
Chapter 8 – Introduction to Number 

Theory



Prime Numbers

• prime numbers only have divisors of 1 and self 

– they cannot be written as a product of other numbers 

– note: 1 is prime, but is generally not of interest 

• eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

• prime numbers are central to number theory

• list of prime number less than 200 is: 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 

61 67 71 73 79 83 89 97 101 103 107 109 113 127 

131 137 139 149 151 157 163 167 173 179 181 191 

193 197 199



Prime Factorisation

• to factor a number n is to write it as a 
product of other numbers: n=a × b × c

• note that factoring a number is relatively 
hard compared to multiplying the factors 
together to generate the number 

• the prime factorisation of a number n is 
when its written as a product of primes 
– eg. 91=7×13 ; 3600=24×32×52

– It is unique



Relatively Prime Numbers & GCD

• two numbers a, b are relatively prime if 
have no common divisors apart from 1 

– eg. 8 & 15 are relatively prime since factors of 
8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is 
the only common factor 

• conversely can determine the greatest 
common divisor by comparing their prime 
factorizations and using least powers
– eg. 300=21×31×52 18=21×32 hence
GCD(18,300)=21×31×50=6



Fermat's Little Theorem

• ap-1 mod p = 1 

where p is prime and a is a positive integer not 

divisible by p



Euler Totient Function ø(n)

• when doing arithmetic modulo n 

• complete set of residues is: 0..n-1

• reduced set of residues includes those 
numbers which are relatively prime to n 
– eg for n=10, 

– complete set of residues is {0,1,2,3,4,5,6,7,8,9} 

– reduced set of residues is {1,3,7,9} 

• Euler Totient Function ø(n):
– number of elements in reduced set of residues of n

– ø(10) = 4



Euler Totient Function ø(n)

• to compute ø(n) need to count number of 

elements to be excluded

• in general need prime factorization, but

– for p (p prime) ø(p) = p-1

– for p.q (p,q prime) ø(p.q) = (p-1)(q-1)

• eg.

– ø(37) = 36

– ø(21) = (3–1)×(7–1) = 2×6 = 12



Euler's Theorem

• a generalisation of Fermat's Theorem 

• aø(n)mod n = 1 

– where gcd(a,n)=1

• eg.

– a=3;n=10; ø(10)=4; 

– hence 34 = 81 = 1 mod 10

– a=2;n=11; ø(11)=10;

– hence 210 = 1024 = 1 mod 11



Primality Testing

• A number of cryptographic algorithms need to 
find large prime numbers 

• traditionally sieve using trial division
– ie. divide by all numbers (primes) in turn less than the 

square root of the number 

– only works for small numbers

• statistical primality tests 
– for which all primes numbers satisfy property 

– but some composite numbers, called pseudo-primes, 
also satisfy the property, with a low probability

• Prime is in P: 
– Deterministic polynomial algorithm found in 2002



Miller Rabin Algorithm

• a test based on Fermat’s Theorem

• algorithm is:
TEST (n) is:

1. Find biggest k, k > 0, so that (n–1)=2kq

2. Select a random integer a, 1<a<n–1

3. if aq mod n = 1 then return (“maybe prime");

4. for j = 0 to k – 1 do

5. if (a2
j
q mod n = n-1)

then return(" maybe prime ")

6. return ("composite")

• Proof and examples



Probabilistic Considerations

• if Miller-Rabin returns “composite” the 

number is definitely not prime

• otherwise is a prime or a pseudo-prime

• chance it detects a pseudo-prime is < ¼

• hence if repeat test with different random a 

then chance n is prime after t tests is:

– Pr(n prime after t tests) = 1-4-t

– eg. for t=10 this probability is > 0.99999



Prime Distribution

• there are infinite prime numbers

– Euclid’s proof

• prime number theorem states that 

– primes near n occur roughly every (ln n) integers

• since can immediately ignore evens and 
multiples of 5, in practice only need test 0.4 

ln(n) numbers before locate a prime around n

– note this is only the “average” sometimes primes are 

close together, at other times are quite far apart



Chinese Remainder Theorem

• Used to speed up modulo computations 

• Used to modulo a product of numbers 

– eg. mod M = m1m2..mk , where gcd(mi,mj)=1

• Chinese Remainder theorem lets us work 

in each moduli mi separately 

• since computational cost is proportional to 

size, this is faster than working in the full 

modulus M



Chinese Remainder Theorem

• to compute (A mod M) can firstly compute 

all (ai mod mi) separately and then 

combine results to get answer using:



Exponentiation mod p

• Ax = b (mod p)

• from Euler’s theorem have aø(n) mod n=1 

• consider am mod n=1, GCD(a,n)=1

– must exist for m= ø(n) but may be smaller

– once powers reach m, cycle will repeat

• if smallest is m= ø(n) then a is called a 

primitive root



Discrete Logarithms or Indices

• the inverse problem to exponentiation is to find 
the discrete logarithm of a number modulo p 

• Given a, b, p, find x where ax = b mod p

• written as x=loga b mod p or x=inda,p(b)

• Logirthm may not always exist
– x = log3 4 mod 13 (x st 3x = 4 mod 13) has no answer 

– x = log2 3 mod 13 = 4 by trying successive powers 

• whilst exponentiation is relatively easy, finding 
discrete logarithms is generally a hard problem
– Oneway-ness: desirable in modern cryptography 



Summary

• have considered:

– prime numbers

– Fermat’s and Euler’s Theorems

– Primality Testing

– Chinese Remainder Theorem

– Discrete Logarithms


