
Chapter 4 – Finite Fields



Introduction

• will now introduce finite fields

• of increasing importance in cryptography

– AES, Elliptic Curve, IDEA, Public Key

• concern operations on “numbers”

– what constitutes a “number”

– the type of operations and the properties

• start with concepts of groups, rings, fields 

from abstract algebra



Group

• a set of elements or “numbers”
– A generalization of usual arithmetic

• obeys: 
– closure: a.b also in G

– associative law: (a.b).c = a.(b.c)

– has identity e: e.a = a.e = a

– has inverses a-1: a.a-1 = e

• if commutative a.b = b.a

– then forms an abelian group

• Examples in P.105



Cyclic Group

• define exponentiation as repeated 
application of operator
– example: a3 = a.a.a

• and let identity be: e=a0

• a group is cyclic if every element is a 
power of some fixed element
– ie b = ak for some a and every b in group

• a is said to be a generator of the group

• Example: positive numbers with addition



Ring

• a set of “numbers” with two operations (addition and 
multiplication) which are:

• an abelian group with addition operation 

• multiplication:
– has closure

– is associative

– distributive over addition: a(b+c) = ab + ac

• In essence, a ring is a set in which we can do addition, 
subtraction [a – b = a + (–b)], and multiplication without 
leaving the set.

• With respect to addition and multiplication, the set of all 
n-square matrices over the real numbers form a ring.



Ring

• if multiplication operation is commutative, 

it forms a commutative ring

• if multiplication operation has an identity 

element and no zero divisors (ab=0 means 

either a=0 or b=0), it forms an integral 

domain

• The set of Integers with usual + and x is 

an integral domain



Field

• a set of numbers with two operations:
– Addition and multiplication

– F is an integral domain

– F has multiplicative reverse

• For each a in F other than 0, there is an element b such that 
ab=ba=1

• In essence, a field is a set in which we can do addition, 
subtraction, multiplication, and division without leaving 
the set. 
– Division is defined with the following rule: a/b = a (b–1)

• Examples of fields: rational numbers, real numbers, 
complex numbers. Integers are NOT a field.



Definitions



Modular Arithmetic

• define modulo operator a mod n to be 
remainder when a is divided by n
– e.g. 1 = 7 mod 3  ;   4 = 9 mod 5

• use the term congruence for: a ≡ b (mod n)

– when divided by n, a & b have same remainder 

– eg. 100 ≡ 34 (mod 11) 

• b is called the residue of a mod n
– since with integers can always write: a = qn + b

• usually have 0 <= b <= n-1
-12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7



Modulo 7 Example

... 

-21 -20 -19 -18 -17 -16 -15 

-14 -13 -12 -11 -10  -9  -8

-7  -6  -5  -4  -3  -2  -1 

0   1   2   3   4   5   6

7   8   9  10  11  12  13 

14  15  16  17  18  19  20 

21  22  23  24  25  26  27 

28  29  30  31  32  33  34 

... 

all numbers in a column are equivalent (have same 
remainder) and are called a residue class



Divisors

• say a non-zero number b divides a if for 

some m have a=mb (a,b,m all integers) 

– 0 ≡ a mod b

• that is b divides into a with no remainder 

• denote this b|a

• and say that b is a divisor of a

• eg. all of 1,2,3,4,6,8,12,24 divide 24 



Modular Arithmetic Operations

• has a finite number of values, and loops 

back from either end

• modular arithmetic

– Can perform addition & multiplication 

– Do modulo to reduce the answer to the finite 

set

• can do reduction at any point, ie
– a+b mod n = a mod n + b mod n



Modular Arithmetic

• can do modular arithmetic with any group 
of integers: Zn = {0, 1, … , n-1}

• form a commutative ring for addition

• with an additive identity (Table 4.2)

• some additional properties

– if (a+b)≡(a+c) mod n then b≡c mod n

– but (ab)≡(ac) mod n then b≡c mod n 

only if a is relatively prime to n



Modulo 8 Example



Greatest Common Divisor (GCD)

• a common problem in number theory

• GCD (a,b) of a and b is the largest number 

that divides both a and b 

– eg GCD(60,24) = 12

• often want no common factors (except 1) 

and hence numbers are relatively prime

– eg GCD(8,15) = 1

– hence 8 & 15 are relatively prime 



Euclid's GCD Algorithm

• an efficient way to find the GCD(a,b)

• uses theorem that: 
– GCD(a,b) = GCD(b, a mod b)

• Euclid's Algorithm to compute GCD(a,b): 
– A=a, B=b

– while B>0

•R = A mod B

•A = B, B = R

– return A



Example GCD(1970,1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

• Compute successive instances of GCD(a,b) = GCD(b,a mod b).

• Note this MUST always terminate since will eventually get a mod b = 
0 (ie no remainder left).



Galois Fields

• finite fields play a key role in many cryptography 

algorithms

• can show number of elements in any finite field 

must be a power of a prime number pn

• known as Galois fields

• denoted GF(pn)

• in particular often use the fields:

– GF(p)

– GF(2n)



Galois Fields GF(p)

• GF(p) is the set of integers {0,1, … , p-1} with 

arithmetic operations modulo prime p

• these form a finite field

– since have multiplicative inverses

• hence arithmetic is “well-behaved” and can do 

addition, subtraction, multiplication, and division 

without leaving the field GF(p)

– Division depends on the existence of multiplicative 

inverses. Why p has to be prime?



Example GF(7)

Example: 3/2=5

GP(6) does not exist



Finding Inverses

• Finding inverses for large P is a problem

• can extend Euclid’s algorithm:
EXTENDED EUCLID(m, b)

1. (A1, A2, A3)=(1, 0, m); 

(B1, B2, B3)=(0, 1, b)

2. if B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1 

return B3 = gcd(m, b); B2 = b–1 mod m

4. Q = A3 div B3

5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3)

6. (A1, A2, A3)=(B1, B2, B3)

7. (B1, B2, B3)=(T1, T2, T3)

8. goto 2



Inverse of 550 in GF(1759)

Prove correctness



Polynomial Arithmetic

• can compute using polynomials

• several alternatives available

– ordinary polynomial arithmetic

– poly arithmetic with coefficients mod p

– poly arithmetic with coefficients mod p and 
polynomials mod another polynomial M(x)

• Motivation: use polynomials to model Shift 
and XOR operations



Ordinary Polynomial Arithmetic

• add or subtract corresponding coefficients

• multiply all terms by each other

• eg

– let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1

f(x) + g(x) = x3 + 2x2 – x + 3

f(x) – g(x) = x3 + x + 1

f(x) x g(x) = x5 + 3x2 – 2x + 2



Polynomial Arithmetic with Modulo 

Coefficients

• when computing value of each coefficient, 

modulo some value

• could be modulo any prime

• but we are most interested in mod 2

– ie all coefficients are 0 or 1

– eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1

f(x) + g(x) = x3 + x + 1

f(x) x g(x) = x5 + x2



Modular Polynomial Arithmetic

• Given any polynomials f,g, can write in the form:
– f(x) = q(x) g(x) + r(x)

– can interpret r(x) as being a remainder

– r(x) = f(x) mod g(x)

• if have no remainder say g(x) divides f(x)

• if g(x) has no divisors other than itself & 1 say it 
is irreducible (or prime) polynomial

• Modular polynomial arithmetic modulo an 
irreducible polynomial forms a field
– Check the definition of a field



Polynomial GCD

• can find greatest common divisor for polys

• GCD: the one with the greatest degree
– c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest 

degree which divides both a(x), b(x)

– can adapt Euclid’s Algorithm to find it:

– EUCLID[a(x), b(x)]

1. A(x) = a(x); B(x) = b(x)

2. 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]

3. R(x) = A(x) mod B(x)

4. A(x) ¨ B(x)

5. B(x) ¨ R(x)

6. goto 2



Modular Polynomial Arithmetic

• can compute in field GF(2n) 

– polynomials with coefficients modulo 2

– whose degree is less than n

– Coefficients always modulo 2 in an operation

– hence must modulo an irreducible polynomial 
of degree n (for multiplication only)

• form a finite field

• can always find an inverse

– can extend Euclid’s Inverse algorithm to find



Example GF(23)



Computational Considerations

• since coefficients are 0 or 1, can represent 

any such polynomial as a bit string

• addition becomes XOR of these bit strings

• multiplication is shift & XOR

– Example in P.133

• modulo reduction done by repeatedly 

substituting highest power with remainder 

of irreducible poly (also shift & XOR)



Summary

• have considered:

– concept of groups, rings, fields

– modular arithmetic with integers

– Euclid’s algorithm for GCD

– finite fields GF(p)

– polynomial arithmetic in general and in GF(2n) 


