
Cryptography and Network

Security

Third Edition

by William Stallings

Lecture slides by Lawrie Brown

Chapter 9 – Public Key

Cryptography and RSA

Every Egyptian received two names, which were

known respectively as the true name and the good

name, or the great name and the little name; and

while the good or little name was made public, the

true or great name appears to have been carefully

concealed.

—The Golden Bough, Sir James George Frazer

Private-Key Cryptography

• traditional private/secret/single key
cryptography uses one key

• shared by both sender and receiver

• if this key is disclosed, communications
are compromised

• also is symmetric, parties are equal

• hence does not protect sender from
receiver forging a message & claiming is
sent by sender

Public-Key Cryptography

• probably most significant advance in the 3000

year history of cryptography

• uses two keys – a public & a private key

– Anyone knowing the public key can encrypt

messages or verify signatures

– But cannot decrypt messages or create signatures

• asymmetric since parties are not equal

• complements rather than replaces private key

crypto

Public-Key Cryptography

• public-key/two-key/asymmetric cryptography

involves the use of two keys:

– a public-key, which may be known by anybody, and

can be used to encrypt messages, and verify

signatures

– a private-key, known only to the recipient, used to

decrypt messages, and sign (create) signatures

• is asymmetric because

– those who encrypt messages or verify signatures

cannot decrypt messages or create signatures

Why Public-Key Cryptography?

• developed to address two key issues:

– key distribution – how to have secure

communications in general without having to

trust a KDC with your key

• No need for secure key delivery

• No one else needs to know your private key

– digital signatures – how to verify a message

comes intact from the claimed sender

Public-Key Characteristics

• Public-Key algorithms rely on two keys
with the characteristics that it is:

– computationally infeasible to find decryption
key knowing only algorithm & encryption key

– computationally easy to en/decrypt messages
when the relevant (en/decrypt) key is known

– Oneway-ness is desirable: exp/log, mul/fac

– either of the two related keys can be used for
encryption, with the other used for decryption
(in some schemes)

Public-Key Cryptosystems:Secrecy

Public-Key Cryptosystems:

Authentication

Public-Key Cryptosystems:

Secrecy and Authentication

Public-Key Applications

• can classify uses into 3 categories:

– encryption/decryption (provide secrecy)

– digital signatures (provide authentication)

– key exchange (of session keys)

• some algorithms are suitable for all uses,

others are specific to one

Security of Public Key Schemes

• like private key schemes brute force exhaustive
search attack is always theoretically possible

• but keys used are too large (>512bits)

• security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

• requires the use of very large numbers

• hence is slow compared to private key schemes

RSA

• by Rivest, Shamir & Adleman of MIT in 1977

• best known & widely used public-key scheme

• based on exponentiation of integers in a finite

(Galois) field

– Defined over integers modulo a prime

– exponentiation takes O((log n)3) operations (easy)

• uses large integers (eg. 1024 bits)

• security due to cost of factoring large numbers

– factorization takes O(e log n log log n) operations (hard)

RSA Key Setup

• each user generates a public/private key pair by:

1. selecting two large primes at random - p, q (secret)

2. computing their system modulus N=p.q (public)
– note ø(N)=(p-1)(q-1) (secret)

3. selecting at random the encryption key e (public)
– where 1<e<ø(N), gcd(e,ø(N))=1

4. solve following equation to find decryption key d (secret)
– e.d=1 mod ø(N) and 0≤d≤N

– Use the extended Euclid’s algorithm to find the multiplicative
inverse of e (mod ø(N))

• publish their public encryption key: KU={e,N}

• keep secret private decryption key: KR={d,p,q}

Block size of RSA

• Each block is represented as an integer number

• Each block has a value M less than N

• The block size is <= log2(N) bits

• If the block size is k bits then

2k <= N <= 2K+1

RSA Use

• to encrypt a message M the sender:

– obtains public key of recipient KU={e,N}

– computes: C=Me mod N, where 0≤M<N

• to decrypt the ciphertext C the owner:

– uses their private key KR={d,p,q}

– computes: M=Cd mod N

• note that the message M must be smaller

than the modulus N (block if needed)

Why RSA Works

• because of Euler's Theorem:
• aø(n)mod N = 1

– where gcd(a,N)=1

• in RSA have:
– N=p.q

– ø(N)=(p-1)(q-1)

– carefully chosen e & d to be inverses mod ø(N)

– hence e.d=1+k.ø(N) for some k

• Two cases:
– 1. gcd(M, N) = 1

– 2. gcd(M, N) > 1, see equation (8.6) in P.243

RSA Example

1. Select primes: p=17 & q=11

2. Compute n = pq =17×11=187

3. Compute ø(n)=(p–1)(q-1)=16×10=160

4. Select e : gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 160

Value is d=23 since 23×7=161= 10×160+1

6. Publish public key KU={7,187}

7. Keep secret private key KR={23,17,11}

RSA Example cont

• sample RSA encryption/decryption is:

• given message M = 88 (88<187)

• encryption:

C = 887 mod 187 = 11

• decryption:

M = 1123 mod 187 = 88

Exponentiation

• can use the Square and Multiply Algorithm

• a fast, efficient algorithm for

exponentiation

• concept is based on repeatedly squaring

base

• and multiplying in the ones that are

needed to compute the result

• look at binary representation of exponent

Exponentiation

RSA Key Generation

• users of RSA must:
– determine two primes at random - p, q

– select either e or d and compute the other

• primes p,q must not be easily derived
from modulus N=p.q

– means must be sufficiently large

– typically guess and use probabilistic test

• exponents e, d are inverses, so use
Inverse algorithm to compute the other

RSA Security

• three approaches to attacking RSA:

– brute force key search (infeasible given size

of numbers)

– mathematical attacks (based on difficulty of

computing ø(N), by factoring modulus N)

– timing attacks (on running of decryption)

Factoring Problem

• mathematical approach takes 3 forms:
– factor N=p.q, hence find ø(N) and then d

– determine ø(N) directly and find d

– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years

• as of Aug-99 best is 130 decimal digits (512) bit with GNFS

– biggest improvement comes from improved algorithm
• cf “Quadratic Sieve” to “Generalized Number Field Sieve”

– barring dramatic breakthrough 1024+ bit RSA secure
• ensure p, q of similar size and matching other constraints

Timing Attacks

• developed in mid-1990’s

• exploit timing variations in operations

– infer bits of d based on time taken

• countermeasures

– use constant exponentiation time

– add random delays

– blind values used in calculations

• C’ = (Mr)e, M’ = (C’)d, M=M’r-1

Summary

• have considered:

– principles of public-key cryptography

– RSA algorithm, implementation, security

