Chapter 4 — Finite Fields



Introduction

will now Introduce finite fields

of iIncreasing importance in cryptography
— AES, Elliptic Curve, IDEA, Public Key

concern operations on “numbers”

— what constitutes a “number’

— the type of operations and t

start with concepts of grou
from abstract algebra

ne properties

DS, rings, fields



Group

a set of elements or “numbers”

— A generalization of usual arithmetic
obeys:

— closure: a.b also in G

— associative law: (a.b) .c =
— hasidentitye: e.a = a.e = a

— has inverses a!: a.alt =e
If commutative a.b = b.a

— then forms an abelian group

Examples in P.105

a.

(b.c)



Cyclic Group

» define exponentiation as repeated
application of operator

— example: a’ = a.a.a
* and let identity be: e=3a"

* agroup is cyclic iIf every element is a
power of some fixed element

—leb =ak forsome a and every b in group
 a Is said to be a generator of the group

« Example: positive numbers with addition



Ring

a set of “numbers” with two operations (addition and
multiplication) which are:

an abelian group with addition operation

multiplication:

— has closure

— IS associative

— distributive over addition: a (b+c) = ab + ac

In essence, a ring is a set in which we can do addition,
subtraction [a — b = a + (—b)], and multiplication without
leaving the set.

With respect to addition and multiplication, the set of all
n-square matrices over the real numbers form a ring.



Ring

* If multiplication operation iIs commutative,
it forms a commutative ring

* If multiplication operation has an identity
element and no zero divisors (ab=0 means
either a=0 or b=0), it forms an integral
domain

* The set of Integers with usual + and x Is
an integral domain



Field

« a set of numbers with two operations:
— Addition and multiplication
— Fis an integral domain

— F has multiplicative reverse
 For each a in F other than 0, there is an element b such that

ab=ba=1
* In essence, a field is a set in which we can do addition,
subtraction, multiplication, and division without leaving
the set.
— Division is defined with the following rule: a/b = a (b™)

« Examples of fields: rational numbers, real numbers,
complex numbers. Integers are NOT a field.



Field

Definitions

Integral domain

Commutative ring

Ring

Abelian group

Group

(A1) Closure under addition:
(A2) Associativity of addition:
(A3) Additive identity:

(A4) Additive inverse:

(A5) Commutativity of addition:
(M1) Closure under multiplication:
(M2) Associativity of multiplication:
(M3) Distributive laws:

(M5) Multiplicative identity:

(M6) No zero divisors:

(M7) Multiplicative inverse:

(M4) Commutativity of multiplication:

If @ and b belong to S, then a + bis alsoin §
a+b+c)=(@+b)+cforalla, b, cin §
There is an element O in R such that
a+0=0+a=aforalain§

For each a in § there is an element —¢ in §
suchthata+ (—a)=(-a)+a =0
a+b=b+aforalla, bin§

If @ and b belong to S, then ab is alsoin §
a(bc) = (ab)c foralla, b, cin §
alb+c)y=ab+acforalla, b,cin §
(a+b)c=ac+bcforalla, b, cin §
ab=baforalla, bin §

There is an element 1 in S such that
al=1la=aforallain §

If @, bin S and ab = 0, then either
a=0o0rb=0

If a belongs to Sand @ 0, there is an
element a~! in S such that aa! =g la=1

Figure 4.1 Group, Ring, and Field



Modular Arithmetic

define modulo operator a mod n to be
remainder when a is divided by n
—eg.1=7mod3 ; 4=9mod>5
use the term congruence for:a = b (mod n)
— when divided by n, a & b have same remainder

— eg. 100 = 34 (mod 11)
b Is called the residue of a mod n

— since with integers can always write: a = gqn + b
usually have 0 <= b <= n-1

-12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7



Modulo 7 Example

-21 -20 -19 -18 -17 -16 -15
-14 -13 -12 -11 -10 -9 -8
-7 -6 -5 -4 -3 -2 -1
0 1 2 3 4 5 6
'/ 8 O 10 11 12 13
14 15 1e 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34

all numbers in a column are equivalent (have same
remainder) and are called a residue class



DivIsSors

say a non-zero number b divides a If for
some m have a=mb (a, b, m all integers)

— 0= a mod b
that Is b divides into a with no remainder
denote thisb | a

and say that b Is a divisor of a
eg. all of 1,2,3,4,6,8,12,24 divide 24



Modular Arithmetic Operations

* has a finite number of values, and loops
back from either end

 modular arithmetic

— Can perform addition & multiplication

— Do modulo to reduce the answer to the finite
set

* can do reduction at any point, ie

—at+b mod n = a mod n + b mod n



Modular Arithmetic

can do modular arithmetic with any group
of integers: 7Z_ = {0, 1, .., n-1}

n

form a commutative ring for addition

with an additive identity (Table 4.2)
some additional properties

—If (a+b)=(a+c) mod n then b=c mod n

—but (ab)=(ac) mod n then b=c mod n
only iIf a Is relatively prime to n



Lk

[

I.,.III

O

Modulo 8 Example

0 I 2 3 4 S 6 7
0 I 2 3 4 S 6 7
| 2 3 4 5 & 7 0
2 ; 4 5 6 7 0 |
3 4 : 6 7 0 | 2
4 S 6 7 0 ] 2 3
5 6 7 0 | 2 3 4
- 7 0 | 2 3 4 S
7 0 | 2 ; 4 5 o

(a) Addimon modulo 8



Greatest Common Divisor (GCD)

* a common problem in number theory

« GCD (a,b) of a and b Is the largest number
that divides both a and b
—eg GCD(60,24) =12

« often want no common factors (except 1)
and hence numbers are relatively prime
—eg GCD(8,15) =1
— hence 8 & 15 are relatively prime



Euclid's GCD Algorithm

 an efficient way to find the GCD(a,b)

e uses theorem that:
- GCD(a,b) = GCD (b, a mod Db)
* Euclid's Algorithm to compute GCD(a,b):
— A=a, B=Db
—while B>0
e R A mod B
e A B, B =R
— return A



Example GCD(1970,1066)

1970 = 1 x 1066 + 904 gcd (1066, 904)
1066 = 1 x 904 + 162 gcd (904, 162)

904 = 5 x 162 + 94 gcd (162, 94)
162 = 1 x 94 + 068 gcd (94, 68)
94 = 1 x 68 + 260 gcd (68, 26)

68 = 2 x 26 + 16 gcd (26, 16)

20 = 1 x 16 + 10 gcd(le, 10)

1o = 1 x 10 + © gcd (10, ©)

10 =1 x 6 + 4 gcd (6, 4)

o =1 x 4 + 2 gcd (4, 2)

4 = 2 x 2 + O gcd (2, 0)

« Compute successive instances of GCD(a,b) = GCD(b,a mod b).

* Note this MUST always terminate since will eventually geta mod b =
O (ie no remainder left).



Galois Fields

finite fields play a key role in many cryptography
algorithms

can show number of elements in any finite field
must be a power of a prime number p"

known as Galois fields
denoted GF(p")

In particular often use the fields:
— GF(p)
— GF(2")



Galois Fields GF(p)

 GF(p) is the set of integers {0,1, ..., p-1} with
arithmetic operations modulo prime p

» these form a finite field
— since have multiplicative inverses

* hence arithmetic is “well-behaved” and can do

addition, subtraction, multiplication, and division
without leaving the field GF(p)

— Division depends on the existence of multiplicative
Inverses. Why p has to be prime?



Example GF(7)

Lk L 2 3 L - >
Lk L L N Lk 0 b
L L 2 3 -L - &
Lk 2 R L I S o
Lk S s 2 = I .
Lo - 1 > . i S
Lk - & I O L 2
L & - N S . L

(b Mualuplication modalo 7

Example: 3/2=5
GP(6) does not exist



Finding Inverses

Finding inverses for large P is a problem

can extend Euclid’s algorithm:
EXTENDED EUCLID (m, b)
1. (A1, A2, A3)=(1, 0, m);
(B1, B2, B3)=(0, 1, b)
2. if B3 = 0
return A3 = gcd(m, b); no inverse
3. 1f B3 =1
return B3 = gcd(m, b); B2 = b ! mod m
Q = A3 div B3
(T1, T2, T3)=(A1 - Q Bl, A2 — Q B2, A3 - QO B3)
(A1, A2, A3)=(B1l, B2, B3)
(B1, B2, B3)=(T1l, T2, T3)
goto 2

0 dJ o O



Inverse of 550 in GF(1759)

Y] Al Al Al Bl B. 13
| ! /34 ( ] 0

3 | | hu ] 3 109

) | A Y ) |6 )

2 D 6 ) 106 334 .

| |06 339 | |11 133 l

Prove correctness



Polynomial Arithmetic

e can compute using polynomials

Fi
* SE no ri—1 _ WY i
+ 1A + s X +“|'I_.ri.-“"'1

— poly arithmetic with coefficients mod p

— poly arithmetic with coefficients mod p and
polynomials mod another polynomial M(x)

* Motivation: use polynomials to model Shift
and XOR operations

_.II I.-II I == |I-l|l|.|.




Ordinary Polynomial Arithmetic

» add or subtract corresponding coefficients

« multiply all terms by each other
. eg
—letf(x) =x3+x?+2and g(x) =x?—x +1
f(x) + g(x) =x3+2x2—x + 3
f(x) —g(X) =x3+x+1
f(x) X g(X) = x° + 3x2 = 2X + 2



Polynomial Arithmetic with Modulo
Coefficients

* when computing value of each coefficient,
modulo some value

* could be modulo any prime

* pbut we are most interested in mod 2
— Ie all coefficients are 0 or 1
—eg.letf(x) =x3+x?and g(x) = x>+ x + 1
fx) +gX)=x3+x+1
f(x) X g(X) = x> + x?



Modular Polynomial Arithmetic

Given any polynomials f,g, can write in the form:
— (%) = q(x) g(x) + r(x)

— can interpret r(x) as being a remainder

— 1(x) = f(x) mod g(x)

If have no remainder say g(x) divides f(x)

If g(x) has no divisors other than itself & 1 say it
IS irreducible (or prime) polynomial

Modular polynomial arithmetic modulo an
irreducible polynomial forms a field

— Check the definition of a field



Polynomial GCD

« can find greatest common divisor for polys

« GCD: the one with the greatest degree

— ¢(X) = GCD(a(x), b(x)) if c(x) is the poly of greatest
degree which divides both a(x), b(x)

— can adapt Euclid’s Algorithm to find it:

EUCLIDJ[a(x), b(x)]

A(X) = a(x); B(x) = b(x)

2. 1f B(x) = 0 return A(x) = gcd[a(x), b(X)]

. R(X) = A(X) mod B(x)

. A(X) " B(x)

. B(X) " R(X)

. goto 2

OUTAWNE |



Modular Polynomial Arithmetic

« can compute In field GF(2")
— polynomials with coefficients modulo 2
— whose degree is less than n
— Coefficients always modulo 2 in an operation

— hence must modulo an irreducible polynomial
of degree n (for multiplication only)

 form a finite field

« can always find an inverse
— can extend Euclid’s Inverse algorithm to find
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Example GF(23)

Table 4.6 Polynomial Arithmetic Modulo (x3 + x + 1)

L LENT ) ol L 1l 116 111
U I X x+1 = =+ 1 X4 x £+ 1
0 | X x+1 x? ™+ 1 P ©ex+1
! U X+ - = 4] I E+x+ o+ X
* vl 0 ! ©4+x E+x+] x |
r+ 1 L 1 0 4+ x+ 1 4+ X -+ 1 x
P 2+ 1 X4z 2ax+1 0 ' X x+ 1
4 1 I x4+ x4 1 x4z ! U X+ X
£+ x 4+ x+ ] x ©+1 x x+1 1] 1
= +x+1 =4+ x 2+ x T+ 1 x 1 o
{a) Addition
L LENT ) ol 1Mk 1l 116 111
0 | X x+1 s 4+ 1 wx 2 ex+ 1
i [i] 1] [1] ] (] [1] [1]
0 | X r+ 1 = o+ 1 4 x =+ x+ 1
0 T xt R T+ 1 I 2 oar+ ey |
U X+ 1 x4 | ©+x+1 X ! -
il ] x+1 2ixa41 = " 211 1
) =+ 1 | e x X 4+ X+ ] x4+ X4
0 2+ x 2ex+ 1 ! =+ 1 v+l x at
0 =+ x4 ] x4+ 1 x I © 4 x X T+ 1

(b} Multiplication




Computational Considerations

since coefficients are O or 1, can represent
any such polynomial as a bit string

addition becomes XOR of these bit strings
multiplication is shift & XOR
— Example in P.133

modulo reduction done by repeatedly
substituting highest power with remainder
of irreducible poly (also shift & XOR)



Summary

* have considered.:
— concept of groups, rings, fields
— modular arithmetic with integers
— Euclid’s algorithm for GCD
— finite fields GF(p)
— polynomial arithmetic in general and in GF(2")



