
1

BBM	102	– Introduction	to
Programming	II
Spring 2017

Instructors:	Ayça	Tarhan,	Fuat	Akal,	Gönenç	Ercan,	Vahid Garousi

Streams and	Input/Output



2

Today

¢ Streams	and	Files
¢ Text/Binary	Files
¢ java.io.File	class
¢ Revisiting	java.util.Scanner
¢ Java	I/O	Library
¢ Decorator	Pattern
¢ InputStreams	and	OutputStreams
¢ Readers	and	Writers
¢ Sequential	Access	vs	Random	Access
¢ java.io.RandomAccessFile
¢ Serialization



3

Streams

¢ A	stream is	a	flow	of	data.	The	data	might	be	characters,	
numbers,	or	bytes	consisting	of	binary	digits.

¢ If	the	data	flows	into	your	program,	the	stream	is	called	an	
input	stream (example:	System.in).

¢ If	the	data	flows	out	of	your	program,	the	stream	is	called	an	
output	stream (example:	System.out).



4

Files

¢ The	keyboard	and	the	screen	deal	with	temporary	data
¢ Files	provide	a	way	to	store	data	permanently
¢ All	of	the	data	in	any	file	is	stored	as	bits,	or	0s	and 1s.
¢ Files are	categorized	as	text	files and	binary	files



5

Text/Binary	Files

¢ Text	files
§ The bits	represent	printable	(easily	readable	by	humans	when	printed)	
characters.	

§ The	characters	are	coded	with	a	"character	set",	ASCII,	ISO-8859-1,	utf-8..
§ They can	be	edited	with	a	"	text	editor "
§ Examples:	Program	source	files	(.java,	.c),	files	saved with a	text editor,	
e.g.	Notepad.exe

¢ Binary	Files
§ The	bits	represent	other	types	of	encoded	information,	such	as	executable	
instructions	or	numeric	data

§ They	are	easily	read	by	the	computer	but	not	humans
§ They	are	not "printable"	files
§ Examples:	Executables	(.exe),	images	(.jpg,	.png),	music	(.mp3),	or	video	
(.avi,	.mov)	files



6

ASCII	(American	Standard	Code	for	Information	Interchange)	Code	Table



7

Extended	ASCII	Codes



8

Text/Binary	Files

¢ Confused?	Let’s	see	an	example:	We want	to	write	the	number	
127	into	a	file.	

¢ If	we	write	it	into an	ASCII	coded	text	file:
§ Three	bytes	will	be	used	for	each	character:	1		,	2,	and	7
§ Binary	values	of	these	characters:	00110001,	00110010,	00110111

¢ If	we	write	it	into	a	binary	file:
§ One	byte	(variable	is	defined	as	byte):	01111111
§ Two	bytes	(variable	is	defined	as	short):	00000000	01111111
§ Four	bytes	(variable	is	defined	as	int):	

00000000	00000000	00000000	01111111



9

java.io.File

¢ Do	not	be	deceived with	the	name	of	it!	Class	represents	a	path	
rather	than	a	file!

¢ Can	be	used	to
§ Check	if	the	path	exists	or	not	
§ Check	if	the	path	is	a	file	or	a	directory
§ Check/edit	the	file/directory’s	readable,	writable,	executable,	hidden	
properties

§ Create/delete	file/directory
§ Get	the	contents	of	a	directory
§ Get	the	last	modification	date	and time	of	the file/directory



10

FileExample	Program
public	class	FileExample	{

public	static	void	main(String[]	args)	{
File	path	=	new	File("h:\\example");
if	(!path.exists())	{ //	It	does	not	exist,	create	a	directory!

path.mkdir();
}	else	if	(path.isDirectory())	{ //	It	is	a	directory! List	the	contents

String[]	contentOfDirectory	=	path.list();
for	(String	filename	:	contentOfDirectory)	{

System.out.println(filename);
}

}	else	{ //	It	is	a	file! Display	the	properties	of	the	file
System.out.println("Read:"	+	path.canRead()	+	

",	Write:	"	+	path.canWrite()	+	",	Hidden:	"	+	path.isHidden());
}

}
}



11

Revisiting	java.util.Scanner

¢ Class	Scanner	is	an	easy	way	to	read	input	from	keyboard,	
remember?

//	create	a	scanner	System.in	(keyboard)
Scanner	scanner	=	new	Scanner(System.in);	
//	read	a	string	from	keyboard	and	write	it	to	System.out	(monitor)
System.out.println(scanner.next());

¢ It	takes	an	inputstream	to	its	constructor	and	reads	from it

¢ What	if	we	give	a	File	object	to	the	constructor?
//	create	a	scanner	for	the	file	example.txt
scanner	=	new	Scanner(new	File("c:example.txt"));
//	read	a	string	from	the	file	and	write	it	to	System.out	(monitor)
System.out.println(scanner.next());



12

Scanner	example:	display	contents	of	a	file
public	static	void	main(String[]	args)	{

Scanner	scanner	=	null;
try	{

scanner	=	new	Scanner(new	File(args[0]));
while	(scanner.hasNext())	{

System.out.println(scanner.nextLine());
}

}	catch	(Exception	e)	{
e.printStackTrace();

}	finally	{
if	(scanner	!=	null)	scanner.close();

}
}



13

Java	I/O	Library

¢ Mostly	under	the	package	java.io
¢ Includes	classes,	interfaces	and	exceptions	for

§ Input/Output
§ Binary/Text
§ Sequential/Random	Access

¢ JDK	versions	improved	the	library	in	time,	adding	new	
classes/interfaces.	



14

Binary	Input	
(byte	oriented)

Binary	Output
(byte	oriented)

Text	Input
(character	oriented)	

Text	Output
(character	oriented)

Random	Access



15

Creating	a	text	file

¢ An	easy	way	to	create	a	text	file	is	using	java.io.PrintWriter

public	static	void	main(String[]	args)	{
PrintWriter	outputStream	=	null;
try	{

outputStream	=	new	PrintWriter("c:out.txt");		//	open	the	file
outputStream.println("Example line.."); //	write	something	to	the	file

}	catch(FileNotFoundException	e)	{
System.out.println("Error	opening	the	file!");

}	finally	{
if	(outputStream	!=	null)					outputStream.close();	//	close	the	file

}
}



16

Example:	from	keyboard	to	file
public	static	void	main(String[]	args)	{

PrintWriter	outputStream	=	null;			
Scanner	scanner	=	null;
try	{

outputStream	=	new	PrintWriter(args[0]);			//	open	the	file
scanner	=	new	Scanner(System.in); //	create	scanner	for	keyboard
String	str	=	scanner.nextLine(); //	get	the	first	line
while	(!str.equalsIgnoreCase("exit"))	{ //	if	it	is	not	«exit»

outputStream.println(str); //	write	it	to	the	file
str	=	scanner.nextLine(); //	get	a	new	line

}
}	catch(FileNotFoundException	e)	{

System.out.println("Error	opening	the	file!");
}	finally	{

if	(outputStream	!=	null)	outputStream.close(); //	close	the	file
if	(scanner	!=	null)	scanner.close(); //	close	the	scanner

}
}



17

Decorator	Pattern

¢ Software	Design	Patterns
§ "In software	engineering,	a design	pattern is	a	general	reusable	solution	
to	a	commonly	occurring	problem	within	a	given	context	in software	
design" (wikipedia)

§ Design	patterns	gained	popularity	in computer	science after	the	
book Design	Patterns:	Elements	of	Reusable	Object-Oriented	
Software was	published	in	1994	by	the	so-called	"Gang	of	Four"	(Erich
Gamma, Richard	Helm, Ralph	Johnson,	and John	Vlissides ),	which	is	
frequently	abbreviated	as	”GoF".



18

Decorator	Pattern

¢ Decorator	Pattern	adds	a	new	functionality	to	an	existing	object
¢ A	decorator	class	decorates	an	inner	object and uses	its	
methods	to	serve	in	a	different	way



19

Decorator	Pattern	in	java.io

¢ InputStream	and	Reader	classes	(and	their	subclasses)	has	basic	
methods	called	read()	for	reading	a	single	byte	or	an	array	of	
bytes

¢ OutputStream	and	Writer	classes	(and	their	subclasses)	has	
basic	methods	called	write()	for writing a	single	byte	or	an	array	
of	bytes

¢ Problem:	A	new	access	to	the	disk	for	each	byte	will	slow	down	
the	application	seriously

¢ Solution:	Bytes	may	be	collected	before	reading	from	or	writing	
to	the	disk.	This	will	reduce	the	number	of	physical	disk	
operations

¢ Decorator	classes
§ java.io.BufferedInputStream,	java.io.BufferedReader
§ java.io.BufferedOutputStream,	java.io.BufferedWriter



20

BufferedReader	example
public	static	void	main(String[]	args)	{

BufferedReader	reader	=	null;
try	{

reader	=	new	BufferedReader(new	FileReader(new	File(args[0])));
String	line;
while	((line	=	reader.readLine())	!=	null)	{

System.out.println(line);
}

}	catch	(Exception	e)	{
e.printStackTrace();

}	finally	{
if	(reader	!=	null)	reader.close();

}
}



21

A	more	complicated	decoration	example

¢ Let's	say	that	we	have	a	bunch	of	Java	objects	in	a	Gzipped file	
named	‘objects.gz’	and	that	we	want	to	read	them	a	bit	quickly

//	First	open	an	inputstream of	it:
FileInputStream fis =	new	FileInputStream("objects.gz");
//	We	want	speeeed,	so	let's	buffer	it	in	memory:
BufferedInputStream bis =	new	BufferedInputStream(fis);
//	The	file	is	gzipped,	so	we	need	to	ungzip it:
GzipInputStream gis =	new	GzipInputStream(bis);
//	We	need	to	read	those	Java	objects:
ObjectInputStream ois =	new	ObjectInputStream(gis);
//	Now	we	can	finally	use	it:
SomeObject someObject =	(SomeObject)	ois.readObject();



22

InputStream	and	subclasses

InputStream’s job	is	to	represent	classes	that	produce	input	from	
different	sources.	These	sources	can	be:

¢ An	array	of	bytes (java.io.ByteArrayInputStream)
¢ A	String	object (java.io.StringBufferInputStream)
¢ A	file (java.io.FileInputStream)
¢ A	"pipe,"	(java.io.PipedInputStream)

§ Pipe	works	like	a	physical	pipe:	You	put	things	in	at	one	end	and	they	
come	out	the	other.	

¢ A	sequence	of	other	streams,	so	you	can	collect	them	together	
into	a	single	stream (java.io.SequenceInputStream)

¢ Other	sources,	such	as	an	Internet connection



23

OutputStream	and	subclasses

¢ An	array	of	bytes (java.io.ByteArrayOutputStream)
¢ A	file (java.io.FileOutputStream)
¢ A	"pipe,"	(java.io.PipedOutputStream)

§ Pipe	works	like	a	physical	pipe:	You	put	things	in	at	one	end	and	they	
come	out	the	other.	



24

Homework

¢ Go	over	the	input	and	out	stream	classes	mentioned	in	the	
previous	two	slides!

¢ Try	to	understand	at	least	how	they	basically	work.



25

Decorating	InputStreams

¢ java.io.DataInputStream:	read	primitives	(int,	char,	long,	etc.)	
from	a	stream	in	a	portable	fashion.

¢ java.io.BufferedInputStream:	prevents	a	physical	read	every	
time	you	want	more	data.	

¢ java.io.LineNumberInputStream:	Keeps	track	of	line	numbers	in	
the	input	stream;	you	can	call	getLineNumber(	)	and	
setLineNumber (int).
§ This	class	incorrectly	assumes	that	bytes	adequately	represent	characters.

¢ java.io.PushbackInputStream:	Has	a	one-byte	pushback	buffer	
so	that	you	can	push	back	the	last	character	read.



26

Decorating	OutputStreams

¢ java.io.DataOutputStream:	write	primitives	(int,	char,	long,	
etc.)	from	a	stream	in	a	portable	fashion.

¢ java.io.BufferedOutputStream:	prevent	a	physical	write	every	
time	you	send	a	piece	of	data.	

¢ java.io.PrintStream:	For	producing	formatted	output.	While	
DataOutputStream handles	the	storage	of	data,	PrintStream
handles	display



27

Example	Program:	create	a	copy	of	a	file
public	static	void	main(String[]	args)	throws	Exception	{

BufferedInputStream	bis	=	null;
BufferedOutputStream	bos	=	null;
try	{

bis =	new	BufferedInputStream(new	FileInputStream(new	File(args[0])));
bos =	new	BufferedOutputStream(new	FileOutputStream(new	File(args[1])));
byte oneByte;
//	read	a	byte.	-1	will	be	returned	at	the	end	of	the	file.
while	((oneByte	=	bis.read())	!=	-1)	{			

bos.write(oneByte); //	 write	the	byte	to	the	output
}

}	finally	{
if	(bis	!=	null)	bis.close(); //	close	the	streams
if	(bos	!=	null)	bos.close();

}
}



28

Is	it	too	slow?
public	static	void	main(String[]	args)	throws	Exception	{

BufferedInputStream	bis	=	null;
BufferedOutputStream	bos	=	null;
byte[]	bytes	=	new	byte[1024	*	16]; //	bytes	will	be	read	in	this	by	16K	chunks
try	{

bis =	new	BufferedInputStream(new	FileInputStream(new	File(args[0])));
bos =	new	BufferedOutputStream(new	FileOutputStream(new	File(args[1])));
int	size;
while	((size	=	bis.read(bytes))	>	-1)	{

bos.write(bytes);
}

}	finally	{
if	(bis	!=	null)	bis.close();
if	(bos	!=	null)	bos.close();

}
}



29

Another	example:	download	a	web	page
//	please	note	that	exception	handling	is	not	coded	properly!!

public	static	void	main(String[]	args)	throws	Exception	{
URL	url	=	new	URL("http://web.cs.hacettepe.edu.tr/~bbm102/");
BufferedInputStream	bis	=	new	BufferedInputStream(url.openStream());
BufferedOutputStream bos =	new	BufferedOutputStream(

new	FileOutputStream(new	File("downloadedPage.html")));
for	(int c	=	bis.read();	c	!=	-1;	c	=	bis.read())	{

bos.write(c);
}
bis.close();
bos.close();

}



30

Readers	and	Writers

¢ InputStream and	OutputStream classes	provide	functionality	in	
the	form	of	byte	oriented	I/O

¢ Reader and	Writer were	added	to	the	library	with	Java	1.1.	
These	classes	provide	Unicode-compliant,	character-based	I/O

¢ Almost	all	of	the	original	Java	I/O	stream	classes	have	
corresponding	Reader and	Writer classes



31

InputStream/OutputStream
Reader/Writer	correspondings

InputStream/OutputStream Reader/Writer

InputStream	 Reader
adapter:	InputStreamReader

OutputStream	 Writer	
adapter:	OutputStreamWriter

FilelnputStream FileReader

FileOutputStream FileWriter

StringBufferlnputStream	 StringReader

(no	corresponding	class) StringWriter

ByteArrayInputStream CharArrayReader

ByteArrayOutputStream CharArrayWriter

PipedInputStream PipedReader

PipedOutputStream PipedWriter



32

Decorator	correspondings

InputStream/OutputStream Reader/Writer

BufferedInputStream BufferedReader

BufferedOutputStream	 BufferedWriter	

PrintStream PrintWriter

LineNumberInputStream LineNumberReader

PushbacklnputStream PushbackReader



33

Example	program:	copy	a	file	line	by	line
public	static	void	main(String[]	args)	throws	Exception	{

BufferedReader	br	=	null;
PrintWriter	pw	=	null;
try	{

br =	new	BufferedReader(new	FileReader(new	File(args[0])));
pw	=	new	PrintWriter(

new	BufferedWriter(new	FileWriter(new	File(args[1]))));
String	line;
while	((line	=	br.readLine())	!=	null)	{ //	read	a	line.	null	at	the	end	of	the	file

pw.println(line); //	write	a	line
}

}	finally	{
if	(br	!=	null)	br.close();
if	(pw	!=	null)	pw.close();

}
}



34

Random	Access

¢ Reading	the	next	byte/string/number	or	writing	to	the	next	
location	is	called	sequential	access.

¢ Sequential	access	is	easy	and	efficient	when	you	don’t	know	the	
contents	of	a	file	or	just	want	to	create	a	copy	of	it	for	example.

¢ On	the	other	hand,	if	you	know	the	sizes	of	records	in	a	file,	you	
can	move	in	the	file	to	read	or	change	a	specific	record.	This	is	
random	access.

¢ All	records	don’t	have	to	be	the	same	size;	you	just	have	to	
determine	how	big	they	are	and	where	they	are	placed	in	the	
file.



35

Let’s	clarify	it	by	an	image



36

java.io.RandomAccessFile

¢ Used for	random	access.

¢ Is	not	part	of	the	InputStream or	OutputStream hierarchy. It’s	a	
completely	separate	class,	written	from	scratch.

¢ Some	methods:
§ getFilePointer(	):	find	out	where	you	are	in	the	file
§ seek(	):	move	to	a	new	point	in	the	file
§ length():	return	the	length	of	the	file

¢ the	constructors	require	a	second	argument	(identical	to	fopen()	
in	C)	indicating	whether	you	are	just	randomly	reading	("r")	or	
reading	and	writing	("rw").	There’s	no	support	for	write-only
files



37

Example	program:	Editing	courses
Course.java
public	class	Course	{

private	String	code;
private	String	name;
private	int	credit;

public	Course(String	c,	String	n,	int cr)	{
this.setCode(c);
this.setName(n);
this.credit	=	cr;

}
public	int	getCredit()	{	return	credit;	}
public	void	setCredit(int	c)	{	this.credit	=	c;	}

public	String	getCode()	{	return	code;	}
public	void	setCode(String	code)	{

this.code	=	to40Chars(code);
}

public	String	getName()	{	return	name;	}
public	void	setName(String	name)	{

this.name	=	to40Chars(name);
}
private	String	to40Chars(String	str)	{

String	tmp	=	str;
for	(int	i	=	str.length();	i	<	40;	i++)	{

tmp	+=	'	';
}
return	tmp.substring(0,	40);

}
public	String	toString()	{

return	code	+	"	- "	+	
name	+	"	- "	+
credit;								

}
}



38

Program.java
public	static	void	main(String[]	args)	throws	Exception	{

//	create	course	objects
Course[]	courses	=	new	Course[4];
courses[0]	=	new	Course("BBM101",	"Programlamaya Giris I",	3);
courses[1]	=	new	Course("BBM102",	"Programlamaya Giris II",	3);
courses[2]	=	new	Course("BBM103",	"Programlamaya Giris Lab	I",	3);
courses[3]	=	new	Course("BBM104",	"Programlamaya Giris Lab	II",	3);
//	open	the	file.	It	will	be	accessed	randomly
RandomAccessFile raf =	new	RandomAccessFile(new	File("courses.txt"),	"rw");
//	write	the	courses	to	a	file.	Each	course	is	a	record
for	(int	i	=	0;	i	<	courses.length;	i++)	{

raf.writeBytes(courses[i].getCode()); //	write	the	code	as	string
raf.writeBytes(courses[i].getName()); //	write	the	name	as	string
raf.writeInt(courses[i].getCredit()); //	write	the	credit	as	int

}

RandomAccessFile	is	
given	a	mode	while	
opening	the	file.	rw:	

read/write	(similar	to	c)	



39

Program.java	(continued)
//	let’s	read	the	second	course’s	data	and	create	a	course	object
byte[]	bytes	=	new	byte[40]; //	data	will	be	read	in	this	as	chunks	of	40	bytes

//	seek	to	the	2nd record.	each	record	is	40	+	40	+	4	bytes	long.
raf.seek((40	+	40	+	4)	*	(2 - 1));

raf.read(bytes);
String	code	=	new	String(bytes); //	first	40	byte	is	the	code	of	the	course

raf.read(bytes); //	second	40	byte	is	the	name	of	the	course
String	name	=	new	String(bytes);

raf.read(bytes,	0,	4); //	read	4	bytes:	the	credit
int	credit	=	ByteBuffer.wrap(bytes).getInt(); //	convert	byte	array	to	int
System.out.println(new	Course(code,	name,	credit)); //	create	and	print	the	course

code	 name
credit

n – 1	records	must	be	skipped	to	
seek	to	the	nth	record



40

Program.java

//	let’s	update	the	name	of	the	4th	course

//	seek	to	the	beginning	of	name	of	4th	course
raf.seek((40	+	40	+	4)	*	(4	- 1)	+	40);

//	write	the	new	name	of	the	course
raf.writeBytes("Programlamaya	Giris	Laboratory	II");

//	close	the	file
raf.close();

}	//	end	of	main

Seek	to	the	4th	record

Seek	to	the	name	field



41

Homework

¢ Investigate	file	opening	modes	in	Java!
§ read,	write,	append,	…



42

Serialization

¢ "Serialization is	the	process	of	translating data	
structures or object state	into	a	format	that	can	be	stored	(for	
example,	in	a file or	memory buffer,	or	transmitted	across	
a network connection	link)	and	reconstructed (deserialization)
later	in	the	same	or	another	computer	environment" (ref:	
wikipedia)

¢ In	Java,	serialization	is	usually	used	to	save/read	objects	to/from	
files	using	ObjectOutputStream	and ObjectInputStream

¢ A	class	must	implement	java.io.Serializable interface	to	be	
serializable.	It	is	a	marker	interface	(has	no	methods	to	
implement)	



43

Serialization	Rules	in	Java

¢ All	primitive	types	are	serializable.

¢ Transient	fields	(with	transient	modifier)	are	NOT	serialized,	
(i.e.,	not	saved	or	restored).	A	class	that	implements	Serializable
must	mark	transient	fields	of	classes	that	do	not	support	
serialization	(e.g.,	a	file	stream).

¢ Static	fields	(with	static	modifier)	are	Not	serialized.

¢ If	member	variables	of	a	serializable object	reference	to	a	non-
serializable object,	the	code	will	compile	but	a	
RuntimeException will	be	thrown.



44

Example	Program:	save/read	the	students
public	class	Student	

implements java.io.Serializable {

private	int	id;
private	String	firstName;
private	String	lastName;
transient private	String	dummy;

public	Student(int	id,	String	firstName,
String	lastName,	String	dummy)	{
this.id	=	id;
this.firstName	=	firstName;
this.lastName	=	lastName;
this.dummy	=	dummy;

}

//	getters	and	setters are	written	here

public	String	toString()	{
return	id	+	"	- "	+	

firstName	+	"	"	+	
lastName	+	 "	"	+	
dummy;

}

}



45

Program.java
public	static	void	main(String[]	args)	throws	Exception	{

//	create	students
Student[]	students	=	new	Student[2];
students[0]	=	new	Student(20131234,	"Ali",	"Doğru",	"dummy1");
students[1]	=	new	Student(20135678,	"Veli",	"Yanlış",	"dummy2");
//	create	the	file
ObjectOutputStream oos =	new	ObjectOutputStream(new	

FileOutputStream(new	File("students.dat")));
for	(int	i	=	0;	i	<	students.length;	i++)	{

oos.writeObject(students[i]); //	write	the	object	to	file	serializing
System.out.println(students[i]);		//	print	the	object

}
oos.close(); //	close	the	file



46

Program.java	(continued)

//	let’s	read	and	display	the	saved	objects	on	the	screen

//	open	the	file
ObjectInputStream ois =	new	ObjectInputStream(

new	FileInputStream(new	File("students.dat")));
for	(int	i	=	0;	i	<	students.length;	i++)	{

//	read	the	student	object	from	file	deserializing
Student	s	=	(Student)	ois.readObject();
System.out.println(s);

}
ois.close();

}



47

Output	of	the	program

Objects	written	to	the	file:
20131234	- Ali	Doğru	- dummy1
20135678	- Veli	Yanlış	- dummy2

Objects	read	from	the	file:
20131234	- Ali	Doğru	- null
20135678	- Veli	Yanlış	– null

Note	that,	transient	field	named	dummy	is	not	serialized.	So,	it	is	
null	when	the	objects	are	deserialized!



48

java.nio.*

¢ Be	aware of	a	bit	more	complex	library	of	Java:	The	"new" I/O
¢ It	was introduced	in	JDK	1.4	in	the	java.nio.*	packages
¢ It’s	main	goal	is	speed.	It	uses	channels and	buffers for	I/O	
(closer	to	the	operating	system’s	way	of	performing	I/O)

¢ It	supports	a	non-blocking I/O	model.	



49

Summary

¢ A	stream	is	an	object	that	either	
§ Delivers	data	from	your	program	to	a	destination,	such	as	a	file	or	screen,	
(output	stream) or

§ Takes	data	from	a	source,	such	as	a	file	or	the	keyboard,	and	delivers	data	
to	your	program	(input	stream)

¢ Files	are	handled	as	text	or	binary	files
¢ Java	has	classes	to	handle	binary	(byte	oriented)	or	text	
(character	oriented)	files

¢ Decoration	is	used	to	give	extra	functionality	to	existing	objects.	
Java	I/O	library	benefits	the	decoration	pattern

¢ Java	supports	both	sequential	and	random	file	access
¢ Serialization	is	the	job	of	converting	an	object	to	a	bit	stream	
that	can	be	saved	or	transferred	to	be	deserialized	later

¢ Java’s	nio	library	is	a	fast	option	for	I/O



50

Acknowledgements

¢ The	course	material	used	to	prepare	this	presentation	is	
partially taken/adopted	from	the	list	below:
§ Thinking	in	Java	4th	Ed.,	Bruce	Eckel,	Prentice	Hall,	2006
§ Java	- An	Introduction	to	Problem	Solving	and	Programming,	Walter	
Savitch,	Pearson,	2012


