
Chapter 6 – Contemporary

Symmetric Ciphers

Triple DES

• A replacement for DES was needed

– theoretical attacks that can break it

– demonstrated exhaustive key search attacks

• AES is a new cipher alternative

• Before AES alternative

– use multiple encryptions with DES

• Triple-DES is the chosen form

Why Triple-DES?

• why not Double-DES?

– NOT same as some other single-DES use,
but have

• meet-in-the-middle attack

– works whenever use a cipher twice

– since X = EK1[P] = DK2[C]

– attack by encrypting P with all keys and store

– then decrypt C with keys and match X value

– can show takes O(256) steps

Triple-DES with Two-Keys

• hence must use 3 encryptions
– would seem to need 3 distinct keys

– Key of 56 X 3 = 168 bits seems too long

• but can use 2 keys with E-D-E sequence
– C = EK1[DK2[EK1[P]]]

– No cryptographic significance to the use of D in the
second step

• standardized in ANSI X9.17 & ISO8732

• no current known practical attacks
– some are now adopting Triple-DES with three keys for

greater security

Triple-DES with Three-Keys

• although are no practical attacks on two-

key Triple-DES have some indications

• can use Triple-DES with Three-Keys to

avoid even these

– C = EK3[DK2[EK1[P]]]

• has been adopted by some Internet

applications

Blowfish

• a symmetric block cipher designed by
Bruce Schneier in 1993/94

• characteristics

– fast implementation on 32-bit CPUs, 18 clock
cycles per byte

– compact in use of memory, less than 5KB

– simple structure for analysis/implementation

– variable security by varying key size
• Allows tuning for speed/security tradeoff

Blowfish Key Schedule

• uses a 32 to 448 bit key

• used to generate

– 18 32-bit subkeys stored in P-array: P1 to P18

– S-boxes stored in Si,j,
•i=1..4

•j=0..255

Blowfish Encryption

• uses two primitives: addition & XOR

• data is divided into two 32-bit halves L0 & R0
for i = 1 to 16 do

Ri = Li-1 XOR Pi;

Li = F[Ri] XOR Ri-1;

L17 = R16 XOR P18;

R17 = L16 XOR i17;

• where

F[a,b,c,d] = ((S1,a + S2,b) XOR S3,c) + S4,a

Break 32-bit Ri into (a,b,c,d)

Discussion

• provided key is large enough, brute-force key

search is not practical, especially given the high

key schedule cost

• key dependent S-boxes and subkeys make

analysis very difficult

– Very few cryptoanalysis results on blowfish

• changing both halves in each round increases

security

– Some study shows improved avalanche effects

RC5

• can vary key size / input data size /

#rounds

• very clean and simple design

• easy implementation on various CPUs

• yet still regarded as secure

– Vary parameters to achieve tradeoffs

RC5 Ciphers

• RC5 is a family of ciphers RC5-w/r/b

– w = word size in bits (16/32/64) data=2w

– r = number of rounds (0..255)

– b = number of bytes in key (0..255)

• nominal version is RC5-32/12/16

– ie 32-bit words so encrypts 64-bit data blocks

– using 12 rounds

– with 16 bytes (128-bit) secret key

RC5 Key Expansion

• RC5 uses 2r+2 subkey words (w-bits)

– Two subkeys for each round

– 2 subkeys for additional operations

• subkeys are stored in array S[i], i=0..t-1

• Key expansion: fill in pseudo-random bits

to the original key K

• Certain amount of one-wayness

– Difficult to determine K from S

RC5 Encryption

• split input into two halves A & B
L0 = A + S[0];

R0 = B + S[1];

for i = 1 to r do
Li = ((Li-1 XOR Ri-1) <<< Ri-1) + S[2 x i];

Ri = ((Ri-1 XOR Li) <<< Li) + S[2 x i + 1];

• each round is like 2 DES rounds

• note rotation is main source of non-linearity

• need reasonable number of rounds (eg 12-16)

• Striking features: simplicity, data-dependent
rotations

RC5 Modes

• RFC2040 defines 4 modes used by RC5

– RC5 Block Cipher, is ECB mode

– RC5-CBC, input length is a multiples of 2w

– RC5-CBC-PAD, any length CBC with padding

• Output can be longer than input

– RC5-CTS, CBC with padding

• Output has same length than input

Block Cipher Characteristics

• features seen in modern block ciphers are:

– variable key length / block size / no rounds

– mixed operators

• data/key dependent rotation

• key dependent S-boxes

– more complex key scheduling

• Lengthy key generation, simple encryption rounds

– operation of full data in each round

Stream Ciphers

• process the message bit by bit (as a stream)

• typically have a (pseudo) random key stream

• combined (XOR) with plaintext bit by bit

• randomness of key stream completely destroys

any statistically properties in the message

– Ci = Mi XOR StreamKeyi

• what could be simpler!!!!

• but must never reuse key stream

– otherwise can remove effect and recover messages

Block/Stream Ciphers

• Stream ciphers
– For applications that require encryt/decryt of a stream

of data

– Examples: data communication channel, brower/web
link

• Block ciphers
– For applications dealing with blocks of data

– Examples: file transfer, e-mail, database

• Either type can be used in virtually any
application

Stream Cipher Properties

• some design considerations are:

– long period with no repetitions

– statistically random

– Highly nonlinear correlation

RC4

• variable key size, byte-oriented stream

cipher

• widely used (web SSL/TLS between

browser and server, wireless WEP)

• key forms random permutation of a 8-bit

string

• uses that permutation to scramble input

info processed a byte at a time

RC4 Security

• claimed secure against known attacks

– have some analyses, none practical

• result is very non-linear

• since RC4 is a stream cipher, must never

reuse a key

Summary

• have considered:

– some other modern symmetric block ciphers

– Triple-DES

– Blowfish

– RC5

– briefly introduced stream ciphers

