Cryptography and Network Security

Third Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 16 – IP Security

If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death, together with the man to whom the secret was told.

—The Art of War, Sun Tzu

IP Security

- have considered some application specific security mechanisms
 - eg. S/MIME, PGP, Kerberos, SSL/HTTPS
- however there are security concerns that cut across protocol layers
 - would like security implemented by the network for all applications

IPSec Uses

IPSec

- general IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs, & for the Internet

Benefits of IPSec

- in a firewall/router provides strong security to all traffic crossing the perimeter
- is resistant to bypass
- is below transport layer, hence transparent to applications
- can be transparent to end users

IP Security Architecture

- specification is quite complex
- defined in numerous RFC's
 - incl. RFC 2401/2402/2406/2408
 - many others, grouped by category
- mandatory in IPv6, optional in IPv4

IPSec Protocols

- Authentication Header (AH)
 - Authentication
- Encapsulating Security Payload (ESP)
 - Confidentiality only
 - OR both

Security Associations

- a one-way relationship between sender & receiver that affords security for traffic flow
- defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier (AH or ESP?)
- has a number of other parameters
 - seq no, AH & EH info, lifetime etc
- have a database of Security Associations

Authentication Header

Authentication Header (AH)

- provides support for data integrity & authentication of IP packets
 - end system/router can authenticate user/app
 - prevents replay attack by tracking sequence numbers
- based on use of a MAC
 - HMAC-MD5-96 or HMAC-SHA-1-96
- parties must share a secret key

Transport & Tunnel Modes

Encapsulating Security Payload (ESP)

- provides message content confidentiality
- can optionally provide the same authentication services as AH
- supports range of ciphers, modes, padding
 - incl. DES, Triple-DES, RC5, IDEA, CAST etc
 - CBC most common

Encapsulating Security Payload

Transport vs Tunnel Mode ESP

- transport mode is used to encrypt & optionally authenticate IP data
 - data protected but header left in clear
 - can do traffic analysis but is efficient
 - good for ESP host to host traffic
- tunnel mode encrypts entire IP packet
 - add new header for next hop
 - good for VPNs, gateway to gateway security

Combining Security Associations

- SA's can implement either AH or ESP
- to implement both need to combine SA's
 - form a security bundle

Combining Security Associations

Summary

- have considered:
 - IPSec security framework
 - -AH
 - -ESP