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Abstract: This paper presents an experimental framework to describe the dynamic behavior of brushless 
direct current (BLDC) motors, which are frequently used in unmanned aerial vehicle (UAV) applications. 
Typically these applications require varying the angular speeds of motors which have to be precise parts of 
the dynamic model. The experimental setup is a motor/propeller pair equipped with an electronic speed 
controller. The substantial contribution of the paper is to incorporate the voltage drop caused by the 
consumed power and the alleviation of the modulation effect on the measured battery voltage. The 
consequence of the voltage drop is to obtain different angular speeds under same excitation inputs. A 
Neural Network (NN) based approach is chosen to handle this modeling issue. Levenberg-Marquardt 
algorithm is used to tune the adjustable parameters of NN, which is trained offline using the data observed 
through a set of experiments. Some experimental validation results are presented to justify the model. 

 

1. INTRODUCTION 

System identification has always been at the center of the 
feedback control system design (Juang 1994, Ljung 1999). 
Many techniques have been developed and the devised 
reliable models have been used for various engineering 
applications. In some cases, it is possible to collect data from 
the process yet no prior model structure is available, e.g. 
difference or differential equations. Such cases are generally 
difficult to cope with as the data may be expensive, noisy or 
even non-descriptive. Employing methods exploiting the 
numerical data become useful in such cases, e.g. as in the 
case of Narendra and Parthasarathy (1990). That study 
motivated many researchers and pioneered the use of 
connectionist structures with suitable adjustment schemes in 
feedback control systems. 

Artificial neural networks with very powerful learning 
schemes are particularly useful if the process under 
investigation is described by numerical data. In the literature, 
several structures are cited frequently, feedforward structure, 
recurrent structure, radial basis function structure and special 
structures containing Elman networks are just to name a few, 
(Haykin, 1994), and among which, feedforward neural 
network structure has become the most popular as it is able to 
solve nonlinear regression problems very efficiently. 
Needless to say, if there are many measurements, many 
inputs, and tightly coupled interactions between the variables 
involved, such a structure might be a good choice to explore 
as reported by (Negnevitsky and Pavlovsky, 2005; Chu et al 
1990; Mohamed and Koivo, 2004). One such application 
example is from the realm of aerial vehicles. Such systems 
are propulsion based and have a nonlinearities coming from 

the dynamics as well as the operating environment. A typical 
setup considers utilizing brushless DC motors, as they have 
very high torque properties, and electronic periphery with 
propellers to obtain the necessary forces and torques to 
maintain the motion (Pounds et al 2006). There are many 
research outcomes in the literature on brushless DC motor 
identification. Tipsuvanporn at al (2002) implements the 
identification of a brushless DC motor and error 
backpropagation method for adjusting the weights and biases 
is exploited. Rubaai and Kankam (1997) use dynamic error 
backpropagation and  Kim and Fok (2004) utilize Levenberg-
Marquardt algorithm to identify a sewing machine. Clearly 
these works constitute a subset showing the diversity in 
selecting the parameter update criteria in neural structures. 
Aside from these, once could choose conjugate gradient and 
its variants, or reinforcement learning, depending on the 
nature of the problem in hand (Haykin, 1994). 

This paper presents the modelling of propulsion transients 
and steady values by using a feedforward neural network 
structure and Levenberg-Marquardt optimization technique. 
Although this does not seem new, the alleviation of 
modulated nature of the Lithium Polymer battery voltage and 
based on its filtered value, the precise estimation of the thrust 
under the whole range of input values constitute the 
originality and contribution of this work. 

This paper is organized as follows: The second section 
introduces the test equipment; the third section presents the 
data acquisition hardware. Next section is devoted to the 
neural modelling technique, where the implementation results 
and validation of the model are discussed in detail. The 
conclusions are given at the end of the paper. 
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2. TEST EQUIPMENT 

2.1 dSPACE DS1104 R&D Data Controller Board 

DS1104 is a single-board PCI hardware that combines a data 
acquisition system with an independent processing system to 
implement digital control approaches. dSPACE system has 
breakout panel for connecting signal lines to the DS1104 
controller board. Breakout board consists of analog to digital 
converters (ADCs), digital to analog converters (DACs), 
serial communication interfaces (rs232, rs422, rs485), pulse 
width modulation (pwm) outputs, digital incremental encoder 
interfaces, digital I/O modules enabling the user to work with 
various types of data captured from real time environment. 
Operation of the DS1104 board is controlled through 
Matlab/Simulink. ControlDesk® software is used to download 
the devised models and approaches to the board, and enables 
creating layouts for interfacing with variables and parameters 
of the system. 

2.2 Electronic Speed Controller (ESC) 

Brushless speed controller functions as an interface between 
the motor and power supply. Controlled by the pwm signal 
generated by DS1104 board, the brushless ESC provides 
variable power to the motor allowing proportional speed 
adjustments. Unlike a brushed motor, brushless motors need 
special driving periphery to obtain the desired motion. The 
speed control appropriately powers each phase of the 
brushless motor in sequence, causing it to get actuated. This 
work deals with ESC hardware that has three motor wires, 
allowing it to connect to the standard three phase brushless 
DC motors. 

2.3 Brushless Direct Current Motor (BLDC Motor) 

BLDC motors have many advantages such as better speed 
versus torque characteristics, high efficiency, long operating 
life and noiseless operation when compared to brushed DC 
motors. Because of high torque characteristics at low speeds, 
lightweight nature and small sizes, brushless DC motors 
eliminate the need for gearing mechanisms or large sized 
motors to obtain certain level of torque values. For the long 
term goals of the work presented here, AXI 2212/34 
outrunner type brushless motor is utilized in the experiments. 

2.4 Propeller 

Peculiar to quadrotor type unmanned vehicles, counter 
rotating (CR) propeller pairs must be selected to provide -
inevitably nonnegative- control input which is a distinctive 
constraint when various dimensions of propellers are 
considered. For this reason, elimination has been 
accomplished with different dimensions of CR propellers 
considering the pwm signal vs. angular speed characteristics 
and 12×4.5 CR propeller is chosen, where the length is 12 
inches and the pitch is 4.5 inches per revolution. 

2.5 Lithium-Polymer Battery 

Lithium Polymer batteries have become the most preferable 
electric power source available for UAV research recently. 
The reason for this is that lithium battery packs are 
significantly lighter and have higher electrical capacity than 
its alternatives. These advantages make them ideal for long 
flight times entailing high currents, which is a necessary 
condition when the tasks of UAVs are considered. In our 
experiments, a 3 Cell 2000 mAh Lithium Polymer battery is 
used to power the ESC. 

2.6 Phototransistor-Infrared Emitter Diode Set-up 

A conventional approach to measure angular speed of a 
rotating motor is to utilize rotary encoders. In this 
experimental identification process, a practical way is chosen 
to capture angular speed data of the BLDC motor/propeller 
system. A Silicon NPN Phototransistor (BPW76) circuit is 
placed parallel to an Infrared Emitter Diode (IED) (L-
51XXIR1BC) circuit. Voltage difference, occurred at 
collector lead of phototransistor by rotating blades, is 
transferred to DS1104 hardware and the raw data is recorded. 
A post-processing algorithm is applied to row data to obtain 
angular velocity data of the BLDC motor/propeller pair. The 
details are discussed in the sequel. 

3. DATA ACQUISITION AND ELIMINATING THE 
MODULATION IN BATTERY VOLTAGE 

3.1 Voltage of Lithium-Polymer Battery 

Data acquisition hardware captures voltages under 10V 
indicating that a voltage divider is necessary to scale the 
battery voltage into the measurable range. Voltage data of 
experiments are read by DS1104 via an ADC Channel. As 
shown in Fig. 1, the battery voltage is severely modulated 
due to the electrical interactions in between the driving 
circuitry. Since the thrust is relevant to the angular speed and 
angular speed is relevant to the battery conditions, it is of 
crucial importance the current electrical state of the battery. 
Clearly the pwm profile given in Fig. 2 causes a decrease in 
the measured voltage yet there seems a meaningful mean 
value that could be used for our purposes. The figure 
describes the central problem addressed here. The digital 
filter given by (1) is exploited to obtain a useful information 
quantifying the instant value of the battery voltage. 

4 1( ) 4.9975 10
0.9995
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− +

= ×
−

 (1)

According to the results in Fig. 1, it is also obvious that when 
pwm signal is a constant value (see Fig. 2), filtered voltage 
tends to decrease due to power consumption. A more precise 
graph is given in Figs. 3-4 showing the decrease of battery 
voltage under the same pwm level. Higher pwm levels lead to 
quicker discharge of the energy yet lower pwm levels cause 
slower discharge pictures. 



 
 

     

 

0 10 20 30 40 50

10.5

11

11.5

12

12.5

Time (sec)

V
ol

t

Modulated (black) and Digitally Filtered (yellow) Voltage

0 10 20 30 40 50

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Time (sec)

pw
m

 L
ev

el

Pulse Width Modulation Signal

 
Fig. 1: Voltage of Battery and output of digital filter  Fig. 2: The applied pwm signal 
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Fig. 3: Battery consumption when pwm level is fixed Fig. 4: Change of the angular speed when pwm signal is kept 
constant 
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Fig 5: The pwm signal sweeping the whole applicable range  Fig. 6: The corresponding angular speed graph 
 
The variation in the battery voltage due to the changing levels 
of pwm input and the current energy conditions of the battery 
is a critical issue that needs to be incorporated into the 
mathematical model with care. 

3.2 Pulse Width Modulation Signal 

In generating the necessary pulsing to excite the ESC system, 
regardless of the pwm frequency, duty cycle varies between 



 
 

     

 

1ms (pwm level is 0.05) and 2ms (pwm level is 0.10). In Fig. 
5, a pwm profile changing from 1ms to 2ms linearly is 
depicted and in Fig. 6, the angular speed observed in 
response to this pwm profile is shown. The motion starts 
when pwm level reaches 0.055 and the nonlinearity at the 
beginning of angular speed graph corresponds to start of 
rotary motion. In Fig. 7, the driving scheme of AXI 2212/34 
outrunner type BLDC motor with ESC is explained. 
 

Fig. 7: 50 Hz pwm signal 

3.3 Angular Speed of BLDC Motor/Propeller 

Since the thrust produced by rotating propeller corresponds to 
the control signal, the static relationship between the angular 
speed w and the thrust f should be determined experimentally. 
This reduces to finding out the b coefficient that is intrinsic to 
every particular BLDC motor and propeller pair. The 
coefficient also depends on aerodynamic circumstances like 
density of air. 

 

Fig. 8: Analytic relationship between thrust & angular speed 

Phototransistor-IED circuit is prepared to measure angular 
speed of brushless motor/propeller system, which is 
significantly cheaper than rotary encoders that may load the 
motor and cause inexact measurements of angular speeds. To 
be able to reach the angular speed information utilizing such 
a simple hardware, the edges of the propeller have been 
enumerated such that the trailing and leading edges are 
identified by numbers as shown in Fig. 9. Such a numbering 
scheme leads to the numbering of rising and falling edges of 
the signal collected from the circuit shown below. 

 

Fig. 9: Phototransistor-IED setup 

A typical view of the captured pulses is shown in Fig. 10, 
where the numbers shown in Fig. 9 and Fig. 10 have same 
physical meanings. Since the angular speed is a time varying 
quantity, reading of the pulses provided by the circuit shown 
in Fig. 9 should be synchronized with a reference time index. 
Clearly 2π radians of turn (one tour) will cause observation 
of the edges 1, 2, 3 and 4, and the fifth edge will form a value 
of angular speed at that particular instant. After the first value 
is calculated, each 4 edges of blades preventing and allowing 
infrared triggering the base terminal of phototransistor creates 
an angular speed information at that instant of time. Applying 
a synchronization algorithm to row data recorded in DS1104 
via ADC, angular speed data is calculated by post-processing 
in Matlab® environment. 

 

Fig. 10: Pulses generated by rotating propeller blades 

4. NEURAL NETWORK BASED MODELING 

Due to powerful mapping capabilities, neural networks have 
had a profound effect on the applications of data based 
modeling applications. This particular property is mainly 
because of the fact that real systems have many variables, the 
variables involved in the modeling process are typically 
noisy, and the underlying physical phenomenon is generally 
nonlinear in nature. Due to the inextricably intertwined nature 
of the describing differential (or difference) equations, which 
are not known precisely, it becomes a tedious task to see the 
relationship between the variables involved. In such cases, 
black box models, such as neural networks, fuzzy logic or the 
methods adapted from the artificial intelligence come into the 
picture as tools representing the input/output behavior 
accurately. In what follows, we describe briefly the 
Levenberg-Marquardt training scheme for adjusting the 
parameters of a neural structure (Hagan and Menhaj, 1994). 
Since the algorithm is a soft transition in between the 
Newton’s method and the standard gradient descent, it very 
quickly locates the global minimum (if achievable) of the 
cost hypersurface, which is denoted by J in (2). 

( )( )2
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where yp denotes the response of the single output neural 
network, dp stands for the corresponding target output. In (2), 
φ is the set of all adjustable parameters of the neural structure 
(weights and the biases), and u is the vector of inputs which 
are selected according to the following procedure. 

In devising the dynamic model of a system by neural models, 
it is of substantial importance to choose a good set of inputs. 
For synthetic systems, one simply chooses the inputs and the 



 
 

     

 

states as the inputs to the neural model, and predicts a 
function of the state variables. Practically, we know that the 
required pwm level changes with the battery voltage. 
Secondly, we utilize the shifted and scaled pwm signal as 
another input and thirdly, to capture the transients of the 
thrust, we filter the pwm signal by a first order filter of time 
constant 0.25 and apply its output as the third input. The 
output of the neural model is a variable from which the 
angular speed is obtained. One can of course augment the 
neural network input with delayed values of these variables 
yet it is useless to prefer such an approach as our ultimate 
goal is to utilize this model on a lightweight UAV carrying 
limited computing facility. 

The training architecture of the NN structure is illustrated in 
Fig. 11 and the adjustment strategy, the Levenberg-
Marquardt update law is given in (3). 

 

Fig. 11: NN structure 
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where, μ is the regularization parameter, E(t)=[e1 e2 … eP]T is 
the vector of errors described as ei=di-yi(u,φ) i=1,2,…,P, 
where P is the number of training pairs and Ψ is the Jacobian 
given explicitly by (4). 
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where there are N adjustable parameters within the vector φ. 
According to the update law given in (3), we carried out 
several experiments to collect training data. These contain the 
pwm profiles of staircase and triangular (ramp) structure. 
During the training, we used 62050 patterns and another 
62050 are reserved for testing routine, which stops the 
training at an appropriate instant beyond which the 
memorization phenomenon emerges. It should be noted that 
the training and testing data sets are not identical. The neural 
model has 3 inputs, 25 hidden neurons and single output, 
which is linear. The structure is determined experimentally. 
The hidden nodes have hyperbolic tangent type nonlinear 
activation functions and before the training starts, the training 
data and the testing data are scaled and shifted to fit within 
the range ±1. The evolution of the cost J is depicted in Fig. 
12, where it is seen that the training takes about 250 epochs. 
The developed model has been checked with a chirp signal 
shown in Fig. 13. The top left subplot of the figure shows a 
noisy pwm input of chirp type. This signal was never 
encountered during the training cycles and it is a likely input 

signal for a real time flight experiment of a UAV. The 
filtered battery voltage is depicted in the bottom left subplot, 
which emphasizes that the filter works perfectly to extract a 
meaningful value. The top right subplot shows the angular 
speed predicted by the neural network and the software 
counting the edges of the propeller experimentally. Finally, 
the bottom right subplot of the figure illustrates the difference 
between these two quantities. Clearly, when the frequency of 
the pwm signal increases, the model performs poorly, 
conversely, for the slowly changing pwm profiles, the model 
predicts the angular speed precisely. Considering the physical 
conditions of a UAV, we conclude that the performance 
observed by the use of a neural model with described inputs 
is satisfactory. 
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Fig. 12: Decrease of the training and checking errors 
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Fig. 13: Experimental results validating the neural model 

5. CONCLUSIONS 

An offline training of neural networks for the identification of 
a BLDC motor/propeller actuator system has been presented 
in this paper. Obtained model has been verified for number of 
test data. Graphical results show that the analytic model is 
capable of representing the transient and steady vales of the 



 
 

     

 

propulsion accurately. The critical issue addressed in this 
paper is the use of battery voltage as a parameter influencing 
the performance and filtering of the modulation effect. This is 
accomplished through the use of a digital filter and a simple 
neural network structure is chosen to discover the relevant 
map. The results have shown that the neural model performs 
adequately. 

The authors aim at utilizing the mathematical model obtained 
here for command and control of a quadrotor type UAV. 
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