Chapter 4 - Finite Fields

Introduction

- will now introduce finite fields
- of increasing importance in cryptography - AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
- what constitutes a "number"
- the type of operations and the properties
- start with concepts of groups, rings, fields from abstract algebra

Group

- a set of elements or "numbers"
- A generalization of usual arithmetic
- obeys:
- closure: a.b also in G
- associative law: (a.b).c = a.(b.c)
- has identity e: e.a $=a . e=a$
- has inverses $a^{-1}: \quad a \cdot a^{-1}=e$
- if commutative a.b = b.a
- then forms an abelian group
- Examples in P. 105

Cyclic Group

- define exponentiation as repeated application of operator
-example: $a^{3}=$ a.a.a
- and let identity be: $e=a^{0}$
- a group is cyclic if every element is a power of some fixed element
- ie $b=a^{k} \quad$ for some a and every b in group
- a is said to be a generator of the group
- Example: positive numbers with addition

Ring

- a set of "numbers" with two operations (addition and multiplication) which are:
- an abelian group with addition operation
- multiplication:
- has closure
- is associative
- distributive over addition: $\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$
- In essence, a ring is a set in which we can do addition, subtraction $[a-b=a+(-b)]$, and multiplication without leaving the set.
- With respect to addition and multiplication, the set of all n-square matrices over the real numbers form a ring.

Ring

- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity element and no zero divisors (ab=0 means either $a=0$ or $b=0$), it forms an integral domain
- The set of Integers with usual + and x is an integral domain

Field

- a set of numbers with two operations:
- Addition and multiplication
- F is an integral domain
- F has multiplicative reverse
- For each a in F other than 0 , there is an element b such that $a b=b a=1$
- In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set.
- Division is defined with the following rule: $a / b=a\left(b^{-1}\right)$
- Examples of fields: rational numbers, real numbers, complex numbers. Integers are NOT a field.

Definitions

If a and b belong to S, then $a+b$ is also in S $a+(b+c)=(a+b)+c$ for all a, b, c in S
There is an element 0 in R such that $a+0=0+a=a$ for all a in S
For each a in S there is an element $-a$ in S such that $a+(-a)=(-a)+a=0$ $a+b=b+a$ for all a, b in S If a and b belong to S, then $a b$ is also in S $a(b c)=(a b) c$ for all a, b, c in S $a(b+c)=a b+a c$ for all a, b, c in S $(a+b) c=a c+b c$ for all a, b, c in S $a b=b a$ for all a, b in S
There is an element 1 in S such that $a 1=1 a=a$ for all a in S
If a, b in S and $a b=0$, then either $a=0$ or $b=0$
If a belongs to S and $a \quad 0$, there is an element a^{-1} in S such that $a a^{-1}=a^{-1} a=1$

Figure 4.1 Group, Ring, and Field

Modular Arithmetic

- define modulo operator a mod n to be remainder when a is divided by n
- e.g. $1=7 \bmod 3 ; 4=9 \bmod 5$
- use the term congruence for: $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$
- when divided by n, a \& b have same remainder
- eg. $100 \equiv 34$ (mod 11)
- b is called the residue of a mod n
- since with integers can always write: $a=q n+b$
- usually have $0<=\mathrm{b}$ <= $\mathrm{n}-1$
$-12 \bmod 7=-5 \bmod 7=2 \bmod 7=9 \bmod 7$

Modulo 7 Example

-21	-20	-19	-18	-17	-16	-15
-14	-13	-12	-11	-10	-9	-8
-7	-6	-5	-4	-3	-2	-1
0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34

all numbers in a column are equivalent (have same remainder) and are called a residue class

Divisors

- say a non-zero number b divides a if for some m have $a=m b$ (a, b, m all integers)
$-0 \equiv \mathrm{a} \bmod \mathrm{b}$
- that is b divides into a with no remainder
- denote this $\mathrm{b} \mid \mathrm{a}$
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic Operations

- has a finite number of values, and loops back from either end
- modular arithmetic
- Can perform addition \& multiplication
- Do modulo to reduce the answer to the finite set
- can do reduction at any point, ie
$-a+b \bmod n=a \bmod n+b \bmod n$

Modular Arithmetic

- can do modular arithmetic with any group of integers: $Z_{n}=\{0,1, \ldots, n-1\}$
- form a commutative ring for addition
- with an additive identity (Table 4.2)
- some additional properties
-if $(a+b) \equiv(a+c) \bmod n$ then $b \equiv c \bmod n$
-but $(a b) \equiv(a c) \bmod n$ then $b \equiv c \bmod n$ only if a is relatively prime to n

Modulo 8 Example

$+$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	O	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a, b) of a and b is the largest number that divides both a and b

$$
-\mathrm{eg} \operatorname{GCD}(60,24)=12
$$

- often want no common factors (except 1) and hence numbers are relatively prime
- eg GCD $(8,15)=1$
- hence 8 \& 15 are relatively prime

Euclid's GCD Algorithm

- an efficient way to find the $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$
- uses theorem that:
- GCD (a,b) = GCD (b, a mod b)
- Euclid's Algorithm to compute GCD(a,b):

$$
\begin{aligned}
& -A=a, \quad B=b \\
& - \text { while } \quad B>0
\end{aligned}
$$

- $\mathrm{R}=\mathrm{A} \bmod \mathrm{B}$
- $A=B, B=R$
-return A

Example GCD $(1970,1066)$

$1970=1 \times 1066+904$	$\operatorname{gcd}(1066,904)$
$1066=1 \times 904+162$	$\operatorname{gcd}(904,162)$
$904=5 \times 162+94$	$\operatorname{gcd}(162,94)$
$162=1 \times 94+68$	$\operatorname{gcd}(94,68)$
$94=1 \times 68+26$	$\operatorname{gcd}(68,26)$
$68=2 \times 26+16$	$\operatorname{gcd}(26,16)$
$26=1 \times 16+10$	$\operatorname{gcd}(16,10)$
$16=1 \times 10+6$	$\operatorname{gcd}(10,6)$
$10=1 \times 6+4$	$\operatorname{gcd}(6,4)$
$6=1 \times 4+2$	$\operatorname{gcd}(4,2)$
$4=2 \times 2+0$	$\operatorname{gcd}(2,0)$

- Compute successive instances of $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{GCD}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$.
- Note this MUST always terminate since will eventually get a mod $b=$ 0 (ie no remainder left).

Galois Fields

- finite fields play a key role in many cryptography algorithms
- can show number of elements in any finite field must be a power of a prime number p^{n}
- known as Galois fields
- denoted GF(pn)
- in particular often use the fields:
- GF(p)
- GF(2n)

Galois Fields GF(p)

- $G F(p)$ is the set of integers $\{0,1, \ldots, p-1\}$ with arithmetic operations modulo prime p
- these form a finite field
- since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)
- Division depends on the existence of multiplicative inverses. Why p has to be prime?

Example GF(7)

\times	0	1	2	3	4	5	6
0	0	0	0	O	O	0	0
1	\bigcirc	1	2	3	4	5	6
2	\bigcirc	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	O	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	O	6	5	4	3	2	1

(b) Multiplication modullo 7

Example: 3/2=5
$\mathrm{GP}(6)$ does not exist

Finding Inverses

- Finding inverses for large P is a problem
- can extend Euclid's algorithm:

```
EXTENDED EUCLID(m, b)
1. (A1, A2, A3) = (1, 0, m);
    (B1, B2, B3) =(0, 1, b)
2. if B3 = 0
    return A3 = gcd (m, b); no inverse
3. if B3 = 1
    return B3 = gcd (m, b); B2 = b b 
4. Q = A3 div B3
5. (T1, T2, T3)=(A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3)=(T1, T2, T3)
8. goto 2
```


Inverse of 550 in GF(1759)

Q	A1	A2	A3	B1	B2	B3
-	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Prove correctness

Polynomial Arithmetic

- can compute using polynomials
- SE

- poly arithmetic with coefficients mod p
- poly arithmetic with coefficients mod p and polynomials mod another polynomial $M(x)$
- Motivation: use polynomials to model Shift and XOR operations

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg
- let $f(x)=x^{3}+x^{2}+2$ and $g(x)=x^{2}-x+1$
$f(x)+g(x)=x^{3}+2 x^{2}-x+3$
$f(x)-g(x)=x^{3}+x+1$
$f(x) \times g(x)=x^{5}+3 x^{2}-2 x+2$

Polynomial Arithmetic with Modulo

 Coefficients- when computing value of each coefficient, modulo some value
- could be modulo any prime
- but we are most interested in mod 2
- ie all coefficients are 0 or 1
- eg. let $f(x)=x^{3}+x^{2}$ and $g(x)=x^{2}+x+1$
$f(x)+g(x)=x^{3}+x+1$
$f(x) \times g(x)=x^{5}+x^{2}$

Modular Polynomial Arithmetic

- Given any polynomials f, g, can write in the form:
$-f(x)=q(x) g(x)+r(x)$
- can interpret $r(x)$ as being a remainder
$-r(x)=f(x) \bmod g(x)$
- if have no remainder say $g(x)$ divides $f(x)$
- if $g(x)$ has no divisors other than itself $\& 1$ say it is irreducible (or prime) polynomial
- Modular polynomial arithmetic modulo an irreducible polynomial forms a field
- Check the definition of a field

Polynomial GCD

- can find greatest common divisor for polys
- GCD: the one with the greatest degree
$-\quad c(x)=\operatorname{GCD}(a(x), b(x))$ if $c(x)$ is the poly of greatest degree which divides both $a(x), b(x)$
- can adapt Euclid's Algorithm to find it:
- EUCLID[a(x), $b(x)]$

1. $\mathrm{A}(x)=a(x) ; \mathrm{B}(x)=b(x)$
2. 2. if $\mathrm{B}(x)=0$ return $\mathrm{A}(x)=\operatorname{gcd}[a(x), b(x)]$
1. $\mathrm{R}(x)=\mathrm{A}(x) \bmod \mathrm{B}(x)$
2. $\mathrm{A}(x){ }^{" \mathrm{~B}}(x)$
3. $\mathrm{B}(x) " \mathrm{R}(x)$
4. goto 2

Modular Polynomial Arithmetic

- can compute in field GF(2n)
- polynomials with coefficients modulo 2
- whose degree is less than n
- Coefficients always modulo 2 in an operation
- hence must modulo an irreducible polynomial of degree n (for multiplication only)
- form a finite field
- can always find an inverse
- can extend Euclid's Inverse algorithm to find

Example GF(23)

Table 4.6 Polynomial Arithmetic Modulo $\left(x^{3}+x+1\right)$

	+	$\begin{gathered} 000 \\ 0 \end{gathered}$	$\begin{gathered} 001 \\ 1 \end{gathered}$	$\begin{gathered} 010 \\ x \end{gathered}$	$\begin{gathered} 011 \\ x+1 \end{gathered}$	$\begin{gathered} 100 \\ x^{2} \end{gathered}$	$\begin{gathered} 101 \\ x^{2}+1 \end{gathered}$	$\begin{gathered} 110 \\ x^{2}+x \end{gathered}$	$\begin{gathered} 111 \\ x^{2}+x+1 \\ \hline \end{gathered}$
000	0	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
001	1	I	0	$x+1$	x	$x^{2}+1$	x^{2}	$x^{2}+x+1$	$x^{2}+x$
010	x	x	$x+1$	0	1	$x^{2}+x$	$x^{2}+x+1$	x^{2}	$x^{2}+1$
011	$x+1$	$x+1$	x	T	0	$x^{2}+x+1$	$x^{2}+x$	$x^{2}+1$	x^{2}
100	x^{2}	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$	0	1	x	$x+1$
101	$x^{2}+1$	$x^{2}+1$	x^{2}	$x^{2}+x+1$	$x^{2}+x$	T	0	$x+1$	x
110	$x^{2}+x$	$x^{2}+x$	$x^{2}+x+1$	x^{2}	$x^{2}+1$	x	$x+1$	0	1
111	$x^{2}+x+1$	$x^{2}+x+1$	$x^{2}+x$	$x^{2}+1$	x^{2}	$x+1$	x	1	0

(a) Addition

\times	$\begin{gathered} 000 \\ 0 \end{gathered}$	$\begin{gathered} 001 \\ 1 \end{gathered}$	$\begin{gathered} 010 \\ x \end{gathered}$	$\begin{gathered} 011 \\ x+1 \end{gathered}$	$\begin{gathered} 100 \\ x^{2} \end{gathered}$	$\begin{gathered} 101 \\ x^{2}+1 \end{gathered}$	$\begin{gathered} 110 \\ x^{2}+x \end{gathered}$	$\begin{gathered} 111 \\ x^{2}+x+1 \end{gathered}$
0	0	0	0	0	0	0	0	0
1	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
x	0	x	x^{2}	$x^{2}+x$	$x+1$	1	$x^{2}+x+1$	$x^{2}+1$
$x+1$	0	$x+1$	$x^{2}+x$	$x^{2}+1$	$x^{2}+x+1$	x^{2}	T	x
x^{2}	0	x^{2}	$x+1$	$x^{2}+x+1$	$x^{2}+x$	x	$x^{2}+1$	1
$x^{2}+1$	0	$x^{2}+1$	T	x^{2}	x	$x^{2}+x+1$	$x+1$	$x^{2}+x$
$x^{2}+x$	0	$x^{2}+x$	$x^{2}+x+1$	1	$x^{2}+1$	$x+1$	x	x^{2}
$x^{2}+x+1$	0	$x^{2}+x+1$	$x^{2}+1$	x	1	$x^{2}+x$	x^{2}	$x+1$

(b) Multiplication

Computational Considerations

- since coefficients are 0 or 1 , can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift \& XOR
- Example in P. 133
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift \& XOR)

Summary

- have considered:
- concept of groups, rings, fields
- modular arithmetic with integers
- Euclid's algorithm for GCD
- finite fields GF(p)
- polynomial arithmetic in general and in GF(2n)

