
Chapter 5 

Advanced Encryption Standard



Origins

• clear a replacement for DES was needed
– have theoretical attacks that can break it

– have demonstrated exhaustive key search attacks

• can use Triple-DES – pretty safe 
– but slow, small blocks

• issued call for ciphers in `97

• 15 candidates accepted in Jun 98 

• 5 were short-listed in Aug-99 

• AES selected in Oct-2000

• issued as FIPS PUB 197 standard in Nov-2001 



AES Requirements

• private key symmetric block cipher 

• 128-bit data, 128/192/256-bit keys 

• stronger & faster than Triple-DES 

• active life of 20-30 years (+ archival use) 

• provide full specification & design details 

• both C & Java implementations

• NIST have released all submissions & 
unclassified analyses



AES Evaluation Criteria

• initial criteria (15 to 5):
– security – effort to practically cryptanalyse

– cost – computational, high-speed applications

– algorithm & implementation characteristics
• Flexibility, simplicity, maintainability

• final criteria
– general security

– software & hardware implementation ease

– implementation attacks

– flexibility (in changing en/decrypt, keying, #rounds, 
other factors)



AES Shortlist

• after testing and evaluation, shortlist in Aug-99: 
– MARS (IBM) - complex, fast, high security margin 

– RC6 (USA) - v. simple, v. fast, low security margin 

– Rijndael (Belgium) - clean, fast, good security margin 

– Serpent (Euro) - slow, clean, v. high security margin 

– Twofish (USA) - complex, v. fast, high security margin 

• then subject to further analysis & comment

• All were thought to be good – came down to 
best balance of attributes to meet criteria.

• Note mix of commercial (MARS, RC6, Twofish) 
verses academic (Rijndael, Serpent) proposals



The AES Cipher 

• designed by Rijmen-Daemen in Belgium 

• has 128/192/256 bit keys, 128 bit data 

• an iterative rather than feistel cipher
– treats data in 4 groups of 4 bytes

– operates an entire block in every round

– rather than feistel (operate on halves at a time)

• designed to be:
– resistant against known attacks

– speed and code compactness on many CPUs

– design simplicity



AES

• processes data as 4 groups of 4 bytes (state)

• has 9/11/13 rounds in which state undergoes: 

– byte substitution (1 S-box used on every byte) 

– shift rows (permute bytes between groups/columns) 

– mix columns (subs using matrix multiply of groups) 

– add round key (XOR state with key material) 

• initial XOR key material & incomplete last round

• all operations can be combined into XOR and 

table lookups - hence very fast & efficient



Rijndael



Byte Substitution

• a simple substitution of each byte

• uses one table of 16x16 bytes containing a 
permutation of all 256 8-bit values

• each byte of state is replaced by byte in row (left 
4-bits) & column (right 4-bits)
– eg. byte {95} is replaced by row 9 col 5 byte

– which is the value {2A}

• S-box is constructed using a defined 
transformation of the values in GF(28)

• designed to be resistant to all known attacks



Shift Rows

• a circular byte shift in each row

– 1st row is unchanged

– 2nd row does 1 byte circular shift to left

– 3rd row does 2 byte circular shift to left

– 4th row does 3 byte circular shift to left

• decrypt does shifts to right

• since state is processed by columns, this 

step permutes bytes between the columns



Mix Columns

• each column is processed separately

• each byte is replaced by a value 

dependent on all 4 bytes in the column

• effectively a matrix multiplication in GF(28) 

using prime poly m(x) =x8+x4+x3+x+1



Add Round Key

• XOR state with 128-bits of the round key

• again processed by column (though 

effectively a series of byte operations)

• inverse for decryption is identical since 

XOR is own inverse, just with correct 

round key

• designed to be as simple as possible



AES Round



AES Key Expansion

• takes 128-bit (16-byte) key and expands 
into array of 44/52/60 32-bit words

• start by copying key into first 4 words

• then loop creating words that depend on 
values in previous & 4 places back

– in 3 of 4 cases just XOR these together

– every 4th has S-box + rotate + XOR constant 
of previous before XOR together

• designed to resist known attacks



AES Decryption

• AES decryption is not identical to 
encryption since steps done in reverse

• but can define an equivalent inverse 
cipher with steps as for encryption

– but using inverses of each step

– with a different key schedule

• works since result is unchanged when

– swap byte substitution & shift rows

– swap mix columns & add (tweaked) round key



Implementation Aspects

• can efficiently implement on 8-bit CPU

– byte substitution works on bytes using a table 

of 256 entries

– shift rows is simple byte shifting

– add round key works on byte XORs

– mix columns requires matrix multiply in GF(28) 

which works on byte values, can be simplified 

to use a table lookup



Implementation Aspects

• can efficiently implement on 32-bit CPU

– redefine steps to use 32-bit words

– can pre-compute 4 tables of 256-words

– then each column in each round can be 
computed using 4 table lookups + 4 XORs

– at a cost of 16Kb to store tables

• designers believe this very efficient 
implementation was a key factor in its 
selection as the AES cipher



Summary

• have considered:

– the AES selection process

– the details of Rijndael – the AES cipher

– looked at the steps in each round

– the key expansion

– implementation aspects


