while	still	
providing	the	same	services	 to	the	subclasses.	



54



55

Case	Study	Part	5:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	private	
Instance	Variables	 	=>	BEST	DESIGN

instance	variables	are	declared	as	
private	and	public	methods	for	
manipulating	these	are	provided.	



56



57



58



59



60



61

Case	Study	Part	5:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	private	
Instance	Variables	(Cont.)
¢ CommissionEmployeemethods	earnings and	
toString use	the	class’s	get	methods	to	obtain	the	values	
of	its	instance	variables.	
§ If	we	decide	to	change	the	internal	representation	of	the	data	(e.g.,	
variable	names)	only	the	bodies	of	the	get	and	set	methods	that	
directly	manipulate	 the	instance	variables	will	need	to	change.	

§ These	changes	occur	solely	within	the	superclass-—no	changes	to	the	
subclass	are	needed.	

§ Localizing	the	effects	of	changes	like	this	is	a	good	software	
engineering	practice.	

¢ Subclass	BasePlusCommissionEmployee inherits	
CommissionEmployee’s non-private	methods	and	can	
access	the	private	superclass	members	via	those	methods.



62

Case	Study	Part	5:	CommissionEmployee–BasePlus-
CommissionEmployee Inheritance	Hierarchy	Using	
private	Instance	Variables	(Cont.)



63

Method	earnings overrides	class	
the	superclass’s	earnings method.	

calls	CommissionEmployee’s
earnings method	with	
super.earnings()

Good	software	engineering	practice:	If	a	method	performs	all	or	some	of	the	
actions	needed	by	another	method,	call	that	method	rather	than	duplicate	its	code.	



64

BasePlusCommissionEmployee’s toString method	
overrides	class	CommissionEmployee’s toString method

The	new	version	creates	part	of	the	String	representation	by	
calling	CommissionEmployee’s toString method	with	the	
expression	super.toString().



65

Constructors	in	Subclasses
¢ Instantiating	a	subclass	object	begins	a	chain	of	constructor	
calls	
§ The	subclass	constructor,	before	performing	its	own	tasks,	invokes	its	
direct	superclass’s	constructor

¢ If	the	superclass	 is	derived	from	another	class,	 the	superclass	
constructor	invokes	the	constructor	of	the	next	class	up	the	
hierarchy,	and	so	on.	

¢ The	last	constructor	called	in	the	chain	is	always	class	
Object’s	constructor.	

¢ Original	subclass	constructor’s	body	finishes	executing	last.	
¢ Each	superclass’s	constructor	manipulates	the	superclass	
instance	variables	that	the	subclass	object	inherits.	



66

UML	Inheritance	Diagrams

A	class	hierarchy	 in	UML	notation

An Employee is a Person and so forth; hence
the arrows point up.



67

UML	Inheritance	Diagrams

¢ Some	details	
of	UML	class	
hierarchy	
from	previous
figure



68

Acknowledgments

¢ The	course	material	used	to	prepare	this	presentation	 is	mostly	
taken/adopted	 from	the	list	below:
§ Java	- How	to	Program,	Paul	Deitel and	Harvey	Deitel,	Prentice	Hall,	2012
§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012


