
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi

Abstract	Classes	and	Interfaces

2

Today

¢ Abstract	Classes
§ Abstract	methods
§ Polymorphism	with	abstract	classes
§ Example	project:	Payroll	System

¢ Interfaces
§ What	is	an	Interface?
§ Defining	an	Interface
§ Implementing	an	Interface
§ Implementing	Multiple	Interfaces
§ Extending	a	Class	and	Implementing	Interface(s)
§ Extending	an	Interface
§ Interfaces	as	Types

¢ Interfaces	vs	Abstract	Classes

3

Abstract	Classes

¢ An	abstract	class is	a	class	that	is	declared	abstract
¢ An	abstract	classmay	or	may	not	include	abstract	methods.
¢ Abstract	classes	cannot	be	instantiated,	but	they	can	be	
subclassed.

4

Abstract Classes:	Revisiting the Shapes

Shape

Circle Quadrilateral RightTriangle

Square Rectangle

5

Abstract Classes
¢ Shapes	all	have	certain	states	(for	example:	position,	orientation,	line	color,	
fill	color)	and	behaviors	(for	example:	moveTo,	rotate,	resize,	draw)	in	
common.

¢ Some	of	these	states	and	behaviors	are	the	same	for	all	shapes	(for	example:	
position,	fill	color,	and	moveTo).

¢ Others	require	different	implementations	
(for	example,	resize	or	draw).

¢ All	Shapes	must	be	able	to	draw	
or	resize	themselves;	they	just	
differ	in	how	they	do	it.

6

Abstract	Classes

public	class	Shape	{
private	String	name;

public	Shape(String	name)	{
this.name	=	name;

}

public	String	getName()	{
return	name;

}

public	void	draw()	{
//	what	is	the	shape?	
// Code...?!	Nothing!

}
}

public	abstract	class	Shape	{
private	String	name;

public	Shape(String	name)	{
this.name	=	name;

}

public	String	getName()	{
return	name;

}

public	abstract	void	draw();
}

7

Abstract	Methods

¢ An	abstract	method is	a	method	that	is	declared	without	an	
implementation
§ without	braces,	and	followed	by	a	semicolon,	like	this:

public abstract void draw();

¢ When an	abstract class is	subclassed,	the subclass usually
provides implementations for all of	the abstract methods in	its
parent class.
§ However,	if it	does not,	then the subclass must also be	declared abstract.

8

Abstract	Classes
public	class	RightTriangle extends	Shape	{

private	int	a;

public	RightTriangle(String	name,	int a)	{
super(name);
this.a	=	a;

}

public	int	getA()	{
return	a;

}
//	override	abstract	method
public	void	draw()	{

for	(int line	=	1;	line	<=	a;	line++)	{
for	(int	i	=	0;	i	<	line;	i++)	{

System.out.print("*");
}
System.out.println();

}
}

}

9

Abstract	Classes

public	abstract	class	Quadrilateral	
extends	Shape	{

public	Quadrilateral(String	name)	{
super(name);

}

//	still	nothing	to draw!
public	abstract	void	draw();

}

public	class	Square	extends	Quadrilateral	{
private	int	a;

public	Square(String	name,	int a)	{
super(name);
this.a	=	a;

}
public	int	getA()	{

return	a;
}

//	override	abstract	method
public	void	draw()	{

for	(int line	=	0;	line	<	a;	line++)	{
for	(int	col	=	0;	col	<	a;	col++)	{

System.out.print("*");
}
System.out.println();

}
}

}

10

Abstract	Classes

public	class	Program	{

public	static	void	main(String[]	args)	{
//	compilation	error!:	"Cannot	instantiate	the	type	Shape"
Shape	shape =	new	Shape("Shape");	

//	compilation	error!:	"Cannot	instantiate	the	type	Quadrilateral"	
Quadrilateral	quadrilateral	=	new	Quadrilateral("Quadrilateral");

Square	s	=	new	Square("Square",	4);
s.draw();

Rectangle	r	=	new	Rectangle("Rectangle",	3,	7);
r.draw();

RightTriangle t	=	new	RightTriangle("RightTriangle",	5);
t.draw();

}
}

11

Abstract	Classes

¢ Are	part	of	the	inheritance	hierarchy
Circle	extends	Shape	
Square	extends Quadrilateral

¢ Can	have	constructor(s),	but	no	objects of	these	classes	can	be	
created

Shape	shape =	new	Shape("Shape");	
//	compilation	error!:	"Cannot	instantiate	the	type	Shape“

¢ Classes	that	can	be	used	to	instantiate	objects	are	called	
concrete	classes.	

12

Example-1

13

Example-2

¢ Imagine	there	are	several	instruments,	either	stringed	or	wind.	
¢ Design	a	class	hierarchy	for	only	two	types	of	instruments,	
guitars	and	flutes.

¢ You	have	to	design	your	model	in	a	way	that	new	instruments	
can	be	added in	the	hierarchy	later	on.

¢ Imagine	there	is	only	one	feature	for	each	instrument	at	the	
moment,	which	is	the	play feature.

14

Example-2
public	abstract	class	Instrument	{

protected	String	name;
abstract	public	void	play();

}

abstract	class	StringedInstrument extends	Instrument	{
protected	int numberOfStrings;

}

Still	abstract

Abstract	class

public	class	Guitar	extends	StringedInstrument{

public	void	play(){
System.out.println(“Guitar	is	rocking!”);

}
}

15

Example-2

abstract	class	WindInstrument extends	Instrument	{
//features

}

public	class	Flute	extends	WindInstrument{

public	void	play(){
System.out.println(“Flute	is	rocking!”);

}
}

16

Example	Project:	Payroll	System

17

Overview	of	the	classes

18

Employee.java	(1)

19

Employee.java	(2)

Earnings	will	
be	calculated	
in	subclasses

20

SalariedEmployee.java

Overridden	
methods

21

HourlyEmployee.java	(1)

22

HourlyEmployee.java	(2)

23

CommissionEmployee.java	(1)

24

CommissionEmployee.java	(2)

25

BasePlusCommissionEmployee.java

26

PayrollSystemTest.java	(1)

27

PayrollSystemTest.java	(2)

28

Interfaces

GUI

Laptop

LCD/LED	TV

29

Concept	of	Interface

¢ An	interface	is	a	contract.	It	guarantees	that	the	system	will	
have	certain	functionalities.

¢ An	interface	is	an	integration	point	between	two	systems.

¢ A	system	can	have	many	interfaces,	so	it	can	be	integrated	to	
many	other	systems.

30

public	interface Shape	{
public	abstract	void	draw();

public	static	final	double	PI	=	3.14;
}

Defining	an	Interface

¢ Keyword	interface is	used	to	define	an	interface

¢ Methods	in	an	interface	must	be	public and	abstract,	
these	keywords	are	commonly omitted

¢ Interfaces	can	include	public static final variables	
(constants),	these	keywords	are	commonly	omitted

No	need	to	write	

31

Implementing	an	Interface

¢ An	interface	is	implemented	by	the	keyword	
implements

¢ Any	class	implementing	an	interface	must	either	
implement	all	methods	of	it,	or	be	declared	abstract

public	class	RightTriangle implements Shape {
//
public	void	draw()	{

for	(int line	=	1;	line	<=	a;	line++)	{
for	(int	i	=	0;	i	<	line;	i++)	{

System.out.print("*");
}
System.out.println();

}
}

}

32

Implementing	Multiple	Interfaces

¢ More	than	one	interface can	be	implemented	by	a	class.
¢ Names	of	interfaces	are separated by	comma

Question:	What	if	at	least	two	interfaces	include	the	same	method	
definition?

public	class	LedTv	implements Usb,	Hdmi,	Scart,	Vga {

//

}

33

Extending	a	Class	and	
Implementing	Interface(s)

public	class	Car	extends	Vehicle	
implements	Shape {

public	void	draw()	{
//

}
}

34

Extending	an	Interface

¢ It	is	possible	for	an	interface	to	extend	another	interface

public	interface	I1	{
void	m1();

}

public	class	C2	implements I2 {
public	void	m1()	{

//	...
}
public	void	m2()	{

//	...
}

}

public	interface	I2	extends	I1	{
void	m2();

}

public	class	C1 implements	I1 {

public	void	m1()	{
//	...

}
}

35

Interfaces	as	Types

¢ When	you	define	a	new	interface,	you	are	defining	a	new	
reference	data	type.

¢ You	can	use	interface	names	anywhere	you	can	use	any	other	
data	type	name.

¢ If	you	define	a	reference	variable	whose	type	is	an	interface,	
any	object	you	assign	to	it	must	be	an	instance	of	a	class	that	
implements	the	interface.

36

Interfaces	as	Types

public	class	Program	{
public	static	void	main(String[]	args)	{

Shape	shape;	

shape	=	new	Square(4);
shape.draw();

shape	=	new	Rectangle(3,	7);
shape.draw();

shape	=	new	RightTriangle(5);
shape.draw();

}
}

public	class	Program	{
public	static	void	main(String[]	args)	{

Shape[]	shapes	=	new	Shape[3];
shapes[0]	=	new	Square(5);
shapes[1]	=	new	Rectangle(2,	8);
shapes[2]	=	new	RightTriangle(3);
for	(Shape	s	:	shapes)	{

drawIt(s);
}

}

public	static	void	drawIt(Shape	s)	{
s.draw();

}
}

37

Example	Project:	Payroll	System	Revisited

Interface	
implementation	

symbol

38

Payable.java

39

Invoice.java	(1)

40

Invoice.java	(2)

41

Employee.java

/*	Rest	of	the	class	is	same	as	the	previous	example	
except	there	is	no		earnings() method!		*/

Payable interface	includes		getPaymentAmount() method,	but	
Employee class	does	not	implement	it!

42

SalariedEmployee.java

43

PayableInterfaceTest.java

44

Interfaces vs Abstract Classes

45

Summary

¢ Abstract	class	is	defined	with	the	keyword	abstract
¢ If	a	class	includes	an	abstract	method,	it	must	be	
declared	as	abstract

¢Objects	of	abstract	classes	cannot	be	created
¢ Interface	is	defined	with	the	keyword	interface
¢ A	class	can	implement an	interface,	an	interface	can	
extend an	interface

¢ A	class	can	implement	many	interfaces
¢Objects	of	interfaces	cannot	be	created

46

Acknowledgements

¢ The	course	material	used	to	prepare	this	presentation	is	mostly	
taken/adopted	from	the	list	below:
¢ Java	- How	to	Program,	Paul	Deitel and	Harvey	Deitel,	Prentice	Hall,	2012

¢ http://www.javatpoint.com/difference-between-abstract-class-
and-interface

