Chapter 8 - Introduction to Number Theory

Prime Numbers

- prime numbers only have divisors of 1 and self
- they cannot be written as a product of other numbers
- note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, $4,6,8,9,10$ are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

$$
\begin{array}{llllllllllllllll}
2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & 41 & 43 & 47 & 53 \\
61 & 67 & 71 & 73 & 79 & 83 & 89 & 97 & 101 & 103 & 107 & 109 & 113 & 127 \\
131 & 137 & 139 & 149 & 151 & 157 & 163 & 167 & 173 & 179 & 181 & 191 \\
193 & 197 & 199 & & & & & & & & & & & &
\end{array}
$$

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: $\mathrm{n}=\mathrm{a} \times \mathrm{b} \times \mathrm{c}$
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes
- eg. $91=7 \times 13$; $3600=2^{4} \times 3^{2} \times 5^{2}$
- It is unique $a=\prod_{p \in P} p^{a_{p}}$

Relatively Prime Numbers \& GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
- eg. $8 \& 15$ are relatively prime since factors of 8 are $1,2,4,8$ and of 15 are $1,3,5,15$ and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
- eg. $300=2^{1} \times 3^{1} \times 5^{2} \quad 18=2^{1} \times 3^{2}$ hence $\operatorname{GCD}(18,300)=2^{1} \times 3^{1} \times 5^{0}=6$

Fermat's Little Theorem

- $a^{p-1} \bmod p=1$
where p is prime and a is a positive integer not divisible by p

Euler Totient Function $\varnothing(\mathrm{n})$

- when doing arithmetic modulo n
- complete set of residues is: 0 . . $n-1$
- reduced set of residues includes those numbers which are relatively prime to n
- eg for $n=10$,
- complete set of residues is $\{0,1,2,3,4,5,6,7,8,9\}$
- reduced set of residues is $\{1,3,7,9\}$
- Euler Totient Function ø(n):
- number of elements in reduced set of residues of n
$-\varnothing(10)=4$

Euler Totient Function \varnothing (n)

- to compute $\varnothing(\mathrm{n})$ need to count number of elements to be excluded
- in general need prime factorization, but
- for $p(p$ prime $) \quad \varnothing(p)=p-1$
- for p.q (p,q prime) $\varnothing(p . q)=(p-1)(q-1)$
- eg.
$-\varnothing(37)=36$
$-\varnothing(21)=(3-1) \times(7-1)=2 \times 6=12$

Euler's Theorem

- a generalisation of Fermat's Theorem
- $\mathrm{a}^{\varnothing(\mathrm{n})} \bmod \mathrm{n}=1$
- where $\operatorname{gcd}(a, n)=1$
- eg.
$-a=3 ; n=10 ; ~ \varnothing(10)=4 ;$
-hence $3^{4}=81=1 \bmod 10$
- $a=2 ; n=11$; $\varnothing(11)=10$;
-hence $2^{10}=1024=1 \bmod 11$

Primality Testing

- A number of cryptographic algorithms need to find large prime numbers
- traditionally sieve using trial division
- ie. divide by all numbers (primes) in turn less than the square root of the number
- only works for small numbers
- statistical primality tests
- for which all primes numbers satisfy property
- but some composite numbers, called pseudo-primes, also satisfy the property, with a low probability
- Prime is in P :
- Deterministic polynomial algorithm found in 2002

Miller Rabin Algorithm

- a test based on Fermat's Theorem
- algorithm is:

TEST (n) is:

1. Find biggest $k, k>0$, so that $(n-1)=2^{k} q$
2. Select a random integer $a, 1<a<n-1$
3. if $a^{q} \bmod n=1$ then return ("maybe prime");
4. for $j=0$ to $k-1$ do
5. if $\left(a^{2^{j} q} \bmod n=n-1\right)$
then return(" maybe prime ")
6. return ("composite")

- Proof and examples

Probabilistic Considerations

- if Miller-Rabin returns "composite" the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is $<1 / 4$
- hence if repeat test with different random a then chance n is prime after t tests is:
$-\operatorname{Pr}(\mathrm{n}$ prime after t tests $)=1-4^{-\mathrm{t}}$
- eg. for $\mathrm{t}=10$ this probability is >0.99999

Prime Distribution

- there are infinite prime numbers
- Euclid's proof
- prime number theorem states that
- primes near n occur roughly every (ln n) integers
- since can immediately ignore evens and multiples of 5 , in practice only need test 0.4 $\ln (\mathrm{n})$ numbers before locate a prime around n
- note this is only the "average" sometimes primes are close together, at other times are quite far apart

Chinese Remainder Theorem

- Used to speed up modulo computations
- Used to modulo a product of numbers - eg. $\bmod M=m_{1} m_{2} . . m_{k}$, where $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$
- Chinese Remainder theorem lets us work in each moduli m_{i} separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

- to compute (A mod M) can firstly compute all ($\mathrm{a}_{\mathrm{i}} \bmod \mathrm{m}_{\mathrm{i}}$) separately and then combine results to get answer using:

$$
\begin{aligned}
& A \equiv\left(\sum_{i=1}^{k} a_{i} c_{i}\right) \bmod M \\
& c_{i}=M_{i} \times\left(M_{i}^{-1} \bmod m_{i}\right) \quad \text { for } 1 \leq i \leq k
\end{aligned}
$$

Exponentiation mod p

- $A^{x}=b(\bmod p)$
- from Euler's theorem have $a^{\varnothing(n)} \bmod n=1$
- consider $a^{m} \bmod n=1, \operatorname{GCD}(a, n)=1$
- must exist for $m=\varnothing(n)$ but may be smaller
- once powers reach m, cycle will repeat
- if smallest is $m=\varnothing(n)$ then a is called a primitive root

Discrete Logarithms or Indices

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- Given a, b, p, find x where $a^{x}=b \bmod p$
- written as $x=\log _{a} b \bmod p$ or $x=i n d_{a, p}(b)$
- Logirthm may not always exist
$-x=\log _{3} 4 \bmod 13\left(x\right.$ st $\left.3^{x}=4 \bmod 13\right)$ has no answer
$-x=\log _{2} 3$ mod $13=4$ by trying successive powers
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem
- Oneway-ness: desirable in modern cryptography

Summary

- have considered:
- prime numbers
- Fermat's and Euler's Theorems
- Primality Testing
- Chinese Remainder Theorem
- Discrete Logarithms

