
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Polymorphism

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi
TAs:	Selma	Dilek,	Selim	Yılmaz,	Selman	Bozkır

2

Today

¢ Inheritance	revisited
¢ Comparing	objects	:	equals() method
¢instanceof keyword
¢ Polymorphism

3

Visibility	Revisited
¢All	variables	and	methods	of	a	parent	class,	even	private	
members,	 are	inherited	by	its	children

¢As	we've	mentioned,	 private	members	 cannot	be	
referenced	 by	name	in	the	child	class

¢However,	private	members	 inherited	by	child	classes	
exist	and	can	be	referenced	 indirectly
§ Because	the	parent	can	refer	to	the	private	member,	the	child	
can	reference	 it	indirectly	using	its	parent's	methods

§ The	super reference	can	be	used	to	refer	to	the	parent	class,	
even	 if	no	object	of	the	parent	class	exists

4

Parent-child	class	relationship
¢An	example	of	super reference

5

Designing	for	Inheritance

¢ Taking	the	time	to	create	a	good	software	design	can	
ensure	 long-term	benefits

¢ Inheritance	 issues	are	an	important	part	of	an	object-
oriented	design

¢ Properly	designed	 inheritance	 relationships	 can	
contribute	greatly	to	the	elegance,	maintainability,	and	
reuse	of	the	software

¢ Let's	summarize	 some	of	the	issues	regarding	
inheritance	 that	relate	to	a	good	software	design

6

Inheritance	Design	Issues
¢ Every	derivation	from	the	main	class	should	be	an	is-a	
relationship

¢ Think	about	a	potential	future	class	hierarchy
¢Design	classes	 to	be	reusable	and	flexible
¢ Find	common	characteristics	 of	classes	and	push	them	
as	high	in	the	class	hierarchy	as	appropriate,	 i.e.	
“generalize”	 the	behavior

¢Override	methods	as	appropriate	 to	tailor	or	change	
the	functionality	of	a	child

¢Add	new	variables	to	children,	but	don't	redefine	
(shadow)	inherited	variables

7

Inheritance	Design	Issues
¢An	example	class	hierarchy

More generalized

More specialized

8

Inheritance	Design	Issues

¢Allow	each	class	to	manage	its	own	data;	use	the	
super reference	 to	invoke	the	parent's	 constructor	 to	
set	up	its	data

¢ Even	if	there	are	no	current	uses	for	them,	override	
general	methods	 such	as	toString and	equals
with	appropriate	definitions

¢Use	abstract	classes	to	represent	 general	concepts	
that	lower	classes	have	in	common

¢Use	visibility	modifiers	 carefully	to	provide	needed	
access	without	violating	encapsulation

9

Restricting	Inheritance

¢ The	final modifier	can	be	used	to	cut	down	
inheritance

§ If	the	final modifier	is	applied	to	a	method,	then	that	
method	cannot	be	overridden	 in	any	descendent	 classes

§ If	the	final modifier	is	applied	to	an	entire	class,	then	that	
class	cannot	be	used	to	derive	any	children	at	all

¢ These	are	key	design	decisions	 and	establish	that	a	
method	or	class	must	be	used	“as	is”	or	not	at	all

10

Restricting	Inheritance

¢ Example	of	the	final modifier

11

Class	Object

¢ In	Java,	all	types	of	objects	have	a	superclass	named	Object.
§ Every	class	implicitly	extends Object .

¢ The	Object	class	defines	several	methods:

§ public String toString()
Used	to	print	the	object.

§ public boolean equals(Object other)
Compare	the	object	to	any	other	for	equality.

12

Comparing	objects

¢ The	== operator	does	not	work	well	with	objects.
§ == compares	references	to	objects,	not	their	contents	or	
state.

§ Example:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

13

The	equals() method

¢ The	equals method	compares	the	contents	/	state	of	objects.
§ equals should	be	used	when	comparing	Strings,	Points,	...

if (str1.equals(str2)) {
System.out.println("the strings are equal");

}

¢ If	you	write	your	own	class,	its	equals method	
will	behave	 just	like	the	== operator.

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) { // false

System.out.println("equal");
}

§ This	is	the	behavior	we	inherit	from	class	Object.

14

Initial	flawed	equals()method

¢ We	can	change	this	behavior	by	writing	an	equals method.
§ Ours	will	override the	default	behavior	from	class	Object.

§ The	method	should	compare	the	state	of	the	two	objects	and	return	
true for	cases	like	the	above.

¢ A	flawed	implementation	 of	the	equals method:

public boolean equals(Point other) {
if (x == other.x && y == other.y) {

return true;
} else {

return false;
}

}

15

Flaws	in	equals() method

¢ It	should	be	legal	to	compare	a	Point to	any	object
(not	just	other	Point objects):

// this should be allowed
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...

§ equals should	always	return	false	if	a	non-Point is	passed.

16

equals() and	the	Object	class

¢equals()method,	 general	syntax:

public boolean equals(Object <name>) {
<statement(s)	that	return	a	boolean value> ;

}

§ The	parameter	to	equals must	be	of	type	Object.
§ Object is	a	general	type	that	can	match	any	object.
§ Having	an	Object parameter	means	any object	can	be	passed.

17

Another	flawed	version
¢ Another	flawed	equals implementation:

public boolean equals(Object o) {
return x == o.x && y == o.y;

}

¢ It	does	not	compile:
Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
return x == o.x && y == o.y;

^

§ The	compiler	is	saying,
"o could	be	any	object.	Not	every	object	has	an	x field."

18

Type-casting	objects
¢ Solution:	Type-cast the	object	parameter	to	a	Point.

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

¢ Casting	objects	is	different	than	casting	primitives.
§ We're	really	casting	an	Object reference	 into	a	Point reference.
§ We're	promising	the	compiler	that	o refers	 to	a	Point object.

19

Casting	objects	diagram

¢ Client	code:
Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) {

System.out.println("equal");
}

...

x 5 y 3
p1

p2
public boolean equals(Object o) {

Point other = (Point) o;
return x == other.x && y == other.y;

}

x 5 y 3

o

other

20

Comparing	different	types

¢ When	we	compare	Point objects	to	other	types:

Point p = new Point(7, 2);
if (p.equals("hello")) { // should be false

...
}

§ Currently	the	code	crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

§ The	culprit	is	the	line	with	the	type-cast:

public boolean equals(Object o) {
Point other = (Point) o;

21

The	instanceof keyword

¢ We	can	use	a	keyword	called	instanceof to	ask	whether	a	
variable	refers	to	an	object	of	a	given	type.

¢ The	instanceof keyword,	 general	syntax:
<variable> instanceof <type>

§ The	above	is	a	boolean expression.

§ Example:
String s = "hello";
Point p = new Point();

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

null instanceof String false

22

Final	version	of	equalsmethod

// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point object.
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

§ This	version	correctly	compares	Points	to	any	type	of	object.

23

Polymorphism

24

Polymorphism

¢ Polymorphism	means	many (poly)	shapes (morph)	 :	
"having	many	forms"

¢ Enables	you	to	“program	in	the	general”	rather	than	
“program	in	the	specific.”

¢ Polymorphism	 enables	 you	to	write	programs	that	
process	 objects	that	share	the	same	superclass	 as	if	
they’re	all	objects	of	the	superclass;	 this	can	simplify	
programming.

25

Polymorphism
¢A	polymorphic	reference is	a	variable	that	can	refer	to	
different	types	of	objects	 at	different	points	in	time

¢All	object	references	 in	Java	are	potentially	
polymorphic	 and	can	refer	to	an	object	of	any	type	
compatible	with	its	defined	type

¢ Compatibility	of	class	types	can	be	based	on	either	
Inheritance	 or	Interfaces	 (which	we	will	see	later)

26

An	Example	Class	Hierarchy

27

A	Polymorphic	Example

Dog myDog;
myDog = new Dog();

Animal myAnimal;

myAnimal = myDog;

28

Everything	is	an	Object!
¢ When	we	say:

myDog =	new	Dog();
¢ the	Dog	constructor	gets	called.
¢ It,	in	turn,	must	call	the	Animal	constructor
¢ When	you	don’t	extend	anything,	by	default	you	extend	Object
¢ Thus	the	Animal	constructor	calls	the	Object	constructor
¢ Looking	at	an	object	in	memory	it	will	look	like	something	 like	this:

Object

Animal

Dog
myDog

Dog
Object

reference

29

Polymorphism	Explained

¢ The	rule	is	very	simple
¢ A	reference	can	refer	to	an	object	which	is	either

§ The	same	type	as	the	reference
§ Has	a	superclass	of	the	same	type	as	the	reference

¢ So	all	of	the	following	are	legal
§ Dog	d	=	new	Dog();
§ Animal	a	=	new	Animal();
§ Object	o	=	new	Object();

Object

Animal

Dog

Dog
Object

reference

30

An	Illegal	Example

¢We	are	able	to	assign	an	object	of	a	sub-class	 into	an	
object	of	a	super-class	 as	in:

Animal	MyAnimal =	new	Dog();
¢ But	the	reverse	 is	not	true.	 	We	can’t	assign	a	superclass	
object	 into	a	sub-class	 object.
Dog	MyDog =	new	Animal();	//	illegal

All dogs are animals but
not all animals are dogs

31

Dog d;
d = new Dog();

Animal a;
a = new Dog();

Object o;
o = new Dog();

Dog d;
d = new Animal();

Animal a;
a = new Animal();

Object o;
o = new Animal();

Dog d;
d = new Object();

Animal a;
a = new Object();

Object o;
o = new Object();

Dog Animal Object
Re
fe
re
nc
e

Object

ObjectObject

Animal

Dog

Object

Animal

Dog

Object

Animal

Dog

Object

Animal

Object

Animal

Object

Animal

Object

Object

REF

REF

REF REF

REF

REF REF

REF

REF

Dog

Animal

Object

32

Polymorphism	Examples
¢ Example:	Suppose	we	create	a	program	that	simulates	
the	movement	of	several	types	of	animals	for	a	
biological	study.	Classes	 Fish,	Frog	and	Bird represent	
the	three	types	of	animals	under	 investigation.	

§ Each	class	extends	superclass	Animal,	which	contains	a	method	
move	and	maintains	an	animal’s	current	location	as	x-y	
coordinates.	Each	subclass	implements	method	move.	

§ A	program	maintains	an	Animal	array	containing	references	to	
objects	of	the	various	Animal	subclasses.	To	simulate	the	
animals’	movements,	 the	program	sends	each	object	the	same	
message	once	per	second—namely,	move.	

33

Polymorphism	Examples
¢ Each	specific	type	of	Animal	responds	to	a	move	message	in	a	
unique	way:
§ a	Fish	might	swim	three	meters
§ a	Frog	might	jump	five	meters
§ a	Bird	might	fly	ten	meters.	

¢ The	program	issues	the	same	message	(i.e.,	move)	to	each	animal	
object,	but	each	object	knows	how	to	modify	its	x-y	coordinates	
appropriately	 for	its	specific	type	of	movement.	

¢ Relying	on	each	object	to	know	how	to	“do	the	right	thing”	in	
response	to	the	same	method	call	is	the	key	concept	of	
polymorphism.	

¢ The	same	message	sent	to	a	variety	of	objects	has	“many	forms”	
of	results—hence	the	term	polymorphism.

34

Polymorphism	Examples	(Cont.)
¢ Example:	Space	Objects	 in	a	Video	Game
§ A	video	game	manipulates	objects	of	classes	Martian,	Venusian,	
Plutonian,	SpaceShip and	LaserBeam.	Each	inherits	from	
SpaceObject and	overrides	its	draw	method.

§ A	screen	manager	maintains	a	collection	of	references	to	
objects	of	the	various	classes	and	periodically	sends	each	object	
the	same	message—namely,	 draw.	

§ Each	object	responds	 in	a	unique	way.	
§ A	Martian	object	might	draw	itself	in	red	with	green	eyes	and	the	
appropriate	number	of	antennae.	

§ A	SpaceShip object	might	draw	itself	as	a	bright	silver	flying	saucer.	
§ A	LaserBeam object	might	draw	itself	as	a	bright	red	beam	across	the	
screen.	

The	same	message	 (in	this	case,	draw)	sent	to	a	variety	
of	objects	has	“many	forms”	of	results.

35

Polymorphism	Examples	(Cont.)
¢ A	screen	manager	might	use	polymorphism	to	facilitate	adding	
new	classes	to	a	system	with	minimal	modifications to	the	
system’s	code.	

¢ To	add	new	objects	to	our	video	game:

§ Build	a	class	that	extends	SpaceObject and	provides	its	own	draw	
method	implementation.	

§ When	objects	of	that	class	appear	in	the	SpaceObject collection,	
the	screen	manager	code	invokes	method	draw,	exactly	as	it	does	
for	every	other	object	in	the	collection,	regardless	of	its	type.	

§ So	the	new	objects	simply	“plug	right	in”	without	any	modification	
of	the	screen	manager	code	by	the	programmer.	

36

Demonstrating	Polymorphic	Behavior

¢ A	superclass	object	cannot	be	treated	as	a	subclass	object,	
because	a	superclass	object	is	not	an	object	of	any	of	its	
subclasses.	

¢ The	is-a	relationship	applies	only	up	the	hierarchy	from	a	
subclass	to	its	direct	(and	indirect)	superclasses,	 and	not	
down	the	hierarchy.

¢ The	Java	compiler	does	allow	the	assignment	of	a	superclass	
reference	to	a	subclass	variable	if	you	explicitly	cast	the	
superclass	reference	to	the	subclass	type
§ A	technique	known	as	downcasting that	enables	a	program	to	invoke	
subclass	methods	that	are	not	in	the	superclass.	

37

¢ When	a	superclass	variable	contains	a	reference	to	a	subclass	
object,	and	that	reference	is	used	to	call	a	method,	the	
subclass	version	of	the	method	is	called.	
§ The	Java	compiler	allows	this	“crossover”	because	an	object	of	a	
subclass	is	an	object	of	its	superclass	(but	not	vice	versa).	

¢ When	the	compiler	encounters	a	method	call	made	through	a	
variable,	the	compiler	determines	if	the	method	can	be	called	
by	checking	the	variable’s	 class	type.	
§ If	that	class	contains	the	proper	method	declaration	(or	inherits	one),	
the	call	is	compiled.	

¢ At	execution	time,	the	type	of	the	object	to	which	the	
variable	refers	determines	the	actual	method	to	use.	
§ This	process	is	called	dynamic	binding.

Demonstrating	Polymorphic	Behavior	(Cont.)

38

Method	Calls	and	Polymorphism

Assume	the	Dog	class	extends	the	Animal	class,	redefining	the	
“makeNoise”	method.

Consider	the	following:

Animal	myAnimal =	new	Dog();
myAnimal.makeNoise();

Note:	The	Animal	reference	 is	referring	to	a	Dog	object.	And	it	is	
the	Dog’s	makeNoise method	that	gets	invoked!

39

Dynamic	Binding

¢ Very simple rule.
§ No matter what the reference type is, Java will search the object and

execute the lowest occurrence of a method it finds.
¢ class Object has a toString method
¢ Assume that both Animal and Dog have overridden the

toString method

Object
toString()

Animal
toString()

Dog
toString()

Object o

Animal a

Dog d

A
Dog

Object

o.toString();
a.toString();
d.toString();

40

Polymorphism

¢With	polymorphism,	 we	can	design	and	implement	
systems	 that	are	easily	extensible

¢New	classes	can	be	added	with	little	or	no	modification	
to	the	general	portions	of	the	program,	as	long	as	the	
new	classes	are	part	of	the	inheritance	hierarchy.	

¢ The	only	parts	of	a	program	that	must	be	altered	for	
new	classes	are	those	that	require	direct	knowledge	of	
the	new	classes.	

41

Polymorphism
¢ A	variable	of	a	type	T	can	legally	refer	to	an	object	of	any	subclass	
of	T.

Employee person = new Lawyer();

System.out.println(person.getSalary()); // 50000.0

System.out.println(person.getVacationForm()); // pink

¢ You	can	call	any	methods	from	Employee on	the	variable	
person,	but	not	any	methods	specific	to	Lawyer (such	as	Sue).

¢ Once	a	method	 is	called	on	the	object,	it	behaves	 in	its	normal	
way	(as	a	Lawyer,	not	as	a	normal	Employee).

42

Polymorphism	+	parameters
¢ You	can	declare	methods	to	accept	superclass	types	as	parameters,	
then	pass	a	parameter	of	any	subtype.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
} OUTPUT:

salary = 50000.0
vacation days = 21
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow

43

¢ You	can	declare	arrays	of	superclass	types,	and	store	objects	of	any	
subtype	as	elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] employees = {new Lawyer(), new Secretary(),
new Marketer(), new LegalSecretary()};

for (int i = 0; i < employees.length; i++) {
System.out.println("salary = " +

employees[i].getSalary());
System.out.println("vacation days = " +

employees[i].getVacationDays());
System.out.println();

}
}

}
OUTPUT:

salary = 50000.0
vacation days = 15

salary = 50000.0
vacation days = 10

salary = 60000.0
vacation days = 10

salary = 55000.0
vacation days = 10

44

Polymorphism	vs.	Inheritance

¢ Inheritance is required in order to achieve polymorphism
(we must have class hierarchies).
§ Re-using class definitions via extension and redefinition

¢ Polymorphism is not required in order to achieve
inheritance.
§ An object of class A acts as an object of class B (an ancestor to A).

45

References	and	Inheritance

¢Assigning	a	child	object	to	a	parent	reference	 is	
considered	 to	be	a	widening	conversion,	and	can	be	
performed	 by	simple	assignment
§ The	widening	conversion	is	the	most	useful

¢Assigning	a	parent	object	to	a	child	reference	 can	
be	done,	but	it	is	considered	 a	narrowing	
conversion	and	two	rules/guidelines	 apply:
§ A	narrowing	conversion	must	be	done	with	a	cast
§ A	narrowing	conversion	should	only	be	used	to	restore	an	
object	back	to	its	original	class (back	to	what	it	was	“born	
as”	with	the	new	operator)

46

Polymorphism	Example

¢ Consider	an	array	of	Person

Person[] people = new Person[4];

¢ Since	Studentand	Undergraduate
are	types	of	Person,	we	can	assign	
them	to	Person variables

people[0] = new Student("DeBanque,
Robin", 8812);

people[1] = new
Undergraduate("Cotty, Manny",
8812, 1);

47

Example

¢ Given:
Person[] people = new Person[4];

people[0] = new Student("DeBanque, Robin", 8812);

¢ When	 invoking:
people[0].writeOutput();

¢ Which	writeOutput() is	invoked,	the	one	defined	for	
Studentor	the	one	defined	for	Person?

¢ Answer:	The	one	defined	for	Student

48

Example
public class PolymorphismDemo
{

public static void main(String[] args) {
Person[] people = new Person[4];
people[0] = new Undergraduate("Cotty, Manny", 4910, 1);
people[1] = new Undergraduate("Kick, Anita", 9931, 2);
people[2] = new Student("DeBanque, Robin", 8812);

people[3] = new Undergraduate("Bugg, June", 9901, 4);

for (Person p : people)
{

p.writeOutput();
System.out.println();

}
}

}

49

A	polymorphism	problem

¢ Assume	that	the	following	four	classes	have	been	declared:

(continued	on	next	slide)

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

50

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

public class Baz extends Foo {
public void method1() {

System.out.println("baz 1");
}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

A	polymorphism	problem (cont’d)

51

A	polymorphism	problem (cont’d)

¢ What	would	be	the	output	of	the	following	client	code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.println();

}

52

Finding	output	with	diagrams
¢ One	way	to	determine	 the	output	 is	to	diagram	each	class	and	
its	methods,	 including	their	output:
§ Add	the	classes	from	top	(superclass)	 to	bottom	(subclass).
§ Include	any	inherited	methods	and	their	output.

53

Finding	output	with	tables

¢ Another	possible	technique	for	solving	these	problems	is	to	
make	a	table	of	the	classes	and	methods,	writing	the	output	 in	
each	square.

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

54

Polymorphism	answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.println();

}

Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

55

Another	problem
¢ Assume	that	the	following	classes	have	been	declared:

§ The	order	of	classes	is	changed,	as	well	as	the	client.
§ The	methods	now	sometimes	call	other	methods.

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}
public class Ham {

public void a() {
System.out.print("Ham a ");
b();

}
public void b() {

System.out.print("Ham b ");
}
public String toString() {

return "Ham";
}

} (continued on next slide)

56

¢ What	would	be	the	output	of	the	following	client	code?

public class Spam extends Yam {
public void b() {

System.out.print("Spam b ");
}

}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a ");
super.a();

}

public String toString() {
return "Yam";

}
}

Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
System.out.println(); // to end the line of output
food[i].b();
System.out.println(); // to end the line of output
System.out.println();

}

57

The	class	diagram

¢ The	following	diagram	depicts	the	
class	hierarchy:

58

¢ Notice	that	Ham's	amethod	calls	b.		Lamb overrides	b.
§ This	means	that	calling	a on	a	Lambwill	also	have	a	new	result.

¢ Lamb 's	a output: Ham a Lamb b

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}
public void b() {

System.out.print("Ham b ");
}
public String toString() {

return "Ham";
}

}
public class Lamb extends Ham {

public void b() {
System.out.print("Lamb b ");

}
}

Polymorphism	
at	work!

59

The	table

¢ Fill	out	the	following	table	with	each	class's	behavior:
method Ham Lamb Yam Spam

a

b

toString

60

The	answer
Ham[] food = {new Spam(), new Yam(), new Ham(), new Lamb()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

Output:
Yam

Yam a Ham a Spam b

Spam b

Yam

Yam a Ham a Lamb b

Lamb b

Ham

Ham a Ham b

Ham b

Ham

Ham a Lamb b

Lamb b

61

Acknowledgments

¢ The	course	material	used	to	prepare	this	presentation	 is	mostly	
taken/adopted	 from	the	list	below:
§ Java	- How	to	Program,	Paul	Deitel and	Harvey	Deitel,	Prentice	Hall,	2012
§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012

§ Reges/Stepp.	Building	Java	Programs:	A	Back	to	Basics	Approach,	3rd	
edition

§ Mike	Scott,	CS314	Course	notes,	University	of	Texas	Austin

