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Abstract	Classes	and	Interfaces
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Today

¢ Abstract	Classes
§ Abstract	methods
§ Polymorphism	with	abstract	classes
§ Example	project:	Payroll	System

¢ Interfaces
§ What	is	an	Interface?
§ Defining	an	Interface
§ Implementing	an	Interface
§ Implementing	Multiple	Interfaces
§ Extending	a	Class	and	Implementing	Interface(s)
§ Extending	an	Interface
§ Interfaces	as	Types

¢ Interfaces	vs	Abstract	Classes
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Abstract	Classes

¢ An	abstract	class is	a	class	that	is	declared	abstract
¢ An	abstract	classmay	or	may	not	include	abstract	methods.
¢ Abstract	classes	cannot	be	instantiated,	but	they	can	be	
subclassed.
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Abstract Classes:	Revisiting the Shapes

Shape

Circle Quadrilateral RightTriangle

Square Rectangle
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Abstract Classes
¢ Shapes	all	have	certain	states	(for	example:	position,	orientation,	line	color,	
fill	color)	and	behaviors	(for	example:	moveTo,	rotate,	resize,	draw)	in	
common.

¢ Some	of	these	states	and	behaviors	are	the	same	for	all	shapes	(for	example:	
position,	fill	color,	and	moveTo).

¢ Others	require	different	implementations	
(for	example,	resize	or	draw).

¢ All	Shapes	must	be	able	to	draw	
or	resize	themselves;	they	just	
differ	in	how	they	do	it.
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Abstract	Classes

public	class	Shape	{
private	String	name;

public	Shape(String	name)	{
this.name	=	name;

}

public	String	getName()	{
return	name;

}

public	void	draw()	{
//	what	is	the	shape?	
// Code...?!	Nothing!

}
}

public	abstract	class	Shape	{
private	String	name;

public	Shape(String	name)	{
this.name	=	name;

}

public	String	getName()	{
return	name;

}

public	abstract	void	draw();
}
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Abstract	Methods

¢ An	abstract	method is	a	method	that	is	declared	without	an	
implementation
§ without	braces,	and	followed	by	a	semicolon,	like	this:

public abstract void draw();

¢ When an	abstract class is	subclassed,	the subclass usually
provides implementations for all of	the abstract methods in	its
parent class.
§ However,	if it	does not,	then the subclass must also be	declared abstract.
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Abstract	Classes
public	class	RightTriangle extends	Shape	{

private	int	a;

public	RightTriangle(String	name,	int a)	{
super(name);
this.a	=	a;

}

public	int	getA()	{
return	a;

}
//	override	abstract	method
public	void	draw()	{

for	(int line	=	1;	line	<=	a;	line++)	{
for	(int	i	=	0;	i	<	line;	i++)	{

System.out.print("*");
}
System.out.println();

}
}

}
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Abstract	Classes

public	abstract	class	Quadrilateral	
extends	Shape	{

public	Quadrilateral(String	name)	{
super(name);

}

//	still	nothing	to draw!
public	abstract	void	draw();

}

public	class	Square	extends	Quadrilateral	{
private	int	a;

public	Square(String	name,	int a)	{
super(name);
this.a	=	a;

}
public	int	getA()	{

return	a;
}

//	override	abstract	method
public	void	draw()	{

for	(int line	=	0;	line	<	a;	line++)	{
for	(int	col	=	0;	col	<	a;	col++)	{

System.out.print("*");
}
System.out.println();

}
}

}
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Abstract	Classes

public	class	Program	{

public	static	void	main(String[]	args)	{
//	compilation	error!:	"Cannot	instantiate	the	type	Shape"
Shape	shape =	new	Shape("Shape");	

//	compilation	error!:	"Cannot	instantiate	the	type	Quadrilateral"	
Quadrilateral	quadrilateral	=	new	Quadrilateral("Quadrilateral");

Square	s	=	new	Square("Square",	4);
s.draw();

Rectangle	r	=	new	Rectangle("Rectangle",	3,	7);
r.draw();

RightTriangle t	=	new	RightTriangle("RightTriangle",	5);
t.draw();

}
}
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Abstract	Classes

¢ Are	part	of	the	inheritance	hierarchy
Circle	extends	Shape	
Square	extends Quadrilateral

¢ Can	have	constructor(s),	but	no	objects of	these	classes	can	be	
created

Shape	shape =	new	Shape("Shape");	
//	compilation	error!:	"Cannot	instantiate	the	type	Shape“

¢ Classes	that	can	be	used	to	instantiate	objects	are	called	
concrete	classes.	
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Example-1
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Example-2

¢ Imagine	there	are	several	instruments,	either	stringed	or	wind.	
¢ Design	a	class	hierarchy	for	only	two	types	of	instruments,	
guitars	and	flutes.

¢ You	have	to	design	your	model	in	a	way	that	new	instruments	
can	be	added in	the	hierarchy	later	on.

¢ Imagine	there	is	only	one	feature	for	each	instrument	at	the	
moment,	which	is	the	play feature.
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Example-2
public	abstract	class	Instrument	{

protected	String	name;
abstract	public	void	play();

}

abstract	class	StringedInstrument extends	Instrument	{
protected	int numberOfStrings;

}

Still	abstract

Abstract	class

public	class	Guitar	extends	StringedInstrument{

public	void	play(){
System.out.println(“Guitar	is	rocking!”);

}
}
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Example-2

abstract	class	WindInstrument extends	Instrument	{
//features

}

public	class	Flute	extends	WindInstrument{

public	void	play(){
System.out.println(“Flute	is	rocking!”);

}
}
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Example	Project:	Payroll	System
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Overview	of	the	classes



18

Employee.java	(1)
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Employee.java	(2)

Earnings	will	
be	calculated	
in	subclasses
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SalariedEmployee.java

Overridden	
methods
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HourlyEmployee.java	(1)
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HourlyEmployee.java	(2)
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CommissionEmployee.java	(1)
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CommissionEmployee.java	(2)
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BasePlusCommissionEmployee.java
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PayrollSystemTest.java	(1)
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PayrollSystemTest.java	(2)
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Interfaces

GUI

Laptop

LCD/LED	TV
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Concept	of	Interface

¢ An	interface	is	a	contract.	It	guarantees	that	the	system	will	
have	certain	functionalities.

¢ An	interface	is	an	integration	point	between	two	systems.

¢ A	system	can	have	many	interfaces,	so	it	can	be	integrated	to	
many	other	systems.
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public	interface Shape	{
public	abstract	void	draw();

public	static	final	double	PI	=	3.14;
}

Defining	an	Interface

¢ Keyword	interface is	used	to	define	an	interface

¢ Methods	in	an	interface	must	be	public and	abstract,	
these	keywords	are	commonly omitted

¢ Interfaces	can	include	public static final variables	
(constants),	these	keywords	are	commonly	omitted

No	need	to	write	



31

Implementing	an	Interface

¢ An	interface	is	implemented	by	the	keyword	
implements

¢ Any	class	implementing	an	interface	must	either	
implement	all	methods	of	it,	or	be	declared	abstract

public	class	RightTriangle implements Shape {
//	.....
public	void	draw()	{

for	(int line	=	1;	line	<=	a;	line++)	{
for	(int	i	=	0;	i	<	line;	i++)	{

System.out.print("*");
}
System.out.println();

}
}

}
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Implementing	Multiple	Interfaces

¢ More	than	one	interface can	be	implemented	by	a	class.
¢ Names	of	interfaces	are separated by	comma

Question:	What	if	at	least	two	interfaces	include	the	same	method	
definition?

public	class	LedTv	implements Usb,	Hdmi,	Scart,	Vga {

//	.....

}
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Extending	a	Class	and	
Implementing	Interface(s)

public	class	Car	extends	Vehicle	
implements	Shape {

public	void	draw()	{
//	....

}
}
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Extending	an	Interface

¢ It	is	possible	for	an	interface	to	extend	another	interface

public	interface	I1	{
void	m1();

}

public	class	C2	implements I2 {
public	void	m1()	{

//	...
}
public	void	m2()	{

//	...
}

}

public	interface	I2	extends	I1	{
void	m2();

}

public	class	C1 implements	I1 {

public	void	m1()	{
//	...

}
}
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Interfaces	as	Types

¢ When	you	define	a	new	interface,	you	are	defining	a	new	
reference	data	type.

¢ You	can	use	interface	names	anywhere	you	can	use	any	other	
data	type	name.

¢ If	you	define	a	reference	variable	whose	type	is	an	interface,	
any	object	you	assign	to	it	must	be	an	instance	of	a	class	that	
implements	the	interface.
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Interfaces	as	Types

public	class	Program	{
public	static	void	main(String[]	args)	{

Shape	shape;	

shape	=	new	Square(4);
shape.draw();

shape	=	new	Rectangle(3,	7);
shape.draw();

shape	=	new	RightTriangle(5);
shape.draw();

}
}

public	class	Program	{
public	static	void	main(String[]	args)	{

Shape[]	shapes	=	new	Shape[3];
shapes[0]	=	new	Square(5);
shapes[1]	=	new	Rectangle(2,	8);
shapes[2]	=	new	RightTriangle(3);
for	(Shape	s	:	shapes)	{

drawIt(s);
}

}

public	static	void	drawIt(Shape	s)	{
s.draw();

}
}
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Example	Project:	Payroll	System	Revisited

Interface	
implementation	

symbol
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Payable.java
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Invoice.java	(1)
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Invoice.java	(2)
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Employee.java

/*	Rest	of	the	class	is	same	as	the	previous	example	
except	there	is	no		earnings() method!		*/

Payable interface	includes		getPaymentAmount() method,	but	
Employee class	does	not	implement	it!
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SalariedEmployee.java
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PayableInterfaceTest.java
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Interfaces vs Abstract Classes
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Summary

¢ Abstract	class	is	defined	with	the	keyword	abstract
¢ If	a	class	includes	an	abstract	method,	it	must	be	
declared	as	abstract

¢Objects	of	abstract	classes	cannot	be	created
¢ Interface	is	defined	with	the	keyword	interface
¢ A	class	can	implement an	interface,	an	interface	can	
extend an	interface

¢ A	class	can	implement	many	interfaces
¢Objects	of	interfaces	cannot	be	created
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