
Implementing Network Security Protocols
based on Elliptic Curve Cryptography ∗†

M. Aydos, E. Savaş, and Ç. K. Koç
Electrical & Computer Engineering

Oregon State University
Corvallis, Oregon 97331, USA

{aydos,savas,koc}@ece.orst.edu

Abstract

Elliptic curve cryptography provides a methodology for obtaining high-speed, ef-
ficient, and scalable implementations of network security protocols. In this paper, we
describe in detail three protocols based on elliptic curve cryptographic techniques, and
the results of our implementation of the elliptic curve cryptography over the Galois field
GF (2k), where k is a composite number.

1 Elliptic Curve Cryptography

Elliptic curve cryptography [9, 5, 8, 6] provides a methodology for obtaining high-speed,
efficient, and scalable implementations of network security protocols. The security of
these protocols depends on the difficulty of computing elliptic curve discrete logarithm
in the elliptic curve group. The group operations utilize the arithmetic of points which
are elements of the set of solutions of an elliptic curve equation defined over a finite field.
The arithmetic of elliptic curve operations depend on the arithmetic on the underlying
finite field. The standards suggest the use of GF (p) and GF (2k). Below, we define the
nomenclature and then provide a general overview of security protocols based on elliptic
curve cryptography.

• Scalar: An element belonging to either one of the fields GF (p) or GF (2k) is called
a scalar. Scalars are named with lowercase letters: r, s, t, etc.

• Scalar Addition: Two or more scalar can be added to obtain another scalar. In
the GF (p) case, this is the ordinary integer addition modulo p. When GF (2k) is
used, this is equivalent to polynomial addition modulo an irreducible polynomial of
degree k, generating the field GF (2k). We will denote the scalar addition of r and
s giving the result e by e = r + s.

∗This research was supported in part by Secured Information Technology, Inc.
†Proceedings of the Fourth Symposium on Computer Networks, S. Oktuǧ, B. Örencik, and E. Har-

mancı, editors, pages 130–139, Istanbul, Turkey, May 20-21, 1999.

1



• Scalar Multiplication: Two or more scalar can be multiplied to obtain another
scalar. In the GF (p) case, this is the ordinary integer multiplication modulo p.
When GF (2k) is used, this is equivalent to polynomial multiplication modulo an
irreducible polynomial of degree k, generating the field GF (2k). We will denote the
scalar multiplication of r and s giving the result e by e = rs.

• Scalar Inversion: The multiplicative inverse of an element a in GF (p) or GF (2k)
is denoted as a−1 which is the number with the property aa−1 = 1. It is often
computed using the Fermat’s method or the extended Euclidean algorithm.

• Point: An ordered pair of scalars satisfying the elliptic curve equation is called a
point. Capital letters are used to denote these elements: P , Q, etc. We will also
denote a point P using its coordinates P = (x, y), where x and y belong to the
field. Furthermore, the x and y coordinates of P will be denoted by P.x or P.y,
respectively.

• Point Addition: There is a method to obtain a third point R on the curve given two
points P and Q, using a set of rules. This is called an elliptic curve point addition.
We will use the symbol ‘+’ to denote the elliptic curve addition R = P + Q. This
should not be confused with scalar addition.

• Elliptic Curve Group: The set of the solutions of the elliptic curve equation together
with a special point called point-at-infinity form an additive group if the point
addition operation defined above is taken as the group operation.

• Point Multiplication: The multiplication of an elliptic curve point P by an integer
e will be denoted by e × P . It is equivalent to adding P to itself e times, which
yields another point on the curve.

In addition to the above elliptic curve cryptographic primitives, we often need a one-
way hash (message digest) function which is defined below:

• Message Digest Function: A message digest function compresses a long message into
a short value which is usualy 128 or 160 bits long. Two widely used and standardized
hash functions are MD5 and SHA. We will denote the message digest of a message
M by H(M). The signature functions take H(M) as an input for efficiency reasons.
The hash of the concatenation of two messages M1 and M2 is denoted as H(M1,M2).

2 Elliptic Curve Diffie-Hellman

This protocol establishes a shared key between two parties. The original Diffie-Hellman
algorithm is based on the multiplicative group modulo p, while the elliptic curve Diffie-
Hellman (ECDH) protocol is based on the additive elliptic curve group. We assume that
the underlying field GF (p) or GF (2k) is selected and the curve E with parameters a, b,
and the base point P is set up. The order of the base point P is equal to n. The standards
often suggest that we select an elliptic curve with prime order, and therefore, any element
of the group would be selected and their order will be the prime number n. At the end of
the protocol the communicating parties end up with the same value K which is a point
on the curve. A part of this value can be used as a secret key to a secret-key encryption
algorithm.

2



Figure 1: Elliptic Curve Diffie-Hellmann (Version 1)

User Server
• Choose du ∈ [2, n− 2] • Choose ds ∈ [2, n− 2]
• Qu = du × P • Qs = ds × P

• Send
Qu−→ • Receive

• Send
Qs←− • Receive

• K = du ×Qs = duds × P • K = ds ×Qu = dsdu × P

The second version provides a little more flexibility in the sense that the established
value can be preselected by the user and sent to the server. The protocol steps can be
modified slightly for sending of a secret value from the server to the user.

Figure 2: Elliptic Curve Diffie-Hellmann (Version 2)

User Server
• Choose du ∈ [2, n− 2] • Choose ds ∈ [2, n− 2]
• eu = d−1

u mod n • es = d−1
s mod n

• Q = du ×K

• Send
Q−→ • Receive

• R = ds ×Q = dsdu ×K

• Receive
R←− • Send

• S = eu ×R = eudsdu ×K = ds ×K

• Send
S−→ • Receive

• T = es × S = esds ×K = K

3 Elliptic Curve Digital Signature Algorithm

First, an elliptic curve E defined over GF (p) or GF (2k) with large group of order n and
a point P of large order is selected and made public to all users. Then, the following key
generation primitive is used by each party to generate the individual public and private
key pairs. Furthermore, for each transaction the signature and verification primitives are
used. We briefly outline the Elliptic Curve Digital Signature Algorithm (ECDSA) below,
details of which can be found in [4].

ECDSA Key Generation The user A follows these steps:

1. Select a random integer d ∈ [2, n− 2].

2. Compute Q = d× P .

3. The public and private keys of the user A are (E,P, n,Q) and d, respectively.

ECDSA Signature Generation The user A signs the message m using these steps:

1. Select a random integer k ∈ [2, n− 2].

2. Compute k × P = (x1, y1) and r = x1 mod n.

If x1 ∈ GF (2k), it is assumed that x1 is represented as a binary number.

If r = 0 then go to Step 1.

3



3. Compute k−1 mod n.

4. Compute s = k−1(H(m) + dr) mod n.

Here H is the secure hash algorithm SHA.

If s = 0 go to Step 1.

5. The signature for the message m is the pair of integers (r, s).

ECDSA Signature Verification The user B verifies A’s signature (r, s) on the message
m by applying the following steps:

1. Compute c = s−1 mod n and H(m).

2. Compute u1 = H(m)c mod n and u2 = rc mod n.

3. Compute u1 × P + u2 ×Q = (x0, y0) and v = x0 mod n.

4. Accept the signature if v = r.

4 A Mutual Authentication Protocol

Below we describe a mutual authentication protocol which was proposed for a wireless
communication environment [1], however, it is suitable for other network environment as
well. We assume that there is a certificate authority (CA) which creates and distributes
certificates to the users and servers on their request. These certificates contain a tempo-
rary identity assigned by the CA for the requesting party, the public key of the requesting
party, and the expiration date of the certificate. The concatenated binary string is then
signed by the CA’s private key to obtain the certificate for the requesting party. By using
a certificate the identity of a particular party is bound to its public key. The acquisition
of the certificate is performed when the users and servers first subscribe to the service.

4.1 Server and User Initializations

In order to receive a certificate, the server sends its public key Qs together with its user
identity through a secure and authenticated channel to the CA. The CA uses its private
key to sign the hashed value of the concatenation of the public key, the temporary identity
Is, and the certification expiration date ts. The CA then sends the signed message through
the secure and authenticated channel to the server as shown in Figure 3.

Figure 3: Server Initialization.

Server Certification Authority
• Choose ds ∈ [2, n− 2] • Choose ks ∈ [2, n− 2]
• Qs = ds × P • Rs = ks × P

• Send
Qs−→ • Receive

• Choose unique Is

• rs = Rs.x
• ss = k−1

s (H(Qs.x, Is, ts) + dcars)

• Receive
Qca, Is, rs, ss, ts←− • Send

• es = H(Qs.x, Is, ts)
• Store Qs, Qca, Is, rs, ss, es, ts

4



Establishing a secure channel from the certification authority to the server is a common
and accepted assumption in almost all authentication protocols. In practice the CA
may use the postage system as the secure channel to distribute the signed messages and
temporary identities stored within a smardcard. The signed message is the certificate of
the user which is used in future authentication and key generation processes. By repeating
the very same process the user acquires its certificate as shown in Figure 4.

Figure 4: User Initialization.

User Certification Authority
• Choose du ∈ [2, n− 2] • Choose ku ∈ [2, n− 2]
• Qu = du × P • Ru = ku × P

• Send
Qu−→ • Receive

• Choose unique Iu

• ru = Ru.x
• su = k−1

u (H(Qu.x, Iu, tu) + dcaru)

• Receive
Qca, Iu, ru, su, tu←− • Send

• eu = H(Qu.x, Iu, tu)
• Store Qu, Qca, Iu, ru, su, eu, tu

The certificate consists of a pair of integers which is denoted as (rs, ss) for the server
and (ru, su) for the user. Here ru and rs are the x coordinates of the (distinct) elliptic
curve points Ru and Rs, respectively.

4.2 Mutual Authentication Between User and Server

The protocols shown in Figures 3 and 4 are executed off-line. The mutual authentication
and key agreement protocols between the user and the server need to be executed in
realtime. We give the combined protocol in Figure 5. Here, we use a secret-key encryption
algorithm to encrypt the data in the protocol. A conventional stream cipher (RC4 or
SEAL) or a block cipher (DES, 3DES, IDEA, RC5) in the cipher-block-chaining mode
can be used. The encryption and decryption operations using the key K acting on the
plaintext M and the ciphertext C are denoted as C := E(K,M) and M := D(K,C),
respectively.

According to the protocol, whenever there is a service request either by the user or
by the server, there is an immediate key exchange. The initiated party will also send a
random challenge to the initiating party. Sending the public keys unprotected over the
air does not introduce any threat to the security of the system. Once both sides have the
other party’s public key, they simultaneously generate a secret key to encrypt the data
required to have a mutual authentication. This task is accomplished by multiplying the
other party’s public key Q2 with this party’s private key d1.

To protect the certificates from an eavesdropper, it is necessary to send the certificates
in encrypted form. For this reason, the protocol uses a secret key cipher to encrypt the
certificates using the mutually agreed secret key Qk.x. The server encrypts the concatena-
tion of its certificate es, (rs, ss), the certificate expiration date ts, and a random number gs

which will be used to obtain the final mutual key of the communication. The final content
should also include the challenge if the server is the initiating party. The certificates are
usually sent in clear in almost all the other authentication protocols. In our protocol, we

5



do not reveal the content of the certificate which may be useful for spoofing attacks. This
increases the encryption time only slightly since the certificate is not very long (on the
order kilobits) and the encryption algorithms are very fast (on the order of megabits per
second).

The encrypted message C0 is then sent to the user. The user then decrypts C0 and
obtains the certificate of the server, the random number gs and the challenge gu which
in this case sent by itself. Obtaining the original challenge value back from the server
confirms the freshnesses of the message and prevents the reply attacks. The user imme-
diately encrypts the concatenation of its certificate eu, (ru, su), the certificate expiration
date tu, and the random number gs. This encrypted data which is denoted as C1 is sent
to the server.

Next, the user checks the validity of the certificate, and if it is invalid, the user aborts
the communication. On the other side, the server decrypts C1 and checks whether gs and
the time certificate are valid. If not, it aborts. This mechanism, specifically the use of
gs, defeats spoofing attacks by the user side and also prevents unnecessary computation.
Next, the server checks the validity of the certificate and accordingly grants or aborts the
service. Note that it may be a good idea to generate multiple g values in advance so that
the protocol could save some time. However, storing these multiple random numbers will
increase the storage requirement of the protocol, which is undesirable.

Figure 5: Mutual Authentication and Key Agreement.

User Server

• Receive
Qs←− • Send

• Generate a random number gu

• Send
Qu, gu−→ • Receive

• Qk = du ×Qs = (duds)× P • Qk = ds ×Qu = (dsdu)× P
• Qk.x: The mutually agreed key • Qk.x: The mutuallly agreed key

• Generate a random number gs

• C0 = E(Qk.x, es, rs, ss, ts, gu, gs)

• Receive
C0←− • Send

• D(Qk.x, C0) : Is gu present?
• C1 = E(Qk.x, (eu, (ru, su), tu, gs))

• Send
C1−→ • Receive

• D(Qk.x, C1)
• If gs and tu are valid, then

• c = ss
−1 • c = su

−1

• u1 = ces • u1 = ceu

• u2 = crs • u2 = cru

• R = u1 × P + u2 ×Qca • R = u1 × P + u2 ×Qca

• v = R.x • v = R.x
• If v �= rs, then abort • If v �= ru, then abort
• km = h(Qk.x, gs, gu)msb−64 • km = h(Qk.x, gs, gu)msb−64

• km: The unique secret key • km: The unique secret key

After the verification procedure has been completed by both sides, the user and the
server are now ready to use the channel that has been reserved for their communication.

6



However, there is one more step to complete our goal to have a full secure protocol: To
generate a secret key known by each side to encrypt the conversation. They do already
have a secret key Qk.x; however, this key cannot be used since it will be the same during
the valid time limits of their certificates. Therefore, we need to add a new key exchange
step to agree on a unique key to be used for communication during each session. However,
we do not prefer to execute another key agreement process due to previously stated power
and memory limitations. Instead, we will use the previously generated random numbers
gu and gs which are known by both sides to generate a new secret key without using the
channel again. Both the server and the user perform a hash operation to obtain the new
secret key, which we call km. This key now can be used for encrypting the data sent
through the channel.

5 Elliptic Curves over Composite Fields

An important category of elliptic curve cryptographic algorithms is defined over the finite
field GF (2k). Elliptic curve cryptographic applications require fast hardware and software
implementations of the arithmetic operations in GF (2k) for large values of k. Recently,
there has been a growing interest to develop software methods for implementing GF (2k)
arithmetic operations and elliptic curve cryptographic operations [12, 14]. An area of par-
ticular interest is the development of efficient software implementations of the arithmetic
and elliptic curve operations in GF (2k), where k is a composite number as k = nm. An
implementation method for this case was presented in [14], where the authors propose to
use the logarithmic table lookup method for the ground field GF (2n) operations. The field
GF (2nm) is then constructed using the polynomial basis, where the elements of GF (2nm)
are polynomials of degree m−1 whose coefficients are from the ground field GF (2n). The
field multiplication is performed by first multiplying the input polynomials, and reducing
the resulting polynomial by a degree-m irreducible trinomial.

Here, we propose a similar methodology for implementing the arithmetic operations
in GF (2nm). Our main difference is that we use an optimal normal basis in GF (2m) to
represent the elements of GF (2nm) by taking the ground field as GF (2n). The resulting
field operations, multiplication and squaring are quite efficient, and they do not involve
modular reductions. Our implementation results indicate that the arithmetic operations
in the proposed method are faster than those of [14]. Detailed algorithms for performing
field multiplication and inversion operations are reported in [11]. Here, we give a brief
overview of our methodology, and report the timing results for the finite field and elliptic
curve operations in the special case of k = 176, n = 16, and m = 11.

It is customary to view the finite field GF (2k) as a k-dimensional vector space defined
over the field GF (2). The field over which the vector space defined is generally called the
ground field. If we take the ground field as GF (2), then the elements of the k-dimensional
vector space are bit strings of length k, i.e., A = (a0, a1, . . . , ak−2, ak−1), where A ∈ GF (2k)
and the entries ai ∈ GF (2). However, if n > 1 divides k, then it is also possible to select
the ground field as GF (2n). If we take nm = k, then, effectively we are constructing an
m-dimensional vector space over GF (2n). The elements of the ground field are represented
as bit-strings of length n; the elements of GF (2nm) are represented as

A = (A0, A1, . . . , Am−2, Am−1) ,

where the entries Ai ∈ GF (2n). These representations, the nm-dimensional vector space

7



over GF (2) and the m-dimensional vector space over GF (2n), are equivalent. However,
the latter representation is based on n-bit words, and it is more advantageous for im-
plementation on microprocessors, particularly when n is selected properly. For example,
n = 8 and n = 16 have been suggested in [3, 14].

The methodology in [14] uses the values of n as 8 or 16. A basis for GF (28) or GF (216)
can be chosen; however, this is not important since the field arithmetic is performed us-
ing the logarithmic table lookup method. An element of GF (2nm) is represented using a
degree-(m− 1) polynomial whose coefficients are from the field GF (2n). The multiplica-
tion in GF (2nm) is performed by first multiplying the operands to obtain the twice-sized
polynomial, and then reducing the resulting polynomial by a degree-m irreducible polyno-
mial. In general, this degree-m irreducible polynomial needs to have its coefficients from
the field GF (2n), however, it is well-known [7] that an irreducible polynomial over GF (2)
of degree m remains irreducible over GF (2n) if and only if gcd(n,m) = 1. Therefore,
one can select an irreducible polynomial of degree m with coefficients from GF (2) rather
than GF (2n) if gcd(n,m) = 1. Furthermore, the use of a special irreducible polynomial
is suggested in [14]. This special polynomial is a trinomial of the form xm + xt + 1, where
t ≤ 
m/2�. Such special trinomials are easy to find; the paper [14] lists them for a few
values of m.

Our methodology is similar to the one proposed in [14] in terms of representing the
elements of and performing the arithmetic in GF (2nm). We also select n as 8 or 16.
However, we represent the elements of GF (2nm) using an (optimal) normal basis for
the field GF (2m). In this representation, the elements of GF (2nm) are m-dimensional
vectors whose entries are in GF (2n). A degree-m irreducible polynomial is selected such
that the root of this polynomial generates an optimal normal basis [10]. Furthermore, if
gcd(n,m) = 1, then the selected degree-m irreducible polynomial will have its coefficients
from GF (2) rather than GF (2n). This selection provides a much simpler multiplication
method. Since gcd(n,m) = 1 and n = 8 or 16, we need to have an odd m. This requires
that we use an optimal normal basis of type II in the field GF (2m). For optimal normal
bases of type I, m would be even because m + 1 is a prime number.

The normal bases are thought to be inefficient for composite fields in this setting [14].
The advantages of (optimal) normal bases seem to disappear for n > 1, particularly for
squaring operation. However, it is our conclusion that if the ground field operations are
computed fast (e.g., using the table lookup method), then the composite field operations
can be performed very efficiently in the normal basis. The mathematical and algorithmic
details of our methodology can be found in [11].

6 Implementation Results

We have implemented the addition, multiplication, and inversion operations in GF (2176),
and also the elliptic curve point doubling, addition, and multiplication operations over
GF (2176). The programs were written in C++ using Microsoft Visual C++ Version 5.0,
and executed on a PC with the 300-MHz Pentium II processor, running Windows NT 4.0.
Our timing results are given in the first column of Table 1. The elliptic curve operations
are performed using the affine coordinate system in which a point is represented using two
field elements P = (x, y). The field parameters a, b ∈ GF (2176) are selected randomly.
The point multiplication algorithm uses the canonical recoding binary method in which
the signed-digit recoding of the 176-bit randomly chosen integer e is used.

8



Table 1: The timing results for the field and elliptic curve operations.

Our Method Reproduced [14] Original [14]
Operation (300-MHz P-II) (300-MHz P-II) (133-MHz P-I)
Field Multiplication 12 µsec 15 µsec (62.7+1.8) µsec
Field Squaring 1.5 µsec 2.5 µsec (5.9+1.8) µsec
Field Inversion 60 µsec 63 µsec 160 µsec
EC Addition 80 µsec 83 µsec 306 µsec
EC Doubling 80 µsec 85 µsec 309 µsec
EC Multiplication 25 msec 30 msec 72 msec

We also include the timing results of [14] for comparison. The original timing results of
[14] were obtained on a 133-MHz Pentium. We have re-developed the programs of [14] by
investing reasonable efforts to optimize the code. The timing results given in the second
column are our reproduction of their method. Since the 300-MHz Pentium II processor
is about 2.25 times faster than the 133-MHz Pentium, it seems that our reproduction
software of the methods of [14] is about 50 % faster than their implementation. In the
third column, we also give their original timings on the 133-MHz Pentium processor.

We have obtained all our timings by actual implementation. The results in Table 1
shows that the proposed methodology is faster than our reproduction of their method
[14], and about 50 % faster than their reported timings, taking into account the speed
difference of the processors.

7 Conclusions

We gave an overview of elliptic curve cryptography and three network security protocols.
These protocols are used to establish a shared secret key between two parties (elliptic
curve Diffie-Hellman), to sign a document and then verify the signature (elliptic curve
DSA), and to establish mutual authentication between two parties, usually a user and
a server. These protocols are based on elliptic curve cryptographic techniques. We also
provided the results of our implementation of elliptic curve cryptography over the field
GF (2k), where k is a composite number k = nm. This implementation uses table lookup
techniques to perform the operations in the ground field GF (2n), while the large field
is constructed using the optimal normal basis. The reported timing results only contain
the arithmetic operations and the elliptic curve operations. The timings of an entire
protocol can be estimated by using these values, however, we note that we are currently
implementing the entire steps of these protocols, and will report these results in the near
future.

Finally, we note that certain attacks on elliptic curve cryptosystems over composite
fields GF (2nm) have recently been developed [2, 13]. These attacks are applicable to
elliptic curves whose coefficients are defined in the ground field GF (2n), providing the
speedup factor of

√
2m. Furthermore, these attacks are highly efficient on so-called binary

anomalous curves, in which the curve coefficients are restricted to the field GF (2). In
our proposed implementation, we do not make any assumption that the curve coefficients
would be restricted to the ground field GF (2n). In fact, the timing results summarized
in Table 1 are obtained by selecting the parameters a and b randomly in the large field
GF (2176).

9



References

[1] M. Aydos, B. Sunar, and Ç. K. Koç. An elliptic curve cryptography based authenti-
cation and key agreement protocol for wireless communication. In 2nd International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Commu-
nications Symposium on Information Theory, Dallas, Texas, October 30, 1998 1998.

[2] R. Gallant, R. Lambert, and S. Vanstone. Improving the parallelized Pollard lambda
search on binary anomalous curves. Draft Article, April 7, 1998.

[3] G. Harper, A. Menezes, and S. Vanstone. Public-key cryptosystems with very small
key lengths. In R. A. Rueppel, editor, Advances in Cryptology — EUROCRYPT
92, Lecture Notes in Computer Science, No. 658, pages 163–173. New York, NY:
Springer-Verlag, 1992.

[4] IEEE P1363. Standard specifications for public-key cryptography. Draft version 7,
September 1998.

[5] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, January 1987.

[6] N. Koblitz. A Course in Number Theory and Cryptography. New York, NY: Springer-
Verlag, Second edition, 1994.

[7] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
New York, NY: Cambridge University Press, 1994.

[8] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Boston, MA: Kluwer
Academic Publishers, 1993.

[9] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Advances
in Cryptology — CRYPTO 85, Proceedings, Lecture Notes in Computer Science, No.
218, pages 417–426. New York, NY: Springer-Verlag, 1985.

[10] R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson. Optimal normal bases in
GF (pn). Discrete Applied Mathematics, 22:149–161, 1988.

[11] E. Savaş and Ç. K. Koç. Efficient composite field arithmetic. Work in progress, May
1999.

[12] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange
with elliptic curve systems. In D. Coppersmith, editor, Advances in Cryptology —
CRYPTO 95, Lecture Notes in Computer Science, No. 973, pages 43–56. New York,
NY: Springer-Verlag, 1995.

[13] M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems.
Draft Article, April 8, 1998.

[14] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A
fast software implementation for arithmetic operations in GF(2n). In K. Kim and
T. Matsumoto, editors, Advances in Cryptology — ASIACRYPT 96, Lecture Notes
in Computer Science, No. 1163, pages 65–76. New York, NY: Springer-Verlag, 1996.

10


