BBM 102 - Introduction to

Programming Il
Spring 2017

Streams and Input/Output

Instructors: Ayca Tarhan, Fuat Akal, Géneng Ercan, Vahid Garousi

Today

m Streams and Files

m Text/Binary Files

m java.io.File class

m Revisiting java.util.Scanner

m Java I/O Library

m Decorator Pattern

m InputStreams and OutputStreams
m Readers and Writers

m Sequential Access vs Random Access
m java.io.RandomAccessFile

m Serialization

Streams

m A stream is a flow of data. The data might be characters,
numbers, or bytes consisting of binary digits.

m If the data flows into your program, the stream is called an
input stream (example: System.in).

m If the data flows out of your program, the stream is called an
output stream (example: System.out).

Ill])llf stream
QOutput stream

Keyboard

Monitor
Input stream

@ Output stream O
Compact disc

Hard disk

Program

Files

m The keyboard and the screen deal with temporary data
m Files provide a way to store data permanently

m All of the data in any file is stored as bits, or Os and 1s.
m Files are categorized as text files and binary files

Text/Binary Files

m Text files
= The bits represent printable (easily readable by humans when printed)
characters.
® The characters are coded with a "character set", ASCII, 1ISO-8859-1, utf-8..
® They can be edited with a " text editor "
= Examples: Program source files (.java, .c), files saved with a text editor,
e.g. Notepad.exe
m Binary Files

= The bits represent other types of encoded information, such as executable
instructions or numeric data

= They are easily read by the computer but not humans
= They are not "printable" files

= Examples: Executables (.exe), images (.jpg, .png), music (.mp3), or video
(.avi, .mov) files

ASCII (American Standard Code for Information Interchange) Code Table

Dec Hx Oct Char Dec Hx Oct Html Chr [Dec Hx Oct Himl Chr) Dec Hx Oct Himl Chr
o o0 NUL {null) 32 20 040 Space| 64 40 100 @ [96 60 140 `
1 1 (start of heading) 33 21 041 ! ! 65 41 101 A A | 97 61 141 a 2
z 2 (start of text) 34 22 042 " " 66 42 102 «#66; B | 98 62 142 «#98; b
3 3 (end of text) 35 23 043 # # 67 43 103 &«#67; C | 99 63 143 c C
4 4 (end of transmission) 36 24 044 $ § 63 44 104 D D |100 64 144 d d
5 5 (encquiry) 37 25 045 % % 69 45 105 &«#69; E (101 65 145 e &
6 6 (acknowledge) 38 26 046 & ¢ 70 46 106 «#70; F |102 66 146 f €
77 (bell) 39 27 047 ' ' 71 47 107 &«#71; G (103 67 147 g ¢
8§ 8 (backspace) 40 28 050 (| 72 48 110 «#72; H (104 68 150 «#104; h
9 9 (horizontal tab) 41 29 051)) 73 49 111 I I (105 69 151 i 1

10 & (NL line feed, new line)| 42 2A 052 * * 74 4h 112 &«#74; J (106 6A 152 j 7

11 B 013 VT (vertical tab) 43 2B 053 + + 75 4B 113 &«#75; K |107 6B 153 k k

12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L [108 6C 154 «#108; 1

13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 «#77; M |109 6D 155 m 1

14 E 016 50 (shift out) 46 2E 056 . . 78 4E 116 «#78; N |110 6E 156 &#l1l0; n

15 F 017 5I (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#lll; 0

16 10 020 DLE ({data link escape) 48 30 060 0 0 80 50 120 &«#80; P |112 70 160 &#ll2:; p

17 11 021 DC1 {dewice control 1) 49 31 061 1 1 81 51 121 Q 0 [113 71 161 &#l13; o

18 12 022 DCZ (dewice control 2) 50 32 062 &«#50; 2 82 52 122 «#82:; R (114 72 162 &#ll4; ¢

19 13 023 DC3 (dewice control 3) 51 33 063 &«#51; 3 83 53 123 S 5 |115 73 163 &#ll5; s

20 14 024 DC4 (dewice control 4) 52 34 064 &«#$52; 4 84 54 124 «#84; T (116 74 164 &#ll6; ©

21 15 025 NAK (negatiwve acknowledge) 53 35 065 5 5 85 55 125 U U [117 75 165 &#ll7; u

22 16 026 5YN (synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V (118 76 166 &#l18; v

23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87; U (119 77 167 &#l119; w

24 18 030 CAN (cancel) 56 38 070 88 58 130 &«#88; X (120 78 170 x X

25 19 031 EM (end of medium) 57 39 071 89 59 131 Y ¥ (121 79 171 &#l21; ¥

26 1A i (substitute) 58 34 072 90 SA 132 Z Z (122 7A 172 s#l22; z

27 1B (escape) 59 3B 073 91 SB 133 [[(123 7B 173 { |

28 1C (file separator) 60 3C 074 92 5C 134 «#92; % (124 7C 174 «#l24; |

29 1D (group separator) 61 3D 075 93 5D 135]] [125 7D 175 } }

30 1E (record separator) 62 3E 076 94 S5E 136 &«#94; * [126 7E 176 ~ ~

31 1F {unit separator) 63 3F 077 95 SF 137 _ 127 7F 177 DEL

SOI;'CB: www.LookupTables .com

Extended ASCII Codes

122 ¢ 14 E 160 i 176 192 L 208 L 224 5 240 =
129 o 145 = 161 i 177 193 L 200 £ 225 5 241 %
130 ¢ 146 E 162 5 1738 B 194 o+ 20 226 T 242 =
131 & 147 & 1g3 u 179 | 195 F 211 L 227 q 0 243 <
132 & 148 & 164 & 130 196 - 212 L 228 T 44 [
133 & 149 & 165 0181 197 + 213 ¢ 229 o5 245)
134 & 150 @ 166 ° 182 198 214 230 246 -
135 5 151 167 ° 183 ¢ 199 | 215§ 231 ¢ 247 =
136 & 152 ¥ 168 ; 184 1 200 L 216 £ 232 @ 248 ¢
137 & 153 O 169 ~ 185 0 27 23 ® 24

133 & 154 U 170 - 18 | 202 L 218 234 0 250
1391 155 < 171 % 187 4 203 5 29 @ 5 5 21 o
140 i 156 £ 172 % 188 4 204 | 220 5 23 o 252 =
141 i 157 ¥ 173 189 4 205 = 21 | 237 ¢ 253 2
42 A 1% p 174 « 190 4 06 F 22 | 28 = 254 W
43 A 159 g 175 » 191 4 207 L 223 W™ 239~ 255

Source: www.LookupTables.com

Text/Binary Files

m Confused? Let’s see an example: We want to write the number
127 into a file.

m If we write it into an ASCII coded text file:

® Three bytes will be used for each character: 1 , 2, and 7
= Binary values of these characters: 00110001, 00110010, 00110111

m If we write it into a binary file:
= One byte (variable is defined as byte): 01111111
= Two bytes (variable is defined as short): 00000000 01111111

= Four bytes (variable is defined as int):
00000000 00000000 00000000 01111111

java.io.File

m Do not be deceived with the name of it! Class represents a path
rather than a file!

m Can be used to
= Check if the path exists or not
® Check if the path is a file or a directory

= Check/edit the file/directory’s readable, writable, executable, hidden
properties

= Create/delete file/directory
= Get the contents of a directory
= Get the last modification date and time of the file/directory

FileExample Program

public class FileExample {
public static void main(String[] args) {
File path = new File("h:\\example");
if (!path.exists()) { // It does not exist, create a directory!
path.mkdir();
} else if (path.isDirectory()) { // It is a directory! List the contents
String[] contentOfDirectory = path.list();
for (String filename : contentOfDirectory) {
System.out.printin(filename);
}
}else { // Itis a file! Display the properties of the file
System.out.printin("Read:" + path.canRead() +
", Write: " + path.canWrite() + ", Hidden: " + path.isHidden());

Revisiting java.util.Scanner

m Class Scanner is an easy way to read input from keyboard,
remember?
// create a scanner System.in (keyboard)
Scanner scanner = new Scanner(System.in);
// read a string from keyboard and write it to System.out (monitor)
System.out.printIn(scanner.next());

m It takes an inputstream to its constructor and reads from it

m What if we give a File object to the constructor?
// create a scanner for the file example.txt
scanner = new Scanner(new File("c:example.txt"));
// read a string from the file and write it to System.out (monitor)
System.out.printIn(scanner.next());

Scanner example: display contents of a file

public static void main(String[] args) {

Scanner scanner = null;

try {
scanner = new Scanner(new File(args[0]));
while (scanner.hasNext()) {

System.out.printIn(scanner.nextLine());

}

} catch (Exception e) {
e.printStackTrace();

}Hinally {
if (scanner != null) scanner.close();

Java I/0 Library

m Mostly under the package java.io

m Includes classes, interfaces and exceptions for
= |nput/Output
= Binary/Text
= Sequential/Random Access
m JDK versions improved the library in time, adding new
classes/interfaces.

Binary Input

BufferedinputStream

(byte oriented)

Binary Output

(byte oriented) \

StreamTokenizer

Text Input

H Reader
(character oriented) N

Text Output

y
(character oriented)

’ O =) sy e — -
= rplemerss
13 14
Creating a text file Example: from keyboard to file
L public static void main(String[] args) {
m An easy way to create a text file is using java.io.PrintWriter PrintWriter outputtream = null
Scanner scanner = null;
public static void main(String[] args) { try {
PrintWriter outputStream = null; outputStream = new PrintWriter(args[0]); // open the file
try { scanner = new Scanner(System.in); // create scanner for keyboard
String str = scanner.nextLine(); // get the first line
outputStream = new PrintWriter("c:out.txt"); /1 open the file while (!str.equalsignoreCase("exit")) { // if it is not «exit»
outputStream.printin("Example line.."); // write something to the file outputStream.printin(str); // write it to the file
} catch(FileNotFoundException e) { str = scanner.nextLine(); // get a new line
System.out.printin("Error opening the file!"); }

} finally {

if (outputStream !=null) outputStream.close(); // close the file

} catch(FileNotFoundException e) {
System.out.printIn("Error opening the file!");

} finally {
if (outputStream != null) outputStream.close();
if (scanner != null) scanner.close();

// close the file

// close the scanner

Decorator Pattern

m Software Design Patterns

= "In software engineering, a design pattern is a general reusable solution
to a commonly occurring problem within a given context in software
design" (wikipedia)

= Design patterns gained popularity in computer science after the
book Design Patterns: Elements of Reusable Object-Oriented
Software was published in 1994 by the so-called "Gang of Four" (Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides), which is
frequently abbreviated as ”"GoF".

Decorator Pattern

m Decorator Pattern adds a new functionality to an existing object

m A decorator class decorates an inner object and uses its
methods to serve in a different way

g 5<¢peme()

N Xoperate()
‘Qerate()

-~

Client | s
,---- Message
Invoke e

GetNextHandlerDelegate

Retumn : Invoke
value /\ """""""""" Lt /b\ object
> /\1
. Target object or
?géze%bggtsgr ‘ [Behavior] [Behavior [Behavior j original class
\/ Return

method
| Behaviors Pipeline value

_—/

C

Decorator Pattern in java.io

m InputStream and Reader classes (and their subclasses) has basic
methods called read() for reading a single byte or an array of
bytes

m OutputStream and Writer classes (and their subclasses) has
basic methods called write() for writing a single byte or an array
of bytes

m Problem: A new access to the disk for each byte will slow down
the application seriously

m Solution: Bytes may be collected before reading from or writing
to the disk. This will reduce the number of physical disk
operations

m Decorator classes
® java.io.BufferedInputStream, java.io.BufferedReader
® java.io.BufferedOutputStream, java.io.BufferedWriter

BufferedReader example

public static void main(String[] args) {
BufferedReader reader = null;
try {
reader = new BufferedReader(new FileReader(new File(args[0])));
String line;
while ((line = reader.readLine()) != null) {
System.out.printin(line);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
if (reader != null) reader.close();

A more complicated decoration example

m Let's say that we have a bunch of Java objects in a Gzipped file
named ‘objects.gz’ and that we want to read them a bit quickly

// First open an inputstream of it:

FilelnputStrea 4@ new FilelnputStream("objects.gz");

// We want speeeed, so let's bufferitin-memory:
BufferedlnputStrea new BufferedInputStream(fis);
// The file is gzipped, so we nee zip it:

GziplnputStream new GzipInputStream(bis);

// We need to read those Java objects:
ObjectlnputStream new ObjectinputStream(gis);

// Now we can finally use it:

SomeObject someObject = (SomeObject) ois.readObject();

2

InputStream and subclasses

InputStream’s job is to represent classes that produce input from
different sources. These sources can be:

m An array of bytes (java.io.ByteArraylnputStream)
m A String object (java.io.StringBufferlnputStream)
m A file (java.io.FileInputStream)

m A "pipe," (java.io.PipedinputStream)

= Pipe works like a physical pipe: You put things in at one end and they
come out the other.

m A sequence of other streams, so you can collect them together
into a single stream (java.io.SequencelnputStream)

m Other sources, such as an Internet connection

OutputStream and subclasses

m An array of bytes (java.io.ByteArrayOutputStream)
m A file (java.io.FileOutputStream)

m A "pipe," (java.io.PipedOutputStream)

= Pipe works like a physical pipe: You put things in at one end and they
come out the other.

23

Homework

m Go over the input and out stream classes mentioned in the
previous two slides!

m Try to understand at least how they basically work.

Decorating InputStreams

m java.io.DatalnputStream: read primitives (int, char, long, etc.)
from a stream in a portable fashion.

m java.io.BufferedIinputStream: prevents a physical read every
time you want more data.

m java.io.LineNumberlnputStream: Keeps track of line numbers in
the input stream; you can call getLineNumber() and
setLineNumber (int).
® This class incorrectly assumes that bytes adequately represent characters.

m java.io.PushbackinputStream: Has a one-byte pushback buffer
so that you can push back the last character read.

25

Decorating OutputStreams

m java.io.DataOutputStream: write primitives (int, char, long,
etc.) from a stream in a portable fashion.

m java.io.BufferedOutputStream: prevent a physical write every
time you send a piece of data.

m java.io.PrintStream: For producing formatted output. While
DataOutputStream handles the storage of data, PrintStream
handles display

Example Program: create a copy of a file

public static void main(String[] args) throws Exception {
BufferedInputStream bis = null;
BufferedOutputStream bos = null;
try {
bis = new BufferedInputStream(new FilelnputStream(new File(args[0])));
bos = new BufferedOutputStream(new FileOutputStream(new File(args[1])));
byte oneByte;
// read a byte. -1 will be returned at the end of the file.
while ((oneByte = bis.read()) !=-1) {
bos.write(oneByte); // write the byte to the output
}
} finally {
if (bis != null) bis.close();

if (bos != null) bos.close();

// close the streams

Is it too slow?

public static void main(String[] args) throws Exception {
BufferedinputStream bis = null;
BufferedOutputStream bos = null;
byte[] bytes = new byte[1024 * 16]; // bytes will be read in this by 16K chunks
try {
bis = new BufferedInputStream(new FileInputStream(new File(args[0])));
bos = new BufferedOutputStream(new FileOutputStream(new File(args[1])));
int size;
while ((size = bis.read(bytes)) > -1) {
bos.write(bytes);
}
}H inally {
if (bis != null) bis.close();

if (bos != null) bos.close();

Another example: download a web page

// please note that exception handling is not coded properly!!

public static void main(String[] args) throws Exception {
URL url = new URL("http://web.cs.hacettepe.edu.tr/~bbm102/");
BufferedInputStream bis = new BufferedinputStream(url.openStream());
BufferedOutputStream bos = new BufferedOutputStream(
new FileOutputStream(new File("downloadedPage.html")));
for (int ¢ = bis.read(); c !=-1; ¢ = bis.read()) {
bos.write(c);
}
bis.close();
bos.close();

29

Readers and Writers

m InputStream and OutputStream classes provide functionality in
the form of byte oriented 1/0

m Reader and Writer were added to the library with Java 1.1.
These classes provide Unicode-compliant, character-based 1I/0

m Almost all of the original Java I/O stream classes have
corresponding Reader and Writer classes

InputStream/OutputStream
Reader/Writer correspondings

InputStream/OutputStream Reader/Writer

InputStream Reader
adapter: InputStreamReader

OutputStream Writer

adapter: OutputStreamWriter
FilelnputStream FileReader
FileOutputStream FileWriter
StringBufferinputStream StringReader
(no corresponding class) StringWriter
ByteArraylnputStream CharArrayReader
ByteArrayOutputStream CharArrayWriter
PipedinputStream PipedReader

PipedOutputStream PipedWriter

kil

Decorator correspondings

InputStream/OutputStream Reader/Writer

BufferedinputStream BufferedReader
BufferedOutputStream BufferedWriter
PrintStream PrintWriter

LineNumberReader
PushbackReader

LineNumberinputStream

PushbacklnputStream

Example program: copy a file line by line

public static void main(String[] args) throws Exception {
BufferedReader br = null;
PrintWriter pw = null;
try {
br = new BufferedReader(new FileReader(new File(args[0])));
pw = new PrintWriter(
new BufferedWriter(new FileWriter(new File(args[1]))));

String line;
while ((line = br.readLine()) !=null){ // read a line. null at the end of the file
pw.printin(line); // write a line
}
} finally {

if (br 1= null) br.close();
if (ow != null) pw.close();

Random Access

m Reading the next byte/string/number or writing to the next
location is called sequential access.

m Sequential access is easy and efficient when you don’t know the
contents of a file or just want to create a copy of it for example.

m On the other hand, if you know the sizes of records in a file, you
can move in the file to read or change a specific record. This is
random access.

m All records don’t have to be the same size; you just have to
determine how big they are and where they are placed in the
file.

Let’s clarify it by an image

Sequential access
. il\//}//}//?//\//}//}//l\//] coe

1 2 3 4 5 o6 7 8

Random access

T\
(T 71T 71T, 1T -1 -1 71T,
AN < N

1 3 7 2 8 6 4 5

35

java.io.RandomAccessFile
m Used for random access.

m Is not part of the InputStream or OutputStream hierarchy. It’s a
completely separate class, written from scratch.

m Some methods:
= getFilePointer(): find out where you are in the file
= seek(): move to a new point in the file
= length(): return the length of the file

m the constructors require a second argument (identical to fopen()
in C) indicating whether you are just randomly reading ("r") or
reading and writing ("rw"). There’s no support for write-only
files

Example program: Editing courses
Course.java

Program.java

RandomAccessFile is

public class Course { public String getName() { return name; } public static void main(String[] args) throws Exception { given a mode while
private String code; public void setName(String name) { // create course objects opening the file. rw:
private String name; this.name = to40Chars(name); Course[] courses = new Course[4]; read/write (similar to c)
private int credit; } courses[0] = new Course("BBM101", "Programlamaya Giris 1", 3);
private String to40Chars(String str) { courses[1] = new Course("BBM102", "Programlamaya Giris 11", 3);
public Course(String c, String n, int cr) { String tmp = str; R . . N
o . . courses[2] = new Course("BBM103", "Programlamaya Giris Lab 1", 3);
this.setCode(c); for (inti = str.length(); i < 40; i++) {
. L courses[3] = new Course("BBM104", "Programlamaya Giris Lab 11", 3);
this.setName(n); tmp+="";
this.credit = cr; } // open the file. It will be accessed randomly
) return tmp.substring(0, 40); RandomAccessFile raf = new RandomAccessFile(new FiIe("courses.txt")
public int getCredit() { return credit; } } // write the courses to a file. Each course is a record
public void setCredit(int c) { this.credit =c; } public String toString() { for (inti=0; i< courses.length; i++) {
return code + " - " + raf.writeBytes(courses|[i].getCode()); // write the code as string
public String getCode() { return code; } name+"-"+ raf.writeBytes(courses[i].getName()); // write the name as string
public void setCode(String code) { credit; raf.writelnt(courses[i].getCredit()); // write the credit as int
this.code = to40Chars(code); } }
} }
37 38
Program.java (continued) Program.java

// let’s read the second course’s data and create a course object
byte[] bytes = new byte[40]; // data will be read in this as chunks of 40 bytes

// seek to the 2nd record. each record is 40 + 40 + 4 bytes long.

raf.seek @ @m @),—> n — 1 records must be skipped to
o . seek to the nth record
credit

raf.read(bytes); ~ code name
String code = new String(bytes); // first 40 byte is the code of the course
raf.read(bytes); // second 40 byte is the name of the course

String name = new String(bytes);

raf.read(bytes, 0, 4); // read 4 bytes: the credit
int credit = ByteBuffer.wrap(bytes).getInt(); // convert byte array to int

System.out.printin(new Course(code, name, credit)); // create and print the course

39

// let’s update the name of the 4th course

// seek to the beginning of name of 4th course
raf.seek((@0+40+4) * (4-1 .—>;

Seek to the name field

Seek to the 4th record
// write the new name of the course

raf.writeBytes("Programlamaya Giris Laboratory I1");

// close the file
raf.close();
}// end of main

Homework

m Investigate file opening modes in Java!

® read, write, append, ...

4

Serialization

m "Serialization is the process of translating data
structures or object state into a format that can be stored (for
example, in a file or memory buffer, or transmitted across
a network connection link) and reconstructed (deserialization)
later in the same or another computer environment" (ref:
wikipedia)

m In Java, serialization is usually used to save/read objects to/from
files using ObjectOutputStream and ObjectinputStream

m A class must implement java.io.Serializable interface to be
serializable. It is a marker interface (has no methods to
implement)

2

Serialization Rules in Java
m All primitive types are serializable.

m Transient fields (with transient modifier) are NOT serialized,
(i.e., not saved or restored). A class that implements Serializable
must mark transient fields of classes that do not support
serialization (e.g., a file stream).

m Static fields (with static modifier) are Not serialized.

m If member variables of a serializable object reference to a non-
serializable object, the code will compile but a
RuntimeException will be thrown.

43

Example Program: save/read the students

public class Student

implements java.io.Serializable { // getters and setters are written here

private int id; public String toString() {
private String firstName; returnid+"-" +
private String lastName; firstName + " " +
transient private String dummy; lastName + " " +
dummy;
public Student(int id, String firstName, }
String lastName, String dummy) {
this.id = id; }

this.firstName = firstName;
this.lastName = lastName;
this.dummy = dummy;

Program.java

public static void main(String[] args) throws Exception {

// create students

Student[] students = new Student[2];

students[0] = new Student(20131234, "Ali", "Dogru", "dummy1");

students[1] = new Student(20135678, "Veli", "Yanlis", "dummy2");

// create the file

ObjectOutputStream oos = new ObjectOutputStream(new

FileOutputStream(new File("students.dat")));

for (inti = 0; i < students.length; i++) {
oos.writeObject(students]i]); // write the object to file serializing
System.out.printin(studentsli]); // print the object

Program.java (continued)

// let’s read and display the saved objects on the screen

// open the file
ObjectinputStream ois = new ObjectinputStream(
new FilelnputStream(new File("students.dat")));
for (inti=0; i < students.length; i++) {
// read the student object from file deserializing
Student s = (Student) ois.readObject();
System.out.printin(s);

}
} .
oos.close(); // close the file ois.close();
}
Output of the program java.nio.*

Objects written to the file:
20131234 - Ali Dogru
20135678 - Veli Yanlig

Objects read from the file:
20131234 - Ali Dog
20135678 - Veli Yah

Note that, transient field named dummy is not serialized. So, it is
null when the objects are deserialized!

47

m Be aware of a bit more complex library of Java: The "new" I/O
m It was introduced in JDK 1.4 in the java.nio.* packages

m It's main goal is speed. It uses channels and buffers for |/O
(closer to the operating system’s way of performing 1/0)

m It supports a non-blocking I/0 model.

Summary

m A stream is an object that either

= Delivers data from your program to a destination, such as a file or screen,
(output stream) or

= Takes data from a source, such as a file or the keyboard, and delivers data
to your program (input stream)

m Files are handled as text or binary files

m Java has classes to handle binary (byte oriented) or text
(character oriented) files

m Decoration is used to give extra functionality to existing objects.
Java I/0 library benefits the decoration pattern

m Java supports both sequential and random file access

m Serialization is the job of converting an object to a bit stream
that can be saved or transferred to be deserialized later

m Java’s nio library is a fast option for 1/0

49

Acknowledgements

m The course material used to prepare this presentation is
partially taken/adopted from the list below:
® Thinking in Java 4th Ed., Bruce Eckel, Prentice Hall, 2006

® Java - An Introduction to Problem Solving and Programming, Walter
Savitch, Pearson, 2012

