
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi

Exceptions

2

Today

¢ What	is	an	exception?
¢ What	is	exception	handling?
¢ Keywords	of	exception	handling

§ try
§ catch
§ finally

¢ Throwing	exceptions
§ throw
§ Custom	exception	classes

¢ Getting	data	from	an	exception	object
¢ Checked	and	unchecked	exceptions

§ throws

3

Errors

¢Syntax	errors
• arise	because	the	rules	of	the	language	have	not	been	
followed.
• detected	by	the	compiler.

¢Logic	errors
• leads	to	wrong	results	and	detected	during	testing.
• arise	because	the	logic	coded	by	the	programmer	was	

not		correct.

¢ Runtime	errors
• Occur	when	the	program	is	running	and	the	environment	
detects	an	operation	that	is	impossible	to	carry	out.

4

Errors

¢Code	errors
• Divide	by	zero
• Array	out	of	bounds
• Integer	overflow
• Accessing	a	null	pointer	(reference)

§ Programs	crash when	an	exception	goes	untrapped,	i.e.,	
not	handled	by	the	program.

5

Runtime	Errors

import java.util.Scanner;

public class ExceptionDemo {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int number = scanner.nextInt();

 // Display the result
 System.out.println(
 "The number entered is " + number);
 }
}

If an exception occurs on this
line, the rest of the lines in the
method are skipped and the
program is terminated.

Terminated.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

6

What	is	an	exception?

¢ An	exception is	an	event,	which	occurs	during	the	execution	of	a	
program,	that	disrupts	the	normal	flow	of	the	program's	
instructions.	

Exception	=	Exceptional	Event

7

What	is	an	exception?
¢ An	exception	is	an	abnormal	condition	that	arises	in	a	code	sequence	at	
runtime.	For	instance:
§ Dividing	a	number	by	zero
§ Accessing	an	element	that	is	out	of	bounds	of	an	array
§ Attempting	to	open	a	file	which	does	not	exist

¢ A	Java	exception	is	an	object	that	describes	an	exceptional	condition	that	has	
occurred	in	a	piece	of	code

¢ When	an	exceptional	condition	arises,	an	object	representing	that	exception	
is	created	and	thrown	in	the	method	that	caused	the	error

¢ An	exception	can	be	caught	to	handle	it	or	pass	it	on

¢ Exceptions	can	be	generated	by	the	Java	run-time	system,	or	they	can	be	
manually	generated	by	your	code

8

Exceptions

¢A	Method	in	Java	throws	exceptions to	tell	the	
calling	code:

“Something	bad	happened.	I	failed.”

9

What	is	an	exception?	(Example)

public	class	ExceptionExample	{
public	static	void	main(String[]	args)	{
int	dividend	=	5;
int	divisor	=	0;
int division	=	dividend	/	divisor;		//	!!!	Division	by	zero!
System.out.println("	Result:	"	+	division);

}
}
Program	"crashes" on	the 5th	line	and	the	output	is:

Exception	in	thread	"main"	java.lang.ArithmeticException:	/	by	zero
at	ExceptionExample.main(ExceptionExample.java:5)

1-
2-
3-
4-
5-
6-
7-
8-

10

Does	the	program	really	"crash"?
¢ Division	by	zero	is	an	abnormal	condition!	

¢ Java	run-time	system	cannot	execute	this	condition	normally

¢ Java	run-time	system	creates	an	exception	object	for	this	condition	and	
throws it

¢ This	exception	can	be	caught in	order to	overcome	the	abnormal	condition
and to make	the	program	continue

¢ There	is	no	exception	handling	code	in	the	program,	so	JVM	terminates	the	
program	and	displays	what	went	wrong	and	where	it	was.	Remember	the	
output:

Exception	in	thread	"main"	java.lang.ArithmeticException:	/	by	zero
at	ExceptionExample.main(ExceptionExample.java:5)

11

What	is	exception	handling?

¢ Exception	mechanism	gives	the	programmer	a	chance	to	do	
something	against	an	abnormal condition.

¢ Exception	handling	is	performing	an	action	in	response	to	an	
exception.

¢ This	action	may	be:
§ Exiting	the	program
§ Retrying	the	action	with	or	without	alternative	data
§ Displaying	an	error	message	and	warning	user	to	do	something
§

12

Keywords	of	Exception	Handling

¢ There	are	five	keywords	in	Java	to	deal	with	exceptions:	try,	
catch,	throw,	throws and finally.

¢ try:	Creates	a	block	to	monitor if any exception occurs.

¢ catch:	Follows	the	try	block	and	catches	any	exception which is	
thrown	within it.

13

Let’s	try	and	catch	

public	class	ExceptionExample	{
public	static	void	main(String[]	args)	{
try	{

int	dividend	=	5;
int	divisor	=	0;
int division	=	dividend	/	divisor;		//	!!!	Division	by	zero!
System.out.println("	Result:	"	+	division);

}	catch	(Exception	e)	{
System.out.println ("Exception	occurred	and	handled!");

}
}

}

1-
2-
3-
4-
5-
6-
7-
8-
9-
10-
11-
12-

14

Handling	Exceptions

¢Java	forces	you	to	deal	with	checked exceptions.

¢Two	possible	ways	to	deal:	

void p1() {
 try {
 riskyMethod();
 }
 catch (IOException ex) {
 ...
 }
}

(a)

(b)

void p1() throws IOException {

 riskyMethod();

}

15

What	happens	when	we	try	and	catch?
¢ int division	=	dividend	/	divisor;	statement	causes	an	exception

¢ Java	run-time	system	throws	an	exception	object	that	includes	data	about	
the exception

¢ Execution stops at	the	6th	line,	and	a	catch	block	is	searched	to	handle	the
exception

¢ Exception	is	caught by	the	8th	line	and	execution	continues	by	the	9th	line

¢ Output	of	the	program	is:

Exception occurred	and	handled!

16

Let’s	visualize	it!

public	class	ExceptionExample	{
public	static	void	main(String[]	args)	{
try	{
int	dividend	=	5;
int	divisor	=	0;
int division	=	dividend	/	divisor;		
System.out.println("	Result:	"	+	division);

}	catch	(Exception	e)	{
System.out.println	("	Exception	occurred!	");

}
}

}

1-
2-
3-
4-
5-
6-
7-
8-
9-
10-
11-
12-

1.	An	exception	is	thrown	by	JVM
Exception	object	is	
created

2.	Execution	stops	at	the	
exception	line	and	diverges	to	
the	following	catch	block

e	is	a	reference	to	the	
exception	object

17

try	and	catch	statement

¢ The	scope	of	a	catch clause	is	restricted	to	those	statements	
specified	by	the	immediately	preceding	try statement.

¢ A	catch statement	cannot	catch	an	exception	thrown	by	
another	try statement.

¢ The	statements	that	are	protected	by	the	trymust	be	
surrounded	by	curly	braces.

18

Are	there	many	exceptions	in	Java?

¢ Yes!	Check	the	Java	API	Documentation	at	
http://docs.oracle.com/javase/7/docs/api/

¢ java.lang.Exception is	the	base	class	of	the	exception hierarchy

¢ There	are	many	direct	and	indirect	subclasses	of	
java.lang.Exception, for	example
§ java.lang.ArithmeticException
§ java.lang.ArrayIndexOutOfBoundsException
§ java.lang.NullPointerException
§ java.io.IOException
§ java.io.FileNotFoundException

¢ We	can	also	write	custom	exception	classes

19

Hierarchy	of	Exception	Classes	in	Java

Object

Error

Throwable

Exception

LinkageError

VirtualMachineError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

NoSuchElementException

…

Exceptions handled by
developers.

Internal errors	of	JVM.	
Developers	cannot	handle	
them

20

Multiple	catch	clauses

¢ It is	possible	that	more	than	one	exception	can	be	thrown	in	a	
code block.
§ We	can	use	multiple	catch	clauses

¢ When	an	exception	is	thrown,	each	catch	statement	is	
inspected	in	order,	and	the	first	one	whose	type	matches that	of	
the	exception	is	executed.	
§ Type	matching	means	that	the	exception	thrown	must	be	an	object	of	the	
same	class	or	a	sub-class	of	the	declared	class	in	the	catch statement

¢ After	one	catch	statement	executes,	the	others	are	bypassed.

21

Multiple	catch	statement	example

try	{
System.out.print("Give	me	an	integer:	");
int number	=	(new	Scanner(System.in)).nextInt();
System.out.println("10	/	"	+	number	+	"	is:	"	+	(10	/	number));
int array[]	=	new	int[]{1,	2,	3,	4,	5};
System.out.println("array["	+	number	+	"]:	"	+	array[number]);

}		
catch	(ArithmeticException	e)	{
System.out.println("Division	by	zero	is	not	possible!");

}		
catch	(ArrayIndexOutOfBoundsException	e)	{
System.out.println("Number	is	out of the	array!");

}

ArithmeticException	may	occur

ArrayIndexOutOfBoundsException	
may	occur

22

Multiple	catch	statement	example

¢ 1st	scenario:	Assume	that	user	enters	value	2.	What	is	the	
output	of	the	program?

¢ 2nd	scenario:	Assume	that	user	enters	value	5.	What	is	the	
output	of	the	program?

¢ 3rd	scenario:	Assume	that	user	enters	value	0.	What	is	the	
output	of	the	program?

Give	me	an	integer:	2
10	/	2	is:	5
array[2]	is:	3

Give	me	an	integer:	5
10	/	5	is:	2
Number	is	out	of	the	array!

Give	me	an	integer:	0
Division	by	zero	is	not	possible!

23

Multiple	catch	clauses	and	inheritance

¢ If	there	is	inheritance	between	the	exception	classes	which	are	
written	in	catch	clauses;
§ Exception	subclass	must	come	before	any	of	their	superclasses
§ A	catch	statement	that	uses	a	superclass	will	catch	exceptions	of	that	type	
plus	any	of	its	subclasses.	So,	the	subclass	would	never	be	reached	if	it	
comes	after	its	superclass

catch	(Exception	e)	{
}
catch	(ArithmeticException	e)	{
}

Compile	error!	Second	clause	is	
unnecessary,	because	first	clause	will	
catch	any	exception!

catch	(ArithmeticException	e)	{
}
catch	(Exception	e)	{
}

It	is	OK	now!	Any	exception	other	
than	an	ArithmeticException	will	be	
caught by	the	second	clause!

24

More	on	multiple	catch	clauses

¢ Multiple	catch	clauses	give	programmer	the	chance	to	take	
different	actions	for	each	exception

...,	but	a	new	catch	clause	for	each	possible	exception	will	
possibly	make	the	code	so	complex

¢ A	single	catch	clause	with	the	java.lang.Exception	will	catch	any	
exception	thrown

...,	but	the	programmer	will	not	know	which	exception	was	
thrown!

25

Confused	about	multiple	catch	clauses?	

¢ Programmer	decides on	the details	of	the	exception	handling	
strategy
§ If	it	is	just	enough	to	know	that	something	went wrong and the	same	
action	will	be	taken	for	all	exceptions	(for	instance;	displaying	a	message),	
then use a	single	catch	clause with Exception!

§ If	it	is	really	necessary	to	know	which	exception occurs and different
actions	will	be	taken	for	each	exception,	then use multiple	catch clauses!

26

Catching	Exceptions
try {

//Statements that may throw exceptions
}

catch (Exception1 exVar1) {
//code to handle exceptions of type Exception1;

}

catch (Exception2 exVar2) {
// code to handle exceptions of type Exception2;

}

...
catch (ExceptionN exVarN) {
// code to handle exceptions of type exceptionN;

}

// statement after try-catch block

27

Catching	Exceptions

main method {
 ...
 try {
 ...
 invoke method1;
 statement1;
 }
 catch (Exception1 ex1) {
 //Process ex1;
 }
 statement2;
}

method1 {
 ...
 try {
 ...
 invoke method2;
 statement3;
 }
 catch (Exception2 ex2) {
 //Process ex2;
 }
 statement4;
}

method2 {
 ...
 try {
 ...
 invoke method3;
 statement5;
 }
 catch (Exception3 ex3) {
 //Process ex3;
 }
 statement6;
}

An exception is
thrown in
method3

28

Nested	try	statements

¢ A	try block	can	include	other	try block(s)

try	{
...
try {

...
}	catch	(Exception	e)	{

...
}
...

}	catch (Exception	e)	{
...

}

29

Nested	try	statements

¢ A	try	block	can	call	a	method	which	has	a	try	block	in	it.	

void	method()	{
try	{
...

}	catch (Exception	e)	{
...

}
}

try {
...
method();

}	catch (Exception	e)	{
...

}

30

Nested	try	statements

¢ When	an	exception	occurs	inside	a	try	block;
§ If	the	try	block	does	not	have	a	matching	catch,	then	the	outer	try
statement’s	catch	clauses	are	inspected	for	a	match

§ If	a	matching	catch	is	found,	that	catch	block	is	executed
§ If	no	matching	catch	exists,	execution	flow	continues	to	find	a	matching	
catch	by	inspecting	the	outer	try	statements

§ If	a	matching	catch	cannot	be	found,	the	exception	will	be	caught by	JVM’s	
exception	handler.	

¢ Caution! Execution	flow	never	returns	to	the	line	that	exception	
was	thrown.	This	means,	an	exception	is	caught and catch	block	
is	executed,	the	flow	will	continue	with	the	lines	following	this	
catch	block

31

Let’s	clarify	it	on	various	scenarios

try	{
statement1;
try	{

statement2;
}	catch	(Exception1	e)	{

statement3;
} catch	(Exception2	e)	{

statement4;
}
try	{

statement5;
}	catch	(Exception3	e)	{

statement6;
}
statement7;

}	catch	(Exception3	e)	{
statement8;

}
statement9;

Information: Exception1	and	Exception2	are	
subclasses	of	Exception3

Question:	Which	statements	are	executed	if
1- statement1	throws	Exception1
2- statement2	throws	Exception1
3- statement2	throws	Exception3
4- statement2	throws	Exception1	and	
statement3	throws Exception2

32

Scenario:	statement1	throws	Exception1

try	{
statement1;
try	{

statement2;
}	catch	(Exception1	e)	{

statement3;
} catch	(Exception2	e)	{

statement4;
}
try	{

statement5;
}	catch	(Exception3	e)	{

statement6;
}
statement7;

}	catch	(Exception3	e)	{
statement8;

}
statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	catch	clauses	of	the	try	
block	are	inspected	for	a	
matching	catch	statement.	
Exception3	is	super	class	of	
Exception1,	so	it	matches.

Step3:	statement8	is	executed,	exception	is	handled	and	execution	
flow	will	continue	bypassing	the	following	catch	clauses

Step4:	statement9	is	executed

33

Scenario:	statement2	throws	Exception1

try	{
statement1;
try	{

statement2;
}	catch	(Exception1	e)	{

statement3;
} catch	(Exception2	e)	{

statement4;
}
try	{

statement5;
}	catch	(Exception3	e)	{

statement6;
}
statement7;

}	catch	(Exception3	e)	{
statement8;

}
statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	catch	clauses	of	the	try	block	are	
inspected	for	a	matching	catch	statement.	First	
clause	catches	the	exception

Step3:	statement3	is	executed,	exception	is	
handled

Step4:	execution	flow	will	continue	bypassing	
the	following	catch	clauses.	statement5	is	
executed.

Step5:	Assuming	no	exception	is	thrown	by	
statement5,	program	continues	with	statement7	
and	statement9.

34

Scenario:	statement2	throws	Exception3

try	{
statement1;
try	{

statement2;
}	catch	(Exception1	e)	{

statement3;
} catch	(Exception2	e)	{

statement4;
}
try	{

statement5;
}	catch	(Exception3	e)	{

statement6;
}
statement7;

}	catch	(Exception3	e)	{
statement8;

}
statement9;

Exception3
Step1:	Exception	is	thrown

Step2:	catch	clauses	of	the	try	block	are	
inspected	for	a	matching	catch	statement.	None	
of	these	catch	clauses	match	Exception3

Step3:	Catch	clauses	of	the	outer	try	statement	
are	inspected	for	a	matching	catch.	Exception3	is	
caught and	statement8	is	executed

Step4:	statement9	is	executed

35

Scenario:	statement2	throws	Exception1	
and	statement3	throws	Exception2
try	{
statement1;
try	{

statement2;
}	catch	(Exception1	e)	{

statement3;
} catch	(Exception2	e)	{

statement4;
}
try	{

statement5;
}	catch	(Exception3	e)	{

statement6;
}
statement7;

}	catch	(Exception3	e)	{
statement8;

}
statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	Exception	is	caught and	statement3	is	
executed.

Step3:	statement3	throws	a	new	exception

Step5:	statement9	is	executed

Exception2

Step4:	Catch	clauses	of	the	outer	
try	statement	are	inspected	for	a	
matching	catch.	Exception2	is	
caught and	statement8	is	executed

36

finally

¢ finally creates	a	block	of	code	that	will	be	executed	after	a	
try/catch block has	completed and before	the following
try/catch block

¢ finally	block	is	executed	whether	or	not	exception	is	thrown

¢ finally	block	is	executed	whether	or	not	exception	is	caught

¢ It	is	used	to	gurantee	that	a	code	block	will	be	executed	in	any	
condition.	

37

finally

¢ Use	finally clause	for	code	that	must	be	executed	"no	matter	
what"	

try {
//Statements that may throw exceptions

}

catch (Exception1 exVar1) {
//code to handle exceptions of type Exception1;

}

catch (Exception2 exVar2) {
// code to handle exceptions of type Exception2;

}
...
catch (ExceptionN exVar3) {
// code to handle exceptions of type exceptionN;

}

finally { // optional
// code executed whether there is an exception or not

}

38

Let’s	clarify	it	on	various	scenarios

try	{
statement1;

}	catch	(Exception1	e)	{
statement2;

}	catch	(Exception2	e)	{
statement3;

}	finally	{
statement4;

}
statement5;

Question: Which	statements	are	executed	if
1- no	exception	occurs
2- statement1	throws	Exception1
3- statement1	throws	Exception3

39

Scenario:	no	exception	occurs

Step1:	statement1	is	executed

try	{
statement1;

}	catch	(Exception1	e)	{
statement2;

}	catch	(Exception2	e)	{
statement3;

}	finally	{
statement4;

}
statement5;

Step2:	finally	block	is	executed,	
statement4	is	executed

Step3:	statement5	is	executed

40

Scenario:	statement1	throws	Exception1

try	{
statement1;

}	catch	(Exception1	e)	{
statement2;

}	catch	(Exception2	e)	{
statement3;

}	finally	{
statement4;

}
statement5;

Exception1
Step1:	Exception	is	thrown

Step2:	catch	clauses	of	the	try	block	
are	inspected	for	a	matching	catch	
statement.	Exception1	is	caught and	
statement2	is	executed.

Step3:	finally	block	is	executed,		
statement4	is	executed.

Step4:	statement5	is	executed

41

Scenario:	statement1	throws	Exception3

try	{
statement1;

}	catch	(Exception1	e)	{
statement2;

}	catch	(Exception2	e)	{
statement3;

}	finally	{
statement4;

}
statement5;

Exception3
Step1:	Exception	is	thrown

Step2:	catch	clauses	of	the	try	block	are	
inspected	for	a	matching	catch	
statement.	There	is	no	matching	catch.	
finally	is	executed	before	inspecting	the	
outer	block.	statement4	is	executed.

Step3:	statement5	is	not	executed,	a	matching	catch	will	be	
inspected	at	outer	block(s)

42

throw

¢ Developer	can	throw	exceptions.	Keyword	throw	is	used	for	this	
purpose:

throw ThrowableObject

¢ ThrowableObject is	the	object	to	be	thrown.	It	must	directly	or	
indirectly	extend	the	class	java.lang.Throwable

¢ Developer	can	create	a	new	object	of	an	exception	class,	or	
rethrow	the caught exception

43

Throwing	and	rethrowing	example

import	java.util.Scanner;

public	class	ThrowingExample	{
public	static	void	main(String[]	args)	{

System.out.print("Give	me	an	integer:	");
int number	=	new	Scanner(System.in).nextInt();
try	{

if	(number	<	0)
throw	new	RuntimeException();

System.out.println("Thank	you.");
} catch	(Exception	e)	{

System.out.println("Number	is	less	than	0!");
throw	e;

}
}

}

Keyword	throw is	used	to	
throw	an	exception.	

e	is	already	reference	of	
an	exception	object.	It	can	
also	be	used	to	throw		
(rethrow)	that	exception

44

Coding	custom	exception	classes

¢ Developer	can	also	code	custom	exception	classes	to	manage	
abnormal	conditions	in	his	program

¢ If	a	class	extends	Throwable,	that	class	can	be	thrown

¢ We	usually	prefer	to	extend	class	Exception	or	
RuntimeException (difference	of	these	two	will	be	explained)

¢ Extending	an	exception	class	and	coding	necessary	constructors	
is	enough	to	create	a	custom	exception	class

45

Custom	exception	example
public	class LessThanZeroException extends	Exception	{

public LessThanZeroException()	{
}
public LessThanZeroException(String	message)	{

super(message);
}

}
import	java.util.Scanner;
public	class	ThrowingExample	{

public	static	void	main(String[]	args)	{
System.out.print("Give	me	an	integer:	");
int number	=	new	Scanner(System.in).nextInt();
try	{

if	(number	<	0)	
throw	new LessThanZeroException();

System.out.println("Thank	you.");
} catch (LessThanZeroException e)	{

System.out.println("Number	is	less	than	0!");
}

}
}

46

Getting	data	in	the	exception	object

¢ Throwable overrides	the	toString()method	(defined	by	class	
Object)	so	that	it	returns	a	string	containing	a	description	of	the	
exception

Example:
catch(ArithmeticException e) {

System.out.println("Exception	is:	" + e);
}

Output:
Exception is:	java.lang.ArithmeticException:	/	by	zero

47

Getting	data	in	the	exception	object

¢ Throwable	class	also	has	useful	methods.	One	of	these	methods	
is	the	getMessage()method

¢ The	message	that	is	put	in	the	exception	(via	the	constructor	
with	String	parameter)	can	be	taken	by	getMessage()	method

Example:
catch(ArithmeticException e) {

System.out.println("Problem	is:	" + e.getMessage());
}

Output:
Problem	is:	/	by	zero

48

Getting	data	in	the	exception	object

¢ Another	method	is	the	printStackTrace()method
¢ This	method	is	used	to	see	what	happened	and	where

Example:
catch(ArithmeticException e) {

e.printStackTrace();
}
Output:
java.lang.ArithmeticException:	/	by	zero

at	ExceptionExample.main(ExceptionExample.java:6)

This	output	means:	
A	java.lang.ArithmeticException	occurred	at	6th	line	of	the	main	method	of	
the	ExceptionExample	class

49

Did	you	recognize	that...	?

¢ The	output	of	the	printStackTrace()method	is	very	similar	to	
the	output	you	have	seen	before...

¢ You	have	seen	it	when	your	programs	crashed!

¢ When	an	exception	is	not	caught	by	the	program,	JVM	catches	it	
and	prints	the	stack	trace	to	the	console.	

¢ This	output	is	very	helpful	to	find	the	errors	in	the	program

50

Checked	and	Unchecked	Exceptions

Object

Error

Throwable

Exception

LinkageError

VirtualMachineError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

NoSuchElementException

…

Internal	errors	of	the	JVM
Unchecked	exceptions
Checked	exceptions

51

What	does	Checked	Exception	mean?

¢ If	a	method	will	possibly	throw	an	exception,	compiler	checks	
the	type	of	the	exception

¢ if	the	exception	is	a	checked	exception,	compiler	forces	the	
developer	to	do	one	of	these:
§ write	a	matching	catch	statement	for	that	exception	
§ declare	that	the	method	will	possibly	throw	that	exception

52

throws

¢ Keyword	throws is	used	to	declare	that	a	method	is	capable	of	
throwing	exception(s)

¢ Callers	of	the	method	can	guard	themselves	against	that	
exception(s)

Examples:
public	void	m1()	throws	Exception1 {
}

public	void	m2()	throws	Exception1,	Exception2,	Exception3 {
}

53

CheckedExceptionExample1
import	java.io.BufferedReader;
import	java.io.FileReader;
import	java.io.IOException;

public	class	CheckedExceptionExample1	{
public	static	void	main(String[]	args)	{

System.out.println("Line:	"	+	readALine1("input.txt"));
}

public	static	String	readALine1(String	filename)	{
try	{

BufferedReader inputFile =	new	BufferedReader(new	FileReader("a.txt"));
String	line	=	inputFile.readLine();
inputFile.close();
return	line;

}	catch	(IOException	e)	{
e.printStackTrace();
return	null;

}
}

}

FileNotFoundException	
may	be	thrown	here

IOException	may	be	thrown	here

IOException	is	super	class	of	FileNotFoundException

54

CheckedExceptionExample2
import	java.io.BufferedReader;
import	java.io.FileReader;
import	java.io.IOException;

public	class	CheckedExceptionExample2	{
public	static	void	main(String[]	args)	{

try	{
System.out.println("Line:	"	+	readALine2("input.txt"));

}	catch	(IOException	e)	{
e.printStackTrace();

}
}

public	static	String	readALine2(String	filename)	{
BufferedReader inputFile =	new	BufferedReader(new	FileReader("a.txt"));
String	line	=	inputFile.readLine();
inputFile.close();
return	line;

}
}

FileNotFoundException	
may	be	thrown	here

IOException	may	be	thrown	
here

IOException	is	superclass	of	
FileNotFoundException.	No	need	to	

declare	both.

throws	IOException	{

55

What	does	Unchecked	Exception	mean?

¢ If	a	code	block	has	the	possibility	of	throwing	an	unchecked	
exception,	compiler	does	not	force	the	developer	for	anything.	
It	is	up	to	the	developer	to	do	one	of	these:	
§ to	handle	the	exception	

§ let	the	program	crash

¢ Unchecked	exceptions	are	usually	results	of	the	developer’s	
mistakes.	
§ For	example,	if	a	reference	may	normally	be	null,	then	it	is	developer’s	
responsibility	to	check	if	it	is	null	or	not.	NullPointerException	should	not	
occur	in	this	scenario!

§ Letting	program	crash	at	the	development	phase	will	make	the	developer	
find	such	errors	and	potential	bugs.

Does	a	developer	let	his	
program	crash?

56

Summary

¢ Exceptions	are	used	to	take	actions	against	abnormal	conditions
¢ Exceptions	are	objects	which	are	thrown by	JVM	or	the	developer’s	
code

¢ There	are	many	exception	classes	in	standard	java	library,	and	custom	
exception	classes	can	be	coded

¢ Exception	handling	is	catching	an	exception	and	taking	an	action	
against	it

¢ Keywords	try,	catch,	and	finally are	used	for	exception	handling
¢ Exceptions	are	classified	as	unchecked	(RuntimeException	class	and	
its	subclasses),	or	checked	(Throwable	class	and	its	subclasses,	except	
Error	and	RuntimeException)

¢ If	a	method	has	the	capability	of	throwing	a	checked	exception,	it	
must	either	handle	the	exception	(with	try/catch	blocks),	or	declare	it	
with	keyword	throws	

57

References

¢ Ganesh	Wisvanathan,	CIS3023:	Programming	Fundamentals	for	
CIS	Majors	II,	University	of	Florida

