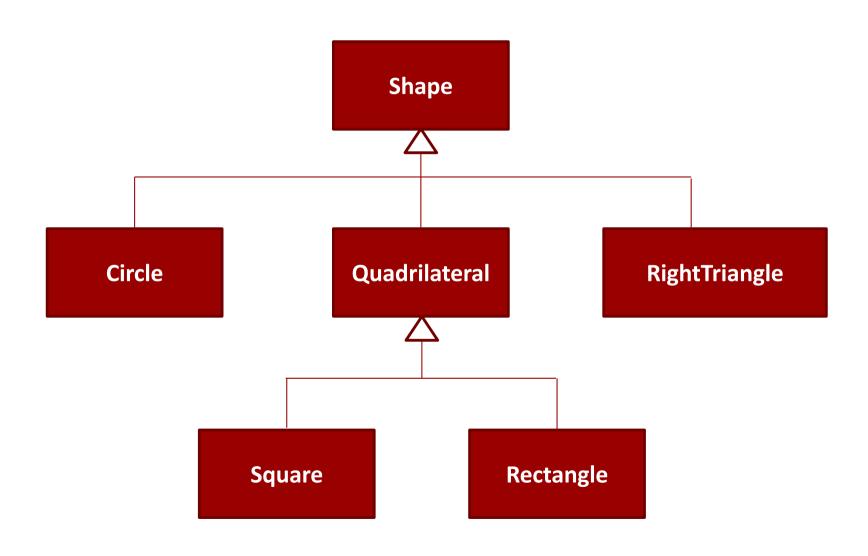
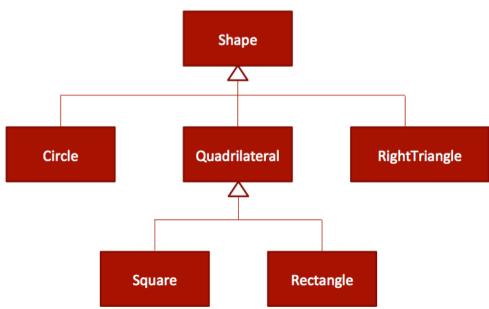
BBM 102 – Introduction to Programming II

Spring 2017

Abstract Classes and Interfaces


Instructors: Ayça Tarhan, Fuat Akal, Gönenç Ercan, Vahid Garousi

Today


- Abstract Classes
 - Abstract methods
 - Polymorphism with abstract classes
 - Example project: Payroll System
- Interfaces
 - What is an Interface?
 - Defining an Interface
 - Implementing an Interface
 - Implementing Multiple Interfaces
 - Extending a Class and Implementing Interface(s)
 - Extending an Interface
 - Interfaces as Types
- Interfaces vs Abstract Classes

- An abstract class is a class that is declared abstract
- An abstract class may or may not include abstract methods.
- Abstract classes cannot be instantiated, but they can be subclassed.

Abstract Classes: Revisiting the Shapes

- Shapes all have certain states (for example: position, orientation, line color, fill color) and behaviors (for example: moveTo, rotate, resize, draw) in common.
- Some of these states and behaviors are the same for all shapes (for example: position, fill color, and moveTo).
- Others require different implementations (for example, resize or draw).
- All Shapes must be able to draw or resize themselves; they just differ in how they do it.


```
public class Shape {
    private String name;
    public Shape(String name) {
         this.name = name;
    public String getName() {
         return name;
    public void draw() {
         // what is the shape?
         // Code...?! Nothing!
```

```
public Shape(String name) {
        this.name = name;
}

public String getName() {
        return name;
}
```

public abstract class Shape {

private String name;

public abstract void draw();

Abstract Methods

- An abstract method is a method that is declared without an implementation
 - without braces, and followed by a semicolon, like this:

```
public abstract void draw();
```

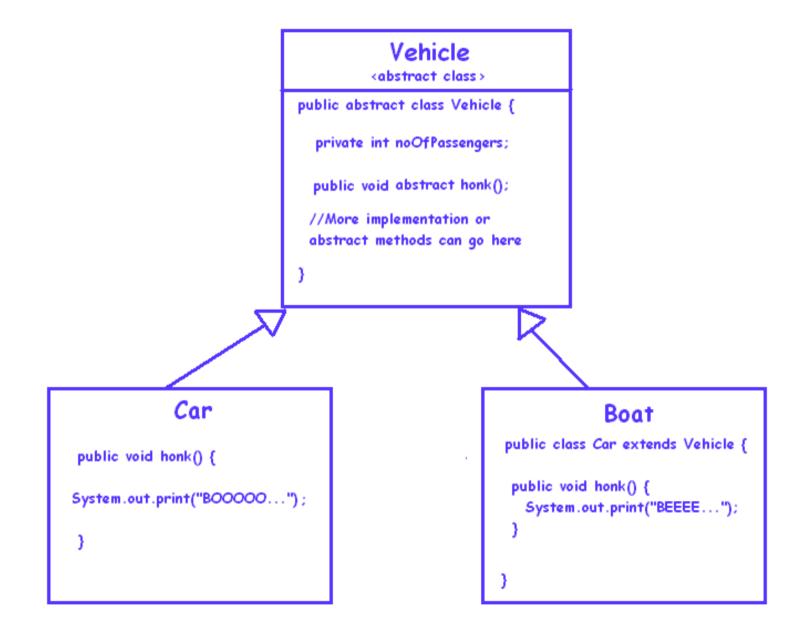
- When an abstract class is subclassed, the subclass usually provides implementations for all of the abstract methods in its parent class.
 - However, if it does not, then the subclass must also be declared abstract.

```
public class RightTriangle extends Shape {
    private int a;
    public RightTriangle(String name, int a) {
           super(name);
           this.a = a;
    public int getA() {
           return a;
    // override abstract method
    public void draw() {
           for (int line = 1; line <= a; line++) {
               for (int i = 0; i < line; i++) {
                      System.out.print("*");
                System.out.println();
```

```
public abstract class Quadrilateral
               extends Shape {
    public Quadrilateral(String name) {
          super(name);
    // still nothing to draw!
    public abstract void draw();
```

```
public class Square extends Quadrilateral {
    private int a:
    public Square(String name, int a) {
           super(name);
           this.a = a;
    public int getA() {
           return a;
    // override abstract method
    public void draw() {
           for (int line = 0; line < a; line++) {
                for (int col = 0; col < a; col++) {
                      System.out.print("*");
                System.out.println();
```

```
public class Program {
    public static void main(String[] args) {
          // compilation error!: "Cannot instantiate the type Shape"
          Shape shape = new Shape("Shape");
          // compilation error!: "Cannot instantiate the type Quadrilateral"
           Quadrilateral quadrilateral = new Quadrilateral("Quadrilateral");
          Square s = new Square("Square", 4);
          s.draw();
           Rectangle r = new Rectangle("Rectangle", 3, 7);
          r.draw();
           RightTriangle t = new RightTriangle("RightTriangle", 5);
          t.draw();
```


Are part of the inheritance hierarchy

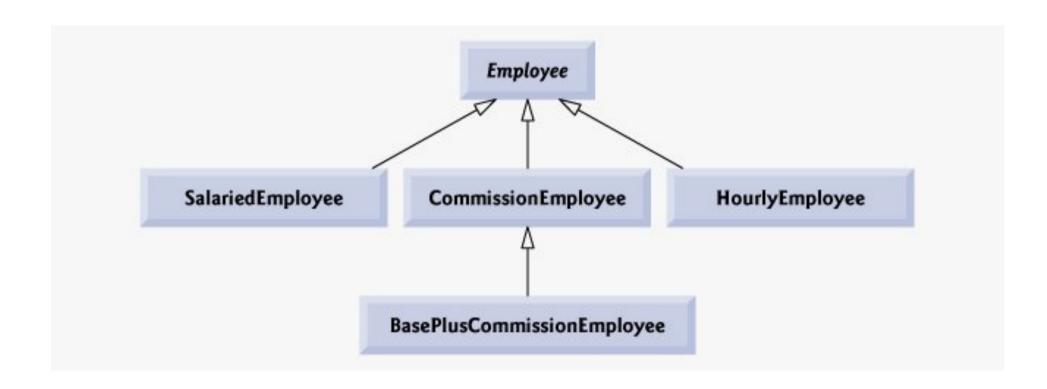
Circle extends Shape Square extends Quadrilateral

 Can have constructor(s), but no objects of these classes can be created

```
Shape shape = new Shape("Shape");
// compilation error!: "Cannot instantiate the type Shape"
```

 Classes that can be used to instantiate objects are called concrete classes.

- Imagine there are several instruments, either stringed or wind.
- Design a class hierarchy for only two types of instruments, guitars and flutes.
- You have to design your model in a way that new instruments can be added in the hierarchy later on.
- Imagine there is only one feature for each instrument at the moment, which is the play feature.




```
Abstract class
public abstract class Instrument {
  protected String name;
  abstract public void play();
                                                                            Still abstract
abstract class StringedInstrument extends Instrument {
  protected int numberOfStrings;
public class Guitar extends StringedInstrument{
  public void play(){
    System.out.println("Guitar is rocking!");
```

```
abstract class WindInstrument extends Instrument {
    //features
}
```

```
public class Flute extends WindInstrument{
   public void play(){
      System.out.println("Flute is rocking!");
   }
}
```

Example Project: Payroll System

Overview of the classes

	earnings	toString
Employee	abstract	firstName lastName social security number: SSN
Salaried- Employee	weeklySalary	salaried employee: firstName lastName social security number: SSN weekly salary: weeklysalary
Hourly- Employee	If hours <= 40 wage * hours If hours > 40 40 * wage + (hours - 40) * wage * 1.5	hourly employee: firstName lastName social security number: SSN hourly wage: wage; hours worked: hours
Commission- Employee	commissionRate * grossSales	commission employee: firstName lastName social security number: SSN gross sales: grossSales; commission rate: commissionRate
BasePlus- Commission- Employee	(commissionRate * grossSales) + baseSalary	base salaried commission employee: firstName lastName social security number: SSN gross sales: grossSales; commission rate: commissionRate; base salary: baseSalary

Employee.java (1)

```
// Fig. 10.4: Employee.java
   // Employee abstract superclass.
    public abstract class Employee
 5
       private String firstName:
       private String lastName;
       private String socialSecurityNumber;
      // three-argument constructor
11
       public Employee ( String first, String last, String ssn )
12
13
          firstName = first:
14
          lastName = last;
15
          socialSecurityNumber = ssn;
16
       } // end three-argument Employee constructor
17
18
       // set first name
19
       public void setFirstName( String first )
20
          firstName = first:
22
       } // end method setFirstName
23
      // return first name
      public String getFirstName()
26
          return firstName:
       } // end method getFirstName
28
29
30
       // set last name
       public void setLastName( String last )
31
32
33
          lastName = last;
34
       } // end method setLastName
35
```

Employee.java (2)

```
// return last name
37
     public String getLastName()
38
39
          return lastName:
      } // end method getLastName
40
41
42
      // set social security number
43
      public void setSocialSecurityNumber( String ssn )
44
45
          socialSecurityNumber = ssn; // should validate
       } // end method setSocialSecuritvNumber
46
47
48
      // return social security number
49
      public String getSocialSecurityNumber()
50
51
          return socialSecurityNumber;
52
      } // end method getSocialSecurityNumber
53
54
      // return String representation of Employee object
55
      public String toString()
56
          return String.format( "%s %s\nsocial security number: %s",
58
             getFirstName(), getLastName(), getSocialSecurityNumber()
                                                                         Earnings will
59
       } // end method toString
                                                                        be calculated
60
       // abstract method overridden by subclasses
61
                                                                         in subclasses
       public abstract double earnings(); // no implementation here
62
    } // end abstract class Employee
```

SalariedEmployee.java

```
public class SalariedEmployee extends Employee
 5
 6
       private double weeklySalary;
       // four-argument constructor
       public SalariedEmployee (String first, String last, String ssn,
10
          double salary )
11
12
          super( first, last, ssn ); // pass to Employee constructor
13
          setWeeklySalary( salary ); // validate and store salary
14
       } // end four-argument SalariedEmployee constructor
15
16
       // set salarv
17
       public void setWeeklySalary( double salary )
18
19
          weeklvSalary = salary < 0.0 ? 0.0 : salary;
20
       } // end method setWeeklvSalarv
21
22
       // return salarv
23
       public double getWeeklvSalarv()
24
25
          return weeklvSalarv;
       } // end method getWeeklvSalarv
26
27
28
       // calculate earnings; override abstract method earnings in Employee
29
       public double earnings()
30
31
          return getWeeklySalary();
                                                                           Overridden
32
       } // end method earnings
33
                                                                            methods
34
       // return String representation of SalariedEmployee object
35
       public String toString()
36
37
          return String.format ( "salaried employee: %s\n%s: $%,.2f",
             super.toString(), "weekly salary", getWeeklySalary() );
38
        // end method toString
39
         end class SalariedEmployee
40
                                                                                         20
```

HourlyEmployee.java (1)

```
public class HourlyEmployee extends Employee
 5
       private double wage; // wage per hour
       private double hours; // hours worked for week
      // five-argument constructor
10
      public HourlyEmployee (String first, String last, String ssn,
11
          double hourlyWage, double hoursWorked )
12
          super( first, last, ssn );
13
14
        setWage( hourlyWage ); // validate hourly wage
15
         setHours( hoursWorked ); // validate hours worked
       } // end five-argument HourlyEmployee constructor
16
17
18
      // set wage
19
       public void setWage( double hourlyWage )
20
21
          wage = ( hourlyWage < 0.0 ) ? 0.0 : hourlyWage;</pre>
22
       } // end method setWage
23
24
      // return wage
25
      public double getWage()
26
27
          return wage;
28
      } // end method getWage
29
30
      // set hours worked
31
       public void setHours ( double hoursWorked )
32
          hours = ( ( hoursWorked >= 0.0 ) && ( hoursWorked <= 168.0 ) ) ?
33
34
             hoursWorked: 0.0:
35
       } // end method setHours
```

HourlyEmployee.java (2)

```
36
       // return hours worked
      public double getHours()
          return hours:
40
       } // end method getHours
41
42
       // calculate earnings; override abstract method earnings in Employee
43
       public double earnings()
44
45
          if ( getHours() <= 40 ) // no overtime
46
             return getWage() * getHours();
          else
             return 40 * getWage() + ( gethours() - 40 ) * getWage() * 1.5;
49
       } // end method earnings
50
51
       // return String representation of HourlyEmployee object
52
53
       public String toString()
54
          return String.format( "hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
             super.toString(), "hourly wage", getWage(),
             "hours worked", getHours() );
         // end method toString
        end class HourlyEmployee
```

CommissionEmployee.java (1)

```
public class CommissionEmployee extends Employee
 5
      private double grossSales; // gross weekly sales
      private double commissionRate; // commission percentage
      // five-argument constructor
      public CommissionEmployee (String first, String last, String ssn,
10
          double sales, double rate )
11
12
13
          super( first, last, ssn );
14
          setGrossSales( sales );
15
          setCommissionRate( rate );
16
       } // end five-argument CommissionEmployee constructor
17
18
       // set commission rate
      public void setCommissionRate( double rate )
19
20
21
          commissionRate = ( rate > 0.0 && rate < 1.0 ) ? rate : 0.0;
22
       } // end method setCommissionRate
23
24
       // return commission rate
      public double getCommissionRate()
25
26
27
          return commissionRate:
28
       } // end method getCommissionRate
29
30
       // set gross sales amount
      public void setGrossSales( double sales )
31
32
33
          grossSales = ( sales < 0.0 ) ? 0.0 : sales;
34
       } // end method setGrossSales
```

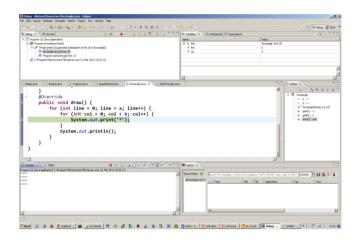
CommissionEmployee.java (2)

```
// return gross sales amount
       public double getGrossSales()
39
          return grossSales;
40
       } // end method getGrossSales
41
          calculate earnings; override abstract method earnings in Employee
42
43
       public double earnings()
44
45
          return getCommissionRate() * getGrossSales();
46
       } // end method earnings
47
       // return String representation of CommissionEmployee object
48
49
       public String toString()
50
51
          return String.format( "%s: %s\n%s: $%,.2f; %s: %.2f",
52
             "commission employee", super.toString(),
53
             "gross sales", getGrossSales(),
             "commission rate", getCommissionRate() );
         // end method toString
         end class CommissionEmployee
```

BasePlusCommissionEmployee.java

```
public class BasePlusCommissionEmployee extends CommissionEmployee
 5
       private double baseSalary; // base salary per week
      // six-argument constructor
      public BasePlusCommissionEmployee( String first, String last,
10
          String ssn, double sales, double rate, double salary )
11
12
          super( first, last, ssn, sales, rate );
          setBaseSalary( salary ); // validate and store base salary
13
14
      } // end six-argument BasePlusCommissionEmployee constructor
1.5
16
      // set base salary
17
      public void setBaseSalary( double salary )
18
          baseSalary = ( salary < 0.0 ) ? 0.0 : salary; // non-negative
19
       } // end method setBaseSalary
20
21
22
      // return base salary
23
      public double getBaseSalarv()
24
25
       return baseSalarv;
      } // end method getBaseSalary
26
27
28
       // calculate earnings; override method earnings in CommissionEmployee
29
       public double earnings()
30
31
          return getBaseSalarv() + super.earnings();
32
       } // end method earnings
33
       // return String representation of BasePlusCommissionEmployee object
35
       public String toString()
36
37
          return String.format( "%s %s; %s: $%,.2f",
             "base-salaried", super.toString(),
38
             "base salary", getBaseSalary() );
       } // end method toString
40
  } // end class BasePlusCommissionEmployee
```

PayrollSystemTest.java (1)


```
public class PavrollSvstemTest
 5
 6
       public static void main( String args[] )
 8
          // create subclass objects
 9
          SalariedEmplovee salariedEmplovee =
10
             new SalariedEmployee ( "John", "Smith", "111-11-1111", 800.00 );
11
          HourlyEmployee hourlyEmployee =
12
             new HourlyEmployee ( "Karen", "Price", "222-22-2222", 16.75, 40 );
13
          CommissionEmployee commissionEmployee =
14
             new CommissionEmployee(
             "Sue", "Jones", "333-33-3333", 10000, .06);
15
16
          BasePlusCommissionEmplovee basePlusCommissionEmplovee =
             new BasePlusCommissionEmployee(
17
18
             "Bob", "Lewis", "444-44-4444", 5000, .04, 300 );
19
20
          System.out.println( "Employees processed individually:\n" );
21
22
          System.out.printf( "%s\n%s: $%,.2f\n\n",
23
             salariedEmployee, "earned", salariedEmployee.earnings() );
24
          System.out.printf( "%s\n%s: $%,.2f\n\n",
25
             hourlyEmployee, "earned", hourlyEmployee.earnings() );
          System.out.printf( "%s\n%s: $%,.2f\n\n",
26
27
             commissionEmployee, "earned", commissionEmployee.earnings() );
28
          System.out.printf( "%s\n%s: $%,.2f\n\n",
29
             basePlusCommissionEmployee,
30
             "earned", basePlusCommissionEmployee.earnings() );
31
32
          // create four-element Employee array
33
          Employee employees[] = new Employee[ 4 ];
34
35
          // initialize array with Employees
36
          employees[ 0 ] = salariedEmployee;
37
          employees[ 1 ] = hourlyEmployee;
38
          employees[ 2 ] = commissionEmployee;
39
          employees[ 3 ] = basePlusCommissionEmployee;
```

PayrollSystemTest.java (2)

```
System.out.println( "Employees processed polymorphically:\n" );
42
43
          // generically process each element in array employees
          for ( Employee currentEmployee : employees )
44
45
             System.out.println( currentEmployee ); // invokes toString
46
47
48
             // determine whether element is a BasePlusCommissionEmployee
             if ( currentEmployee instanceof BasePlusCommissionEmployee )
49
50
                // downcast Employee reference to
51
                // BasePlusCommissionEmployee reference
52
                BasePlusCommissionEmployee employee =
53
                   ( BasePlusCommissionEmployee ) currentEmployee;
54
55
56
                double oldBaseSalary = employee.getBaseSalary();
57
                employee.setBaseSalary( 1.10 * oldBaseSalary );
58
                System.out.printf(
                   "new base salary with 10%% increase is: $%,.2f\n",
59
                   employee.getBaseSalarv() );
60
61
             } // end if
62
63
             System.out.printf(
                "earned $%,.2f\n\n", currentEmployee.earnings() );
64
65
          } // end for
66
          // get type name of each object in employees array
67
          for ( int j = 0; j < employees.length; j++ )</pre>
68
             System.out.printf( "Employee %d is a %s\n", j,
69
                employees[ j ].getClass().getName() );
70
       } // end main
         end class PayrollSystemTest
```

Interfaces

GUI

Laptop

LCD/LED TV

Concept of Interface

- An interface is a contract. It guarantees that the system will have certain functionalities.
- An interface is an integration point between two systems.
- A system can have many interfaces, so it can be integrated to many other systems.

Defining an Interface

- Keyword interface is used to define an interface
- Methods in an interface must be public and abstract, these keywords are commonly omitted
- Interfaces can include public static final variables (constants), these keywords are commonly omitted

Implementing an Interface

- An interface is implemented by the keyword implements
- Any class implementing an interface must either implement all methods of it, or be declared abstract

Implementing Multiple Interfaces

- More than one interface can be implemented by a class.
- Names of interfaces are separated by comma

```
public class LedTv implements Usb, Hdmi, Scart, Vga {
    // .....
}
```

Question: What if at least two interfaces include the same method definition?

Extending a Class and Implementing Interface(s)

```
public class Car extends Vehicle
                   implements Shape {
       public void draw() {
```

Extending an Interface

■ It is possible for an interface to extend another interface

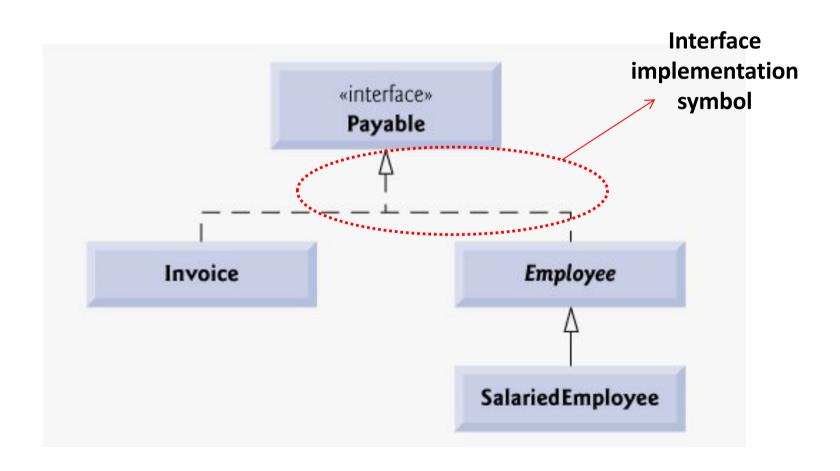
```
public interface I1 {
    void m1();
}
```

```
public class C1 implements I1 {
    public void m1() {
        // ...
    }
}
```

```
public interface I2 extends I1 {
    void m2();
}
```

```
public class C2 implements I2 {
    public void m1() {
        // ...
    }
    public void m2() {
        // ...
    }
}
```

Interfaces as Types


- When you define a new interface, you are defining a new reference data type.
- You can use interface names anywhere you can use any other data type name.
- If you define a reference variable whose type is an interface, any object you assign to it must be an instance of a class that implements the interface.

Interfaces as Types

```
public class Program {
    public static void main(String[] args) {
          Shape shape;
          shape = new Square(4);
          shape.draw();
          shape = new Rectangle(3, 7);
          shape.draw();
          shape = new RightTriangle(5);
          shape.draw();
```

```
public class Program {
    public static void main(String[] args) {
          Shape[] shapes = new Shape[3];
          shapes[0] = new Square(5);
          shapes[1] = new Rectangle(2, 8);
          shapes[2] = new RightTriangle(3);
          for (Shape s : shapes) {
               drawlt(s);
    public static void drawlt(Shape s) {
          s.draw();
```

Example Project: Payroll System Revisited

Payable.java

```
1  // Fig. 10.11: Payable.java
2  // Payable interface declaration.
3
4  public interface Payable
5  {
6    double getPaymentAmount(); // calculate payment; no implementation
7  } // end interface Payable
```

Invoice.java (1)

```
public class Invoice implements Payable
 5
       private String partNumber;
 6
       private String partDescription;
       private int quantity;
       private double pricePerItem;
10
11
     // four-argument constructor
12
       public Invoice (String part, String description, int count,
13
          double price )
14
15
          partNumber = part:
16
          partDescription = description;
17
          setQuantity( count ); // validate and store quantity
18
          setPricePerItem( price ); // validate and store price per item
19
       } // end four-argument Invoice constructor
20
21
       // set part number
       public void setPartNumber( String part )
23
          partNumber = part;
25
       } // end method setPartNumber
26
27
      // get part number
28
       public String getPartNumber()
29
30
          return partNumber;
31
       } // end method getPartNumber
32
      // set description
34
       public void setPartDescription (String description )
35
36
          partDescription = description;
37
       } // end method setPartDescription
38
39
       // get description
40
       public String getPartDescription()
41
42
          return partDescription;
43
       } // end method getPartDescription
```

Invoice.java (2)

```
45
       // set quantity
46
       public void setQuantity( int count )
47
48
          quantity = ( count < 0 ) ? 0 : count; // quantity cannot be negative
       } // end method setOuantity
49
50
51
      // get guantity
52
      public int getQuantity()
53
54
         return quantity;
55
      } // end method getOuantity
56
57
      // set price per item
58
       public void setPricePerItem( double price )
59
60
          pricePerItem = ( price < 0.0 ) ? 0.0 : price; // validate price
61
       } // end method setPricePerItem
62
63
      // get price per item
64
       public double getPricePerItem()
65
66
          return pricePerItem;
67
      } // end method getPricePerItem
68
69
      // return String representation of Invoice object
70
      public String toString()
71
72
         return String.format( "%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
73
             "invoice", "part number", getPartNumber(), getPartDescription(),
74
             "quantity", getQuantity(), "price per item", getPricePerItem() );
75
       } // end method toString
76
77
       // method required to carry out contract with interface Pavable
78
       public double getPaymentAmount()
79
80
          return getQuantity() * getPricePerItem(); // calculate total cost
       } // end method getPaymentAmount
82 } // end class Invoice
```

Employee.java

Payable interface includes getPaymentAmount() method, but Employee class does not implement it!

```
public abstract class Employee implemen
       private String firstName;
       private String lastName;
       private String socialSecurityNumber;
10
       // three-argument constructor
11
       public Employee (String first, String last, String ssn )
12
13
          firstName = first:
14
          lastName = last;
15
          socialSecurityNumber = ssn;
       } // end three-argument Employee constructor
16
17
           /* Rest of the class is same as the previous example
18
19
           except there is no earnings() method! */
20
21
22
23
```

SalariedEmployee.java

```
public class SalariedEmployee extends Employee
 5
       private double weeklySalary;
      // four-argument constructor
       public SalariedEmployee (String first, String last, String ssn,
10
          double salary )
11
12
          super( first, last, ssn ); // pass to Employee constructor
13
          setWeeklySalary( salary ); // validate and store salary
14
       } // end four-argument SalariedEmployee constructor
15
16
       // set salary
17
       public void setWeeklySalary( double salary )
18
19
          weeklySalary = salary < 0.0 ? 0.0 : salary;
20
       } // end method setWeeklvSalarv
21
      // return salary
22
23
       public double getWeeklySalary()
24
25
          return weeklySalary;
26
       } // end method getWeeklySalary
27
28
       // calculate earnings; implement interface Payable method that was
       // abstract in superclass Employee
29
30
       public double getPaymentAmount()
31
32
          return getWeeklySalary();
33
       } // end method getPaymentAmount
34
35
       // return String representation of SalariedEmployee object
36
       public String toString()
37
38
          return String.format( "salaried employee: %s\n%s: $%,.2f",
39
             super.toString(), "weekly salary", getWeeklySalary() );
       } // end method toString
41 } // end class SalariedEmployee
```

PayableInterfaceTest.java

```
public class PayableInterfaceTest
 5
       public static void main (String args[])
          // create four-element Pavable array
 9
          Payable payableObjects[] = new Payable[ 4 ];
10
          // populate array with objects that implement Payable
11
12
         payableObjects[ 0 ] = new Invoice( "01234", "seat", 2, 375.00 );
         payableObjects[ 1 ] = new Invoice( "56789", "tire", 4, 79.95 );
13
14
          pavableObjects[2]=
15
             new SalariedEmployee( "John", "Smith", "111-11-1111", 800.00 );
16
          pavableObjects[3]=
17
             new SalariedEmployee ( "Lisa", "Barnes", "888-88-8888", 1200.00 );
18
19
          System.out.println(
20
             "Invoices and Employees processed polymorphically:\n" );
21
22
          // generically process each element in array payableObjects
23
          for ( Payable currentPayable : payableObjects )
24
25
            // output currentPayable and its appropriate payment amount
26
            System.out.printf( "%s \n%s: $%,.2f\n\n",
27
                currentPavable.toString(),
28
                "payment due", currentPayable.getPaymentAmount() );
29
          } // end for
       } // end main
30
31 } // end class PayableInterfaceTest
```

Interfaces vs Abstract Classes

Abstract class	Interface
1) Abstract class can have abstract and non-abstract methods.	Interface can have only abstract methods.
2) Abstract class doesn't support multiple inheritance.	Interface supports multiple inheritance.
Abstract class can have final, non-final, static and non-static variables.	Interface has only static and final variables.
4) Abstract class can have static methods, main method and constructor.	Interface can't have static methods, main method or constructor.
5) Abstract class can provide the implementation of interface.	Interface can't provide the implementation of abstract class.
6) The abstract keyword is used to declare abstract class.	The interface keyword is used to declare interface.
7) Example: public abstract class Shape{ public abstract void draw(); }	Example: public interface Drawable{ void draw(); }

Summary

- Abstract class is defined with the keyword abstract
- If a class includes an abstract method, it must be declared as abstract
- Objects of abstract classes cannot be created
- Interface is defined with the keyword interface
- A class can implement an interface, an interface can extend an interface
- A class can implement many interfaces
- Objects of interfaces cannot be created

Acknowledgements

- The course material used to prepare this presentation is mostly taken/adopted from the list below:
 - Java How to Program, Paul Deitel and Harvey Deitel, Prentice Hall, 2012
- http://www.javatpoint.com/difference-between-abstract-classand-interface