Cryptography and Network Security

Third Edition
by William Stallings

Lecture slides by Lawrie Brown

Basic Terminology

- plaintext - the original message
- ciphertext - the coded message
- cipher - algorithm for transforming plaintext/ciphertext
- key - info used in cipher known only to sender/receiver
- encipher (encrypt) - converting plaintext to ciphertext
- decipher (decrypt) - recovering ciphertext from plaintext
- cryptography - study of encryption principles/methods
- cryptanalysis (codebreaking) - the study of principles/ methods of deciphering ciphertext without knowing key
- cryptology - the field of both cryptography and cryptanalysis

Two kinds of Ciphers

State-of-the-art: two kinds of most popular encryption algorithms

- Symmetric ciphers
- Sender and receiver share a common key
- Public key ciphers
- Sender and receiver have asymmetric information of the key(s)

Symmetric Encryption

- or conventional / private-key / single-key
- was only type prior to invention of publickey in 1970's
- remains very widely used
- sender and recipient share a common key - Both parties have full information of the key
- all classical encryption algorithms are common key (private-key)
- Characteristic of conventional algorithms

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
- a strong encryption algorithm (keeping key secret is sufficient for security)
- a secret key known only to sender / receiver $Y=\mathrm{E}_{k}(X)$
$X=D_{k}(Y)$
- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize by:
- type of encryption operations used
- substitution / transposition / product systems
- number of keys used
- single-key or private / two-key or public
- way in which plaintext is processed
- Block: process one block of elements a time
- Stream: continuous input, output one element a time

Types of Cryptanalytic Attacks

- ciphertext only
- know a) algorithm b) ciphertext
- known plaintext
- know some given plaintext/ciphertext pairs
- chosen plaintext
- select plaintext and obtain ciphertext
- chosen ciphertext
- select ciphertext and obtain plaintext
- chosen text
- select either plaintext or ciphertext to en/decrypt to attack cipher

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Sizz (bits)	Number of Alternative Keys	Time required at 1 encryption/ μ s	Time required at 10 encryptions/ys
32	$2^{23}=4.3 \times 10^{4}$	$23145=358$ minutes	2.15 milliseconds
56	$2^{26}=7.2 \times 10^{16}$	$2{ }^{3} \mu_{8}=1142$ yars	10.01 hours
128	$2^{128}=3.4 \times 10^{\text {告 }}$	$2^{127} \mu \mathrm{Ls}=5.4 \times 10^{24}$ years	5.4×10^{108} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~m}=5.9 \times 10^{\text {bid }}$ years	$59 \times 10^{\text {b }}$ years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{10}$ years	6.4×10^{6} years

More Definitions

- unconditional security
- no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext (non-exist in real applications)
- computational security
- given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Classical Ciphers

- Examine a sampling of what might be called classical encryption techniques.
- Illustrate the basic approaches to symmetric encryption and the types of cryptanalytic attacks that must be anticipated.
- The two basic building blocks of all encryption techniques: substitution and transposition.

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by a letter three places down the alphabet
- example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

- can define transformation as:

```
a b c d ef g h i j k l m n O p q r s t u v w x y
    Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B
```

- mathematically give each letter a number

a	b	c	d	e	f	g	h	i	j	k	l	m			
0	1	2	3	4	5	6	7	8	9	10	11	12			
n	0	p	q	r	s	t	u	v	w	x	y	Z			
13	14	15	16	17	18	19	20	21	22	23	24	25			

- then have Caesar cipher as:
$C=\mathrm{E}(p)=(p+k) \bmod (26)$
$p=\mathrm{D}(\mathrm{C})=(\mathrm{C}-k) \bmod (26)$
- modulo arithmetic: $1=27 \bmod 26,3=29 \bmod 26$

Cryptanalysis of Caesar Cipher

- only have 26 possible keys
- Could shift K = 0, 1, 2, ... 25 slots
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- Test:break ciphertext

GCUA VQ DTGCM

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

```
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext: ifwewishtoreplaceletters
Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA
```


Monoalphabetic Cipher Security

- now have a total of $26!=4 \times 10^{\wedge} 26$ keys
- with so many keys, might think is secure
- The simplicity and strength of the monoalphabetic substitution cipher dominated for the first millenium AD.
- but would be !!!WRONG!!!
- First broken by Arabic scientists in $9^{\text {th }}$ century

Frequency Analysis

- letters are not equally commonly used
- in English e is by far the most common letter
- then T,R,N,I,O,A,S
- other letters are fairly rare
- cf. Z,J,K,Q,X
- have tables of single, double \& triple letter frequencies

English Letter Frequencies

Use in Cryptanalysis

- key concept - monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in $9^{\text {th }}$ century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- for monoalphabetic must identify each letter
- tables of common double/triple letters help

Example Cryptanalysis

- given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess P \& Z are e and t
- guess $Z W$ is th and hence ZWP is the
- proceeding with trial and error finally get:
it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

MONAR
CHYBD
EFGIK
LPQST
UVWXZ

Encrypting and Decrypting

- plaintext encrypted two letters at a time:

1. if a pair is a repeated letter, insert a filler like ' X ', eg. "balloon" encrypts as "ba lx lo on"
2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end), eg. "ar" encrypts as "RM"
3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom), eg. "mu" encrypts to "CM"
4. otherwise each letter is replaced by the one in its row in the column of the other letter of the pair, eg. "hs" encrypts to "BP", and "ea" to "IM" or "JM" (as desired)

Security of the Playfair Cipher

- security much improved over monoalphabetic
- since have $26 \times 26=676$ digrams
- would need a 676-entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years (eg. US \& British military in WW1)
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- another approach to improving security is to use multiple cipher alphabets
- called polyalphabetic substitution ciphers
- makes cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Example

$$
\begin{array}{ll}
\text { key: } \quad \text { deceptivedeceptivedeceptive } \\
\text { plaintext: wearediscoveredsaveyourself } \\
\text { ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ }
\end{array}
$$

- write the plaintext out
- write the keyword repeated above it
- eg using keyword deceptive
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter

Vigenère Cipher

- simplest polyalphabetic substitution cipher is the Vigenère Cipher
- effectively multiple caesar ciphers
- key is d-letter long K = k1 k2 ... kd
- $\mathrm{i}^{\text {th }}$ letter specifies $\mathrm{i}^{\text {th }}$ alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
- see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

repetitions in ciphertext give clues to period

- so find same plaintext an exact period apart
- which results in the same ciphertext
- eg repeated "VTW" in previous example

```
key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
```

- suggests size of 3 or 9
- find a number of duplicated sequences, collect all their distances apart, look for common factors
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- Use the plain text itself as part of the key
- eg. given key deceptive
- but still have frequency characteristics to attack

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- No repetition of patterns
- since for any plaintext \& any ciphertext there exists a key mapping one to other
- can only use the key once though
- have problem of safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

$$
\begin{gathered}
m e m a t r h t g p r y \\
e t e f e t e o a d
\end{gathered}
$$

- giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex scheme
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
    O s t P o n e
    du n t i l t
    w O a m x Y z
```

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
- two substitutions make a more complex substitution
- two transpositions make more complex transposition
- but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- Multiple-stage substitution algorithms
- before modern ciphers, rotor machines were most common product cipher
- were widely used in WW2
- German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted

Steganography

- an alternative to encryption
- hides existence of message
- using only a subset of letters/words in a longer message marked in some way
- using invisible ink
- hiding graphic image or sound file
- has drawbacks
- high overhead to hide relatively few info bits

Summary

- have considered:
- classical cipher techniques and terminology
- monoalphabetic substitution ciphers
- cryptanalysis using letter frequencies
- Playfair ciphers
- polyalphabetic ciphers
- transposition ciphers
- product ciphers and rotor machines
- stenography

