#### Chapter 4 – Finite Fields

#### Introduction

- will now introduce finite fields
- of increasing importance in cryptography – AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
  - what constitutes a "number"
  - the type of operations and the properties
- start with concepts of groups, rings, fields from abstract algebra

# Group

- a set of elements or "numbers"
  - A generalization of usual arithmetic
- obeys:
  - **closure:** a.b also in G
  - associative law: (a.b).c = a.(b.c)
  - has identity e: e.a = a.e = a
  - has inverses  $a^{-1}$ :  $a \cdot a^{-1} = e$
- if commutative a.b = b.a
  - then forms an abelian group
- Examples in P.105

# Cyclic Group

- define exponentiation as repeated application of operator
  - -example:  $a^3 = a.a.a$
- and let identity be:  $e=a^0$
- a group is cyclic if every element is a power of some fixed element

 $-ie b = a^k$  for some a and every b in group

- a is said to be a generator of the group
- Example: positive numbers with addition

# Ring

- a set of "numbers" with two operations (addition and multiplication) which are:
- an abelian group with addition operation
- multiplication:
  - has closure
  - is associative
  - distributive over addition: a(b+c) = ab + ac
- In essence, a ring is a set in which we can do addition, subtraction [a – b = a + (–b)], and multiplication without leaving the set.
- With respect to addition and multiplication, the set of all *n*-square matrices over the real numbers form a ring.

# Ring

- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity element and no zero divisors (ab=0 means either a=0 or b=0), it forms an integral domain
- The set of Integers with usual + and x is an integral domain

# Field

- a set of numbers with two operations:
  - Addition and multiplication
  - F is an integral domain
  - F has multiplicative reverse
    - For each a in F other than 0, there is an element b such that ab=ba=1
- In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set.
  - Division is defined with the following rule:  $a/b = a (b^{-1})$
- Examples of fields: rational numbers, real numbers, complex numbers. Integers are NOT a field.

#### Definitions



#### Figure 4.1 Group, Ring, and Field

#### Modular Arithmetic

 define modulo operator a mod n to be remainder when a is divided by n

 $- e.g. 1 = 7 \mod 3$ ;  $4 = 9 \mod 5$ 

- use the term congruence for:  $a \equiv b \pmod{n}$ 
  - when divided by *n*, a & b have same remainder

- eg. 100  $\equiv$  34 (mod 11)

- b is called the residue of a mod n
   since with integers can always write: -
  - since with integers can always write: a = qn + b
- usually have  $0 \le b \le n-1$

 $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$ 

#### Modulo 7 Example

| • • • |     |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|
| -21   | -20 | -19 | -18 | -17 | -16 | -15 |
| -14   | -13 | -12 | -11 | -10 | -9  | -8  |
| -7    | -6  | -5  | -4  | -3  | -2  | -1  |
| 0     | 1   | 2   | 3   | 4   | 5   | 6   |
| 7     | 8   | 9   | 10  | 11  | 12  | 13  |
| 14    | 15  | 16  | 17  | 18  | 19  | 20  |
| 21    | 22  | 23  | 24  | 25  | 26  | 27  |
| 28    | 29  | 30  | 31  | 32  | 33  | 34  |

• • •

all numbers in a column are equivalent (have same remainder) and are called a **residue class** 

## Divisors

- say a non-zero number b divides a if for some m have a=mb (a, b, m all integers)
   0 ≡ a mod b
- that is  ${\rm b}\xspace$  divides into  ${\rm a}\xspace$  with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

# Modular Arithmetic Operations

- has a finite number of values, and loops back from either end
- modular arithmetic
  - Can perform addition & multiplication
  - Do modulo to reduce the answer to the finite set
- can do reduction at any point, ie

 $-a+b \mod n = a \mod n + b \mod n$ 

#### Modular Arithmetic

- can do modular arithmetic with any group of integers:  $Z_n = \{0, 1, ..., n-1\}$
- form a commutative ring for addition
- with an additive identity (Table 4.2)
- some additional properties

-if  $(a+b) \equiv (a+c) \mod n$  then  $b \equiv c \mod n$ 

-but (ab) ≡ (ac) mod n then b≡c mod n
only if a is relatively prime to n

#### Modulo 8 Example

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

(a) Addition modulo 8

#### Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides both a and b

- eg GCD(60, 24) = 12

 often want no common factors (except 1) and hence numbers are relatively prime

- eg GCD(8, 15) = 1

- hence 8 & 15 are relatively prime

# Euclid's GCD Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

 $-GCD(a,b) = GCD(b, a \mod b)$ 

- Euclid's Algorithm to compute GCD(a,b):
  - -A=a, B=b
  - -while B>0
    - $R = A \mod B$
    - A = B, B = R

-return A

# Example GCD(1970,1066)

 $1970 = 1 \times 1066 + 904$ qcd(1066, 904)  $1066 = 1 \times 904 + 162$ gcd(904, 162)  $904 = 5 \times 162 + 94$ qcd(162, 94)  $162 = 1 \times 94 + 68$ gcd(94, 68)  $94 = 1 \times 68 + 26$ gcd(68, 26)  $68 = 2 \times 26 + 16$ qcd(26, 16) $26 = 1 \times 16 + 10$ gcd(16, 10)  $16 = 1 \times 10 + 6$ gcd(10, 6) $10 = 1 \times 6 + 4$ qcd(6, 4) $6 = 1 \times 4 + 2$ gcd(4, 2)  $4 = 2 \times 2 + 0$ qcd(2, 0)

- Compute successive instances of GCD(a,b) = GCD(b,a mod b).
- Note this MUST always terminate since will eventually get a mod b = 0 (ie no remainder left).

### Galois Fields

- finite fields play a key role in many cryptography algorithms
- can show number of elements in any finite field must be a power of a prime number p<sup>n</sup>
- known as Galois fields
- denoted GF(p<sup>n</sup>)
- in particular often use the fields:
  - GF(p)
  - GF(2<sup>n</sup>)

# Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
  - since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)
  - Division depends on the existence of multiplicative inverses. Why p has to be prime?

## Example GF(7)

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

(b) Multiplication modulo 7

Example: 3/2=5 GP(6) does not exist

# **Finding Inverses**

- Finding inverses for large P is a problem
- can extend Euclid's algorithm: EXTENDED EUCLID(m, b)

1. (A1, A2, A3) = (1, 0, m); (B1, B2, B3) = (0, 1, b)

**2. if** B3 = 0

return A3 = gcd(m, b); no inverse

**3. if** B3 = 1

**return** B3 = gcd(m, b); B2 =  $b^{-1} \mod m$ 

**4.** Q = A3 div B3

- **6**. (A1, A2, A3) = (B1, B2, B3)
- **7.** (B1, B2, B3) = (T1, T2, T3)

8. goto 2

### Inverse of 550 in GF(1759)

| Q  | A1  | A2   | A3   | B1   | B2   | B3  |
|----|-----|------|------|------|------|-----|
| -  | 1   | 0    | 1759 | 0    | 1    | 550 |
| 3  | 0   | 1    | 550  | 1    | -3   | 109 |
| 5  | 1   | -3   | 109  | -5   | 16   | 5   |
| 21 | -5  | 16   | 5    | 106  | -339 | 4   |
| 1  | 106 | -339 | 4    | -111 | 355  | 1   |

Prove correctness

# **Polynomial Arithmetic**

can compute using polynomials

• 
$$Se_{-}f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

- poly arithmetic with coefficients mod p

- poly arithmetic with coefficients mod p and polynomials mod another polynomial M(x)
- Motivation: use polynomials to model Shift and XOR operations

# **Ordinary Polynomial Arithmetic**

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg - let  $f(x) = x^3 + x^2 + 2$  and  $g(x) = x^2 - x + 1$   $f(x) + g(x) = x^3 + 2x^2 - x + 3$   $f(x) - g(x) = x^3 + x + 1$  $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

#### Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient, modulo some value
- could be modulo any prime
- but we are most interested in mod 2
  - ie all coefficients are 0 or 1

- eg. let  $f(x) = x^3 + x^2$  and  $g(x) = x^2 + x + 1$   $f(x) + g(x) = x^3 + x + 1$  $f(x) \times g(x) = x^5 + x^2$ 

# Modular Polynomial Arithmetic

- Given any polynomials f,g, can write in the form:
  - f(x) = q(x) g(x) + r(x)
  - can interpret r(x) as being a remainder
  - $r(x) = f(x) \mod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- Modular polynomial arithmetic modulo an irreducible polynomial forms a field
  - Check the definition of a field

# Polynomial GCD

- can find greatest common divisor for polys
- GCD: the one with the greatest degree
  - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
  - can adapt Euclid's Algorithm to find it:
  - EUCLID[a(x), b(x)]

1. 
$$A(x) = a(x); B(x) = b(x)$$

- **2. 1 if** B(x) = 0 **return** A(x) = gcd[a(x), b(x)]
- **3.**  $R(x) = A(x) \mod B(x)$
- **4.** A(*x*) <sup>"</sup> B(*x*)
- **5.** B(*x*) <sup>..</sup> R(*x*)

#### **6. goto** 2

# Modular Polynomial Arithmetic

- can compute in field GF(2<sup>n</sup>)
  - polynomials with coefficients modulo 2
  - whose degree is less than n
  - Coefficients always modulo 2 in an operation
  - hence must modulo an irreducible polynomial of degree n (for multiplication only)
- form a finite field
- can always find an inverse

- can extend Euclid's Inverse algorithm to find

## Example GF(2<sup>3</sup>)

#### Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

|     | +              | 000            | 001<br>1       | 010<br>x       | $011 \\ x + 1$ | 100<br>x <sup>2</sup> | $101 x^2 + 1$  | $\frac{110}{x^2 + x}$ | 111<br>$x^2 + x + 1$ |  |  |
|-----|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|----------------------|--|--|
| 000 | 0              | 0              | 1              | х              | x + 1          | $x^2$                 | $x^2 + 1$      | $x^2 + x$             | $x^2 + x + 1$        |  |  |
| 001 | 1              | 1              | 0              | x + 1          | х              | $x^2 + 1$             | x <sup>2</sup> | $x^2 + x + 1$         | $x^{2} + x$          |  |  |
| 010 | х              | х              | x + 1          | 0              | 1              | $x^{2} + x$           | $x^2 + x + 1$  | x <sup>2</sup>        | $x^2 + 1$            |  |  |
| 011 | x + 1          | x + 1          | x              | 1              | 0              | $x^2 + x + 1$         | $x^{2} + x$    | $x^2 + 1$             | x <sup>2</sup>       |  |  |
| 100 | x <sup>2</sup> | x <sup>2</sup> | $x^2 + 1$      | $x^{2} + x$    | $x^2 + x + 1$  | 0                     | 1              | х                     | x+1                  |  |  |
| 101 | $x^2 + 1$      | $x^2 + 1$      | $x^2$          | $x^2 + x + 1$  | $x^2 + x$      | 1                     | 0              | x + 1                 | х                    |  |  |
| 110 | $x^{2} + x$    | $x^2 + x$      | $x^2 + x + 1$  | x <sup>2</sup> | $x^2 + 1$      | x                     | x + 1          | 0                     | 1                    |  |  |
| 111 | $x^2 + x + 1$  | $x^2 + x + 1$  | $x^{2} + x$    | $x^2 + 1$      | x <sup>2</sup> | x + 1                 | x              | 1                     | 0                    |  |  |
|     | (a) Addition   |                |                |                |                |                       |                |                       |                      |  |  |
|     |                | 000            | 001            | 010            | 011            | 100                   | 101            | 110                   | 111                  |  |  |
|     | ×              | 0              | 1              | x              | x + 1          | x <sup>2</sup>        | $x^2 + 1$      | $x^{2} + x$           | $x^2 + x + 1$        |  |  |
| 000 | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 0                    |  |  |
| 010 | 1              | 0              | 1              |                | x+1            | x <sup>2</sup>        | $x^2 + 1$      | $x^2 + x$             | $x^2 + x + 1$        |  |  |
| 010 | <i>x</i>       | 0              | <i>x</i>       | X <sup>2</sup> | $x^2 + x$      | x + 1                 | 1              | $x^2 + x + 1$         | $x^2 + 1$            |  |  |
| 100 | x + 1          | 0              | x + 1          | $x^2 + x$      | $x^2 + 1$      | $x^2 + x + 1$         | x <sup>2</sup> | 1                     | <i>x</i>             |  |  |
| 100 | x <sup>2</sup> | 0              | x <sup>2</sup> | x + 1          | $x^2 + x + 1$  | $x^{2} + x$           | <i>x</i>       | $x^2 + 1$             | 1                    |  |  |
| 101 | $x^2 + 1$      | 0              | $x^2 + 1$      | 1              | x <sup>2</sup> | x                     | $x^2 + x + 1$  | x + 1                 | $x^{2} + x$          |  |  |
| 110 | $x^{2} + x$    | 0              | $x^{2} + x$    | $x^2 + x + 1$  | 1              | $x^2 + 1$             | x + 1          | х                     | x <sup>2</sup>       |  |  |
| 111 | $x^2 + x + 1$  | 0              | $x^2 + x + 1$  | $x^2 + 1$      | х              | 1                     | $x^{2} + x$    | $x^2$                 | x + 1                |  |  |

#### **Computational Considerations**

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
  - Example in P.133
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

# Summary

- have considered:
  - concept of groups, rings, fields
  - modular arithmetic with integers
  - Euclid's algorithm for GCD
  - finite fields GF(p)
  - polynomial arithmetic in general and in GF(2<sup>n</sup>)