Cryptography and Network Security

Third Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 10 – Key Management; Other Public Key Cryptosystems

No Singhalese, whether man or woman, would venture out of the house without a bunch of keys in his hand, for without such a talisman he would fear that some devil might take advantage of his weak state to slip into his body.

—The Golden Bough, Sir James George Frazer

Key Management

- public-key encryption helps address key distribution problems
- distribution of public keys
- use of public-key encryption to distribute secret keys

Distribution of Public Keys

- can be considered as using one of:
 - Public announcement
 - Publicly available directory
 - Public-key authority
 - Public-key certificates

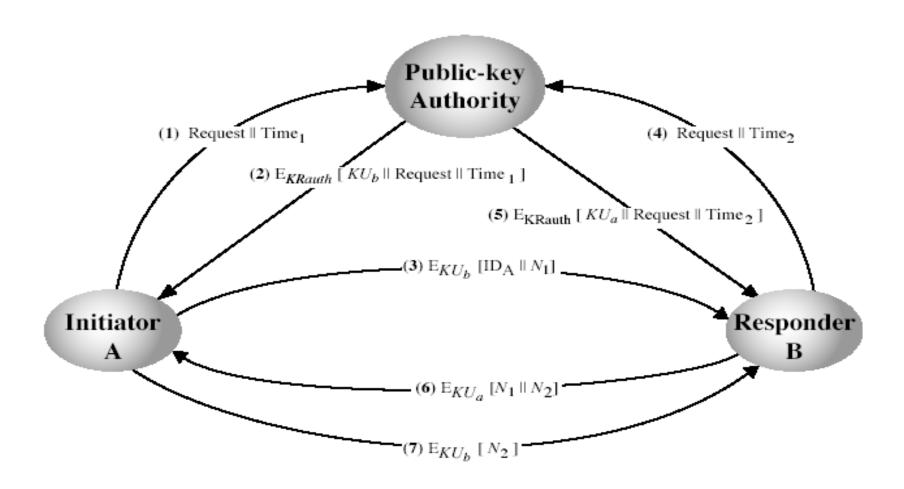
Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user for authentication

Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - contains {name, public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

Public-Key Authority



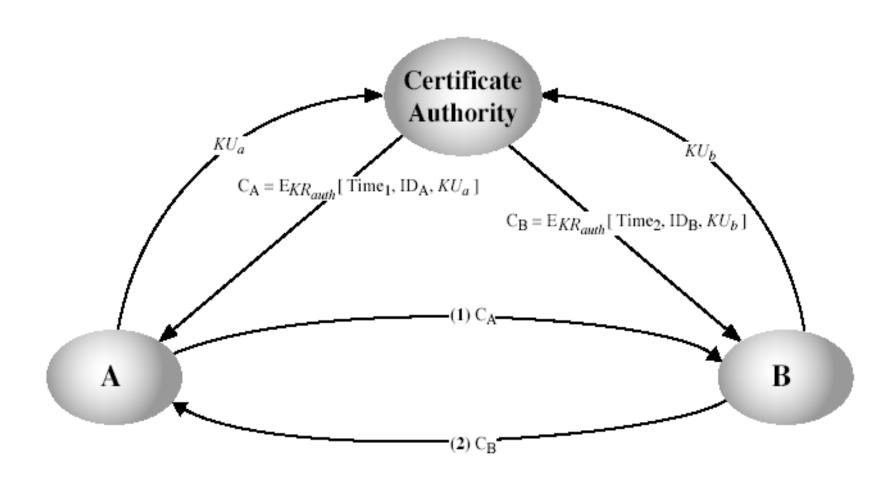
Public-Key Authority

- improve security by tightening control over distribution of keys from directory
- requires users to know public key for the directory
- then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed

Public-Key Certificates

- The public-key authority could be a bottleneck in the system.
 - must appeal to the authority for the key of every other user
- certificates allow key exchange without real-time access to public-key authority
- a certificate binds identity to public key
- with all contents signed by a trusted Public-Key or Certificate Authority (CA)
 - Certifies the identity
 - Only the CA can make the certificates

Public-Key Certificates



Public-Key Distribution of Secret Keys

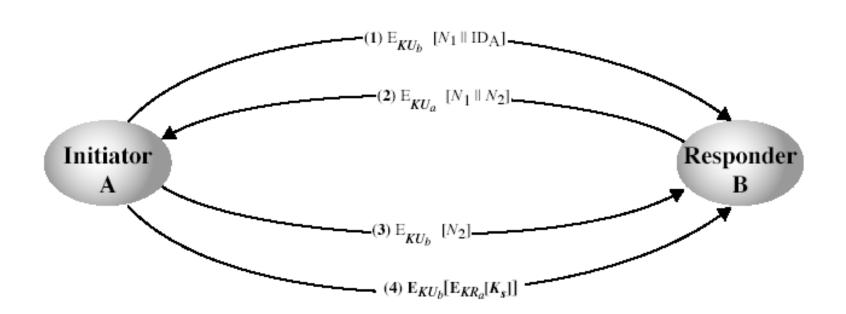
- public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session using public-key

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - A generates a new temporary public key pair
 - A sends B the public key and their identity
 - B generates a session key K sends it to A encrypted using the supplied public key
 - A decrypts the session key and both use
- problem is that an opponent can intercept and impersonate both halves of protocol
 - The scenario

Public-Key Distribution of Secret Keys

First securely exchanged public-keys using a previous method



Diffie-Hellman Key Exchange

- first public-key type scheme proposed
 - For key distribution only
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that James Ellis (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial q
 - α a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their public key: $y_A = \alpha^{x_A} \mod q$
- each user makes public that key y_A

Diffie-Hellman Key Exchange

shared session key for users A & B is K:

```
K = y_A^{x_B} \mod q (which B can compute)

K = y_B^{x_A} \mod q (which A can compute)

(example)
```

- K is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the **same** key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and $\alpha=3$
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute public keys:
 - $-y_A = 3^{97} \mod 353 = 40$ (Alice) - $y_B = 3^{233} \mod 353 = 248$ (Bob)
- compute shared session key as:

$$K_{AB} = y_{B}^{x_{A}} \mod 353 = 248^{97} = 160$$
 (Alice)
 $K_{AB} = y_{A}^{x_{B}} \mod 353 = 40^{233} = 160$ (Bob)

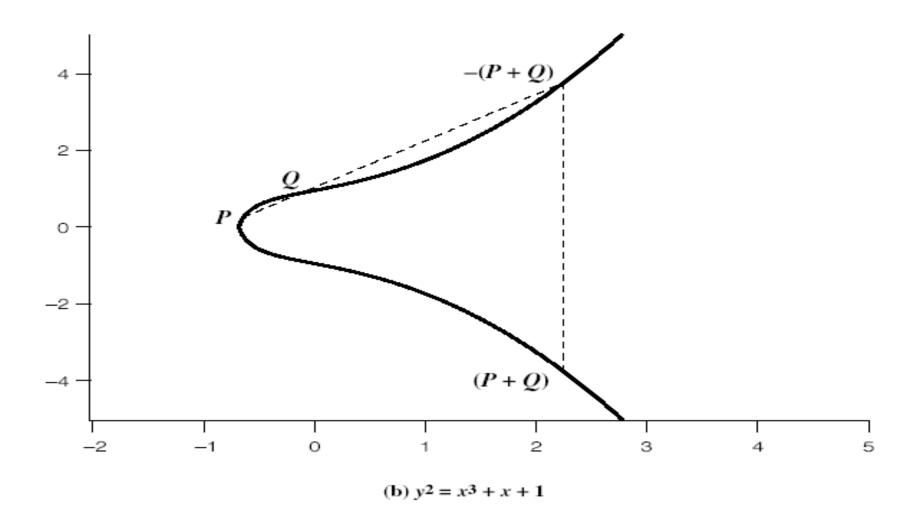
Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H)
 use either integer or polynomial arithmetic
 with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form
 - $-y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O
- have addition operation for elliptic curve
 - Q+R is reflection of intersection R
 - Closed form for additions
 - (10.3) and (10.4) P.300-301

Real Elliptic Addition Rule 1-5 in P.300



Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite integers
- have two families commonly used:
 - prime curves E_p (a,b) defined over Z_p
 - $y^2 \mod p = (x^3+ax+b) \mod p$
 - use integers modulo a prime for both variables and coeff
 - best in software
 - Closed form of additions: P.303
 - Example: P=(3,10), Q=(9,7), in $E_{23}(1,1)$
 - P+Q = (17,20)
 - 2P = (7,12)

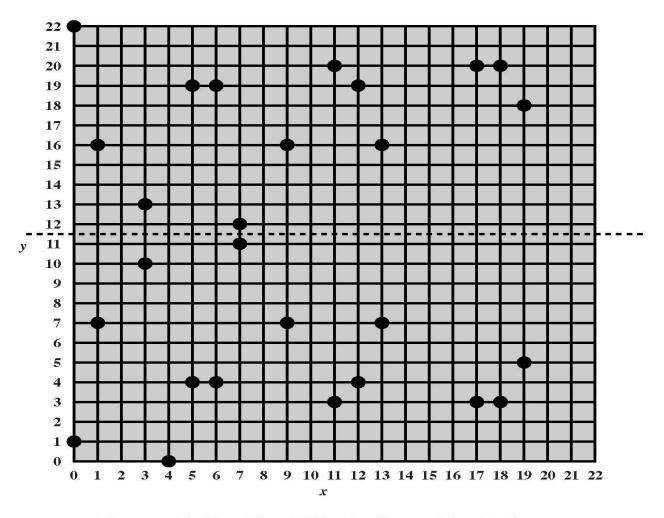


Figure 10.10 The Elliptic Curve $E_{23}(1,1)$

Finite Elliptic Curves

- have two families commonly used:
 - binary curves E_{2m} (a,b) defined over GF(2^m)
 - use polynomials with binary coefficients
 - best in hardware
 - Take a slightly different form of the equation
 - Different close forms for addition (P.304)

Elliptic Curve Cryptography

- ECC addition is analog of multiply
- ECC repeated addition is analog of exponentiation
- need "hard" problem equiv to discrete log
 - Q=kP, where Q,P are points in an elliptic curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E₂₃ (9, 17) (P.305)
 - k could be so large as to make brute-force fail

ECC Key Exchange

- can do key exchange similar to D-H
- users select a suitable curve E_p (a,b)
 - Either a prime curve, or a binary curve
- select base point G=(x₁,y₁) with large order n s.t.
- A & B select private keys n_A<n, n_B<n
- compute public keys: $P_A = n_A \times G$, $P_B = n_B \times G$
- compute shared key: K=n_A×P_B, K=n_B×P_A
 - same since K=n_A×n_B×G
- Example: P.305

ECC Encryption/Decryption

- select suitable curve & point G as in D-H
- encode any message M as a point on the elliptic curve P_m=(x,y)
- each user chooses private key n_A<n
- and computes public key P_A=n_A×G
- to encrypt pick random k: $C_m = \{ kG, P_m + k P_b \}$,
- decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

Example: P.307

Table 10.2 Computational Effort for Cryptanalysis of Elliptic Curve Cryptography Compared to RSA

Key Size	MIPS-Years
150	3.8×10^{10}
205	7.1×10^{18}
234	1.6×10^{28}

(a) Elliptic Curve Logarithms using the Pollard rho Method

Key Size	MIPS-Years
512	3×10^{4}
768	2×10^{8}
1024	3×10^{11}
1280	1×10^{14}
1536	3×10^{16}
2048	3×10^{20}

(b) Integer Factorization using the General Number Field Sieve

ECC Security

- relies on elliptic curve logarithm problem
- fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Summary

- have considered:
 - distribution of public keys
 - public-key distribution of secret keys
 - Diffie-Hellman key exchange
 - Elliptic Curve cryptography