
Chapter 4 – Finite Fields

Introduction

• will now introduce finite fields

• of increasing importance in cryptography

– AES, Elliptic Curve, IDEA, Public Key

• concern operations on “numbers”

– what constitutes a “number”

– the type of operations and the properties

• start with concepts of groups, rings, fields

from abstract algebra

Group

• a set of elements or “numbers”
– A generalization of usual arithmetic

• obeys:
– closure: a.b also in G

– associative law: (a.b).c = a.(b.c)

– has identity e: e.a = a.e = a

– has inverses a-1: a.a-1 = e

• if commutative a.b = b.a

– then forms an abelian group

• Examples in P.105

Cyclic Group

• define exponentiation as repeated
application of operator
– example: a3 = a.a.a

• and let identity be: e=a0

• a group is cyclic if every element is a
power of some fixed element
– ie b = ak for some a and every b in group

• a is said to be a generator of the group

• Example: positive numbers with addition

Ring

• a set of “numbers” with two operations (addition and
multiplication) which are:

• an abelian group with addition operation

• multiplication:
– has closure

– is associative

– distributive over addition: a(b+c) = ab + ac

• In essence, a ring is a set in which we can do addition,
subtraction [a – b = a + (–b)], and multiplication without
leaving the set.

• With respect to addition and multiplication, the set of all
n-square matrices over the real numbers form a ring.

Ring

• if multiplication operation is commutative,

it forms a commutative ring

• if multiplication operation has an identity

element and no zero divisors (ab=0 means

either a=0 or b=0), it forms an integral

domain

• The set of Integers with usual + and x is

an integral domain

Field

• a set of numbers with two operations:
– Addition and multiplication

– F is an integral domain

– F has multiplicative reverse

• For each a in F other than 0, there is an element b such that
ab=ba=1

• In essence, a field is a set in which we can do addition,
subtraction, multiplication, and division without leaving
the set.
– Division is defined with the following rule: a/b = a (b–1)

• Examples of fields: rational numbers, real numbers,
complex numbers. Integers are NOT a field.

Definitions

Modular Arithmetic

• define modulo operator a mod n to be
remainder when a is divided by n
– e.g. 1 = 7 mod 3 ; 4 = 9 mod 5

• use the term congruence for: a ≡ b (mod n)

– when divided by n, a & b have same remainder

– eg. 100 ≡ 34 (mod 11)

• b is called the residue of a mod n
– since with integers can always write: a = qn + b

• usually have 0 <= b <= n-1
-12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7

Modulo 7 Example

...

-21 -20 -19 -18 -17 -16 -15

-14 -13 -12 -11 -10 -9 -8

-7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

...

all numbers in a column are equivalent (have same
remainder) and are called a residue class

Divisors

• say a non-zero number b divides a if for

some m have a=mb (a,b,m all integers)

– 0 ≡ a mod b

• that is b divides into a with no remainder

• denote this b|a

• and say that b is a divisor of a

• eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic Operations

• has a finite number of values, and loops

back from either end

• modular arithmetic

– Can perform addition & multiplication

– Do modulo to reduce the answer to the finite

set

• can do reduction at any point, ie
– a+b mod n = a mod n + b mod n

Modular Arithmetic

• can do modular arithmetic with any group
of integers: Zn = {0, 1, … , n-1}

• form a commutative ring for addition

• with an additive identity (Table 4.2)

• some additional properties

– if (a+b)≡(a+c) mod n then b≡c mod n

– but (ab)≡(ac) mod n then b≡c mod n

only if a is relatively prime to n

Modulo 8 Example

Greatest Common Divisor (GCD)

• a common problem in number theory

• GCD (a,b) of a and b is the largest number

that divides both a and b

– eg GCD(60,24) = 12

• often want no common factors (except 1)

and hence numbers are relatively prime

– eg GCD(8,15) = 1

– hence 8 & 15 are relatively prime

Euclid's GCD Algorithm

• an efficient way to find the GCD(a,b)

• uses theorem that:
– GCD(a,b) = GCD(b, a mod b)

• Euclid's Algorithm to compute GCD(a,b):
– A=a, B=b

– while B>0

•R = A mod B

•A = B, B = R

– return A

Example GCD(1970,1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

• Compute successive instances of GCD(a,b) = GCD(b,a mod b).

• Note this MUST always terminate since will eventually get a mod b =
0 (ie no remainder left).

Galois Fields

• finite fields play a key role in many cryptography

algorithms

• can show number of elements in any finite field

must be a power of a prime number pn

• known as Galois fields

• denoted GF(pn)

• in particular often use the fields:

– GF(p)

– GF(2n)

Galois Fields GF(p)

• GF(p) is the set of integers {0,1, … , p-1} with

arithmetic operations modulo prime p

• these form a finite field

– since have multiplicative inverses

• hence arithmetic is “well-behaved” and can do

addition, subtraction, multiplication, and division

without leaving the field GF(p)

– Division depends on the existence of multiplicative

inverses. Why p has to be prime?

Example GF(7)

Example: 3/2=5

GP(6) does not exist

Finding Inverses

• Finding inverses for large P is a problem

• can extend Euclid’s algorithm:
EXTENDED EUCLID(m, b)

1. (A1, A2, A3)=(1, 0, m);

(B1, B2, B3)=(0, 1, b)

2. if B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1

return B3 = gcd(m, b); B2 = b–1 mod m

4. Q = A3 div B3

5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3)

6. (A1, A2, A3)=(B1, B2, B3)

7. (B1, B2, B3)=(T1, T2, T3)

8. goto 2

Inverse of 550 in GF(1759)

Prove correctness

Polynomial Arithmetic

• can compute using polynomials

• several alternatives available

– ordinary polynomial arithmetic

– poly arithmetic with coefficients mod p

– poly arithmetic with coefficients mod p and
polynomials mod another polynomial M(x)

• Motivation: use polynomials to model Shift
and XOR operations

Ordinary Polynomial Arithmetic

• add or subtract corresponding coefficients

• multiply all terms by each other

• eg

– let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1

f(x) + g(x) = x3 + 2x2 – x + 3

f(x) – g(x) = x3 + x + 1

f(x) x g(x) = x5 + 3x2 – 2x + 2

Polynomial Arithmetic with Modulo

Coefficients

• when computing value of each coefficient,

modulo some value

• could be modulo any prime

• but we are most interested in mod 2

– ie all coefficients are 0 or 1

– eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1

f(x) + g(x) = x3 + x + 1

f(x) x g(x) = x5 + x2

Modular Polynomial Arithmetic

• Given any polynomials f,g, can write in the form:
– f(x) = q(x) g(x) + r(x)

– can interpret r(x) as being a remainder

– r(x) = f(x) mod g(x)

• if have no remainder say g(x) divides f(x)

• if g(x) has no divisors other than itself & 1 say it
is irreducible (or prime) polynomial

• Modular polynomial arithmetic modulo an
irreducible polynomial forms a field
– Check the definition of a field

Polynomial GCD

• can find greatest common divisor for polys

• GCD: the one with the greatest degree
– c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest

degree which divides both a(x), b(x)

– can adapt Euclid’s Algorithm to find it:

– EUCLID[a(x), b(x)]

1. A(x) = a(x); B(x) = b(x)

2. 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]

3. R(x) = A(x) mod B(x)

4. A(x) ¨ B(x)

5. B(x) ¨ R(x)

6. goto 2

Modular Polynomial Arithmetic

• can compute in field GF(2n)

– polynomials with coefficients modulo 2

– whose degree is less than n

– Coefficients always modulo 2 in an operation

– hence must modulo an irreducible polynomial
of degree n (for multiplication only)

• form a finite field

• can always find an inverse

– can extend Euclid’s Inverse algorithm to find

Example GF(23)

Computational Considerations

• since coefficients are 0 or 1, can represent

any such polynomial as a bit string

• addition becomes XOR of these bit strings

• multiplication is shift & XOR

– Example in P.133

• modulo reduction done by repeatedly

substituting highest power with remainder

of irreducible poly (also shift & XOR)

Summary

• have considered:

– concept of groups, rings, fields

– modular arithmetic with integers

– Euclid’s algorithm for GCD

– finite fields GF(p)

– polynomial arithmetic in general and in GF(2n)

