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Abstract This paper focuses on modeling and control of a quadrotor type unmanned 
aerial vehicle (UAV). Low level control issues are addressed, the derivation of the 
dynamic model is presented, transient and steady state behavior of the propulsion due to 
motors are elaborated by the aid of artificial neural networks, and a model is developed. 
Several simulation works have been discussed. These include proportional integral and 
derivative (PID) control scheme, sliding mode control (SMC), backstepping technique 
and feedback linearization. A comparison of the approaches is presented in terms of the 
tracking precision, applicability of control signals and the qualities of the transient 
response. 
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1 Introduction 

The main motivation of UAV research is the diversity of their applications; especially the 
low-cost manufacturability and lightweight structure make them appealing for dangerous 
missions. Vertical Take-off and Landing (VTOL) vehicles are flying robots that can 
hover, take off and land vertically without requiring runway or landing field. The 
quadrotor type UAV is a typical VTOL vehicle studied several times in the past. Since the 
high level functions such as video transmission, object tracking and surveillance depend 
heavily on the low level command and control precision, this work is devoted to the low 
level control issues on a quadrotor type vehicle being developed at UAV Laboratory of 
TOBB ETU. Since the number of the control inputs is less than the number of degrees of 
freedom, such type of UAVs are called underactuated mechanical systems. The nonlinear, 
multivariable and coupled characteristics make the control of a UAV a tedious task. 
Several examples of trajectory tracking controllers, which are inevitably nonlinear, for 
quadrotors in continuous time have been investigated in the literature [1-5]. Bouabdallah 
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et al propose SMC, backstepping techniques and apply these methods successfully on a 
lightweight quadrotor system, [6]. Their work suggests using backstepping control 
technique as it is capable of controlling the orientation angles in the presence of relatively 
high perturbations properties. In [7], Kis et al implement backstepping control approach 
on a quadrotor type UAV on an embedded computer. Fang et al investigate feedback 
linearization and continuous time SMC for a quadrotor UAV in [8] and emphasize that 
continuous SMC is preferable due to the associated robustness against uncertainties and 
disturbances. The cited references show the state-of-the art of the UAV design concept 
and the associated low level as well as high level control concepts involving motor 
control, vision, navigation, surveillance, tracking, autonomous behavior etc. 

In this paper several linear and nonlinear control schemes are used to stabilize the 
attitude of the vehicle developed at the UAV laboratory. The methods considered are PID, 
SMC, backstepping control and feedback linearization based control. The three term 
nature of PID scheme enables the designer to prototype the feedback control rapidly. The 
philosophy of the scheme is to construct a control signal based on the current value of the 
error, its tendency, computed via the derivative term, and its accumulated value, 
computed via the integral term. Several approaches to improve the performance of PID 
controllers are available; one approach is to utilize integrator antiwindup, [9,10]. 
Although the PID scheme gives a clear insight to the designer, the maximum performance 
with such an approach is generally limited and processes like the one here demands more 
sophisticated approaches leading the designer to explore the nonlinear techniques. Sliding 
mode control is a frequently used approach employing switching based discontinuity and 
displaying robustness to some extent. The philosophy of the SMC approach is to create an 
attractor in the phase space spanned by the error and its derivatives such that the selected 
subspace is stable and its attractor is at the origin. To paraphrase, once the trajectories are 
constrained to stay on this particular subspace, they eventually end up with the 
convergence to origin. It is interesting to note that this subspace, called switching 
hypersurface, is the boundary of a two sided decision mechanism imposing sign like terms 
in the control signal [11,12]. The major advantage of exploiting this scheme is its 
robustness against disturbances and modeling errors, which are the typical issues in the 
low level control of actuation mechanism of UAVs, [13]. Another method we consider in 
this work is backstepping method, [14,15]. The backstepping design introduces virtual 
variables and divides the design procedure into steps. Every step has its own Lyapunov 
function and the final stage of the design assumes the sum of all those Lyapunov functions 
and proves the negativitiy of its time derivative, [16]. Finally, we focus on feedback 
linearization technique, which is a standard approach in nonlinear control applications. 
The approach involves coming up with a transformation of the nonlinear system into a 
linear system via nonlinear feedback, [17-19]. Once the linear model is obtained, the 
remaining issue is to shape the closed loop by appropriately selecting the feedback gains. 

Although the dynamic modeling of quadrotor is studied by many researchers, [20-23], 
the issues related to the propulsion modeling is not highlighted. To be more explicit, in 
simulation, the controller produces the control signals and these are applied to the inputs 
of the dynamic model, however, the physical system inputs are pulse width modulated 



(pwm) signals. Therefore, the controller side and the model side must be separated 
properly. This paper focuses on such a modeling issue together with the limited power 
utilities available on the vehicle. This is one critical contribution of the current study. 

This paper is organized as follows: The second section derives the dynamic model of 
the quadrotor we build and presents its physical parameters. The third section emphasizes 
the propulsion dynamics and its modeling by the use of artificial neural networks. This 
section enables to improve the dynamic model for simulation purposes, and next, we 
consider the PID, SMC, backstepping and feedback linearization techniques in turn. A 
comparison of the approaches in presented at the end of the paper. 

2 Dynamic Model of the Quadrotor UAV 

Derivation of dynamic model of a quadrotor type UAV is the central part of the low level 
control implementation. In this part, derivation of the dynamic model of the quadrotor 
UAV is considered. The vehicle can be represented as a four rotor body as shown in Fig. 
1. 
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Fig. 1 Quadrotor configuration and the choice of coordinate frames 
 

The rotor rotation directions are opposite in order to balance torque produced by rotors 
therefore rotor 1 and rotor 3 are rotating in the counter-clockwise direction while rotor 2 
and rotor 4 rotate in the clockwise direction. Altering the angular rotor speeds causes 
motion in the Cartesian space. Considering the hover state, a balanced increase/decrease 
in the thrusts causes change in the altitude. Varying the rotor 1 and rotor 3 angular speeds 
inversely proportional will result a motion in x direction because of the change in pitch 
angle. Varying the rotor 4 and rotor 2 angular speeds inversely proportional will result a 
motion in y direction because of the change in roll angle. Angular speed difference of four 
rotors will result drag torque and yaw motion. Quadrotor UAV is modeled under the 
following assumptions. 
 



• The quadrotor structure is rigid and symmetrical 
• The quadrotor center of mass and body-fixed frame coincides 
• Thrust and drag forces are proportional to the square of the propellers’ speeds 
• Ground effect is neglected 
• The propellers are rigid 
 

Suppose that E denotes earth fixed frame and B denotes body fixed frame which can be 
seen in Fig. 1, the airframe orientation is denoted by R matrix. R stands for the rotation 
from B to E. The dynamic model of quadrotor is derived from Newton-Euler approach. 
The dynamic equations of quadrotor can be written as follows [24]. 
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With the diagonal inertia matrix 3 3I R ×∈ , ω is the body angular velocity, V  is the body 
linear speed vector. The dynamics in (1) can be explained as follows: 

vζ =  (2) 

1
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m
= − +  (3) 

( ) Tsk R Rω =  (4) 

a gI Iω ω ω τ τ= − × + −   (5) 

where the z = [x  y  z]T denotes the position of the center of mass of the quadrotor B 
relative to E and describing linear motion of vehicle, v is a vector including the linear 
velocities of the body frame. Translational dynamics derived from Newton’s second law 
of motion and gez is gravitational acceleration in z axis where ez=[0  0  1]T denotes unit 
vector in earth-fixed frame in (3). T is the total thrust force generated by four rotors and m 
is the mass of the vehicle. The matrix R, given in (6), is an orthogonal homogeneous 
transformation matrix defined using Euler angles φ (roll), θ (pitch) and Ψ (yaw) [25]. R is 
used to transfer forces acting on the vehicle into earth fixed frame. The derivative of the 
rotational matrix to the rotational matrix by a matrix known as the Skew Symmetric 
Matrix in (4) where Ω represents the angular velocity of the craft relative to the body 
frame axis and x denotes the cross product of the two vectors. V represents any real 
vector. In (5) controllable inputs are available based on Newtonian relationship. Torque is 
equal to inertia multiplied by rotational acceleration. Torques present in the quadrotor is 
formulated in (5). 



( , , )

c c c s s s c c s c s s

R s c s s s c c s s c s c

s c s c c

ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

ψ θ ψ θ φ ψ φ ψ θ φ φ ψ

θ θ φ θ φ

φ θ ψ

⎡ ⎤− +
⎢ ⎥

= + −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (6) 

Expression in (3) can be written as in (7), where m stands for the mass of the vehicle. 
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In (7) Fb is the result of the forces generated by four rotors. Ti is thrust generated by each 
rotor. Denoting ω as the angular body rate of the airframe in body-fixed frame, angular 
body rate and Euler angle parameterization relationship can be given as in (8). 
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The quadrotor displays low amplitude angular motions letting us consider the small angle 
approximation for the angular body rates Small Angle Approximation (SAA) has been 
considered during dynamic modeling studies. Bouabdallah et al [6] find simulation test 
results reasonable by modeling with SAA. Hoffman et al [26] create a dynamic model 
based on SAA. Another utilization of SAA is presented in [27] and satisfactory results are 
found, i.e. T[ ]ω φ θ ψ= and the rotational dynamics of the quadrotor are described in (5). 
The gyroscopic effect due to rigid body rotation is given by –ω ×Iω  which is given in (9). 

T
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τg is gyroscopic effect due to propeller orientation change that needs to be handled 
carefully, [14, 15]. τg is defined as: 
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Jr is the propeller inertia, ω is propeller angular speeds. The gyroscopic effect caused by 
propellers only effects the dynamics of the vehicle during roll and pitch motion which can 
be seen from equations above. The control moments denoted by τa, which are produced 
by the actuation periphery, is given in (11).  
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With these terms, the complete dynamics of the vehicle is described in (12). 
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where m is the mass of the vehicle and the variable Ωd seen in roll and pitch dynamics is 
defined as in (13). With this in mind, the control inputs U1, U2, U3 and U4 seen in (12) are 
defined in (14), where Ωi is the angular speed (in radians per second) of the i-th rotor. 
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Defining T[ ]X φ φ θ θ ψ ψ=  as the state of the attitude dynamics (i.e. 

1 2 3 4 5 6, , , , ,x x x x x xφ φ θ θ ψ ψ= = = = = = ), and T
1 2 3 4[ ]U U U U U=  as the input vector, 

the state space representation of the dynamics can be given by ( , )X f X U=  where 



2

1 4 6 2 4 3 2

4

4 2 6 5 2 6 3

6

7 4 2 8 4

( , )

d

d

x
p x x p x p U

x
f X U

p x x p x p U
x

p x x p U

⎡ ⎤
⎢ ⎥+ Ω +⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− Ω +⎢ ⎥

⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (15) 

p1=(Iyy−Izz)/Ixx, p2=Jr/Ixx, p3= l/Ixx, p4=(Izz−Ixx)/Iyy, p5= Jr/Iyy, p6=l/Iyy, p7=(Ixx−Iyy)/Izz, p8=1/Izz. 

Table 1 Physical Parameters of Quadrotor UAV 

Total weight of the vehicle m 0.800 kg 
Gravitational acceleration g 9.81 kg/m2 

Arm length of the vehicle(from c.g. to tip) l 0.3 m 
Moment of inertia along x axis Ixx 15.67×10-3 kgm2 

Moment of inertia along y axis Iyy 15.67×10-3 kgm2 

Moment of inertia along z axis Izz 28.34×10-3 kgm2 

Thrust factor b 192.32×10−7 Ns2 

Drag factor d 4.003×10−7 Nms2 

Propeller inertia Jr 6.01×10-5 kgm2 

3 Experimental Modeling of the Propeller Transients 

The dynamical model of a UAV like the one considered here could be obtained using the 
laws of physics and the approaches of Newtonian and/or Lagrangian dynamics. If the 
control inputs needed to observe a desired motion were immediately available, then it 
would be more straightforward to proceed to the closed loop control system design 
without worrying about the effects of the actuation periphery, which introduces some 
constraints shaping the transient and steady state behavior of the propulsion. Indeed, the 
real time picture is more complicated as the vehicle we develop is electrically powered 
and battery voltage is reducing as time passes. To cope with this difficulty one has to ask 
two questions and develop the corresponding blocks of the dynamic model for simulation 
and real time implementations: 
• Given the battery voltage and the angular speed of the propeller (Ωi), what would be 

the pwm value? The block answering this question is definitely a part of the 
controller as it computes the necessary pwm levels to be applied to the electronic 
speed controllers (See Stage 2 of Fig. 2) 



• Given the battery voltage and the pwm level, what would be the angular speed of the 
propeller? Clearly the block answering this question is a part of the dynamic model 
and it is needed during the simulation work (See Stage 3 of Fig. 2). 

The reason why we would like to step down from Uis to the pwm level and step up 
from pwm level to Uis is the fact that brushless DC motors are driven at the pwm level 
and we have to separate the dynamic model of the quadrotor UAV and the controller by 
drawing a line exactly at the point of signal exchange occurring at pwm level. Use of 
neural networks facilitates this in the presence of voltage loss in the batteries. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Conversion of control signals U1,…,U4 to those entering the dynamic model of the vehicle 
 

In Figs. 3-4, the neural models for establishing the handshaking between the controller 
and the dynamic model are depicted. Clearly, proper functioning of these models entails 
the knowledge of b and d, the thrust coefficient and the drag coefficient, respectively. In 
Fig. 5(a), a six level stepwise pwm signal is shown. The signal sweeps the allowable 
range and endures sufficiently to observe the steady response is obtained, which are 
shown in Fig. 5(b). Thirty five consecutive experiments have been carried out with the 
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same Lithium Polymer battery and the simultaneous time traces have been recorded for 
post processing. 

Obviously, as the experiment with the pwm profile in Fig. 4(a) is repeated, the angular 
speed of the rotor reduces so does the corresponding lift forces and a family of curves is 
obtained. Fig. 5(c) shows that the steady values of the lift forces for every distinct level of 
the pwm signal decreases as the experiments are repeated. Finally, the instant voltage read 
from the multimeter is recorded and depicted in Fig. 5(d). Clearly, the powering issues are 
critical in planning the mission and related navigation tasks for UAVs like the one we 
consider here. This picture is a good indication of extending the dynamic model and the 
feedback controller to where the effect of the decreasing battery voltage is addressed 
appropriately. 

It is now clear why the use of an interface like artificial neural networks is beneficial 
but the filters seen in Figs. 3-4 need clarification. If a step change occurs in the pwm 
signal as shown in Fig. 5(a), the propulsion is observed as shown in Fig. 5(b), every step 
of which is more like the response of a first order system. The neural network receives the 
output of a first order filter 4/(s+4) as an auxiliary input to realize the transient correctly. 
After the simultaneous time traces are obtained, we utilize the Levenberg-Marquardt 
optimization technique to accomplish the training of the neural network. Coming to the 
other filter, one has to notice that the measured battery voltage is modulated severely as 
shown in Fig. 6(a) and in order to infer a good average value, the filtering of it is 
unavoidable. In Fig. 6(b), the pwm signal is shown for this experiment. After many 
experiments, we choose the filter 10/(s+10), which yields the best results. In the 
experiments, we discretize the filter with Tustin approach and implement it on the DSP 
hardware. 

 
 
 
 
 
 
 
 
Fig. 3 Neural network component of the controller, stage 2 in Fig. 2. 
 
 
 
 
 
 
 
 
Fig. 4 Neural network component of the dynamic model, stage 3 in Fig. 2.  
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Fig. 5 The effect of the decrease in the battery voltage on the steady value of the lift force. The 
propeller has dimensions 12×4.5. 
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Fig. 6 (a) The modulated battery voltage and the filtered value of it. (b) pwm signal for this 
experiment. 
 

The test bed includes a torque meter which is essentially a strain gauge, measuring the 
drag force generated by the propeller to derive the drag coefficient, d. The mechanism is 



placed on a scale and RPM sensor is mounted appropriately to obtain the thrust generated 
by the propeller at distinct pwm levels letting us compute the thrust coefficient, b. The 
experimental results to determine these coefficients are summarized in Table 2. The 
methodology to find out the relationship between voltage difference and torque is given as 
follows: When the electronic speed controller receives a particular pwm signal, the motor 
is actuated and a thrust in the downwards direction is created, and this leads to an 
increment in the display of the scale as the angular speed of the rotor increases. By the use 
of a torque meter whose output is associated with a difference amplifier lets us obtain 
torque produced by propeller. The test bed is illustrated in Fig 7. 
 

.       

Fig. 7 (a)The experimental setup to collect data for b and d computation (b) block diagram for setup 

Table 2 The experimental results leading to the average values b=192.32×10−7 and 
d=4.003×10−7 

pwm 
Signal 

pwm 
Percentage 

Torque 
(Nm) 

Thrust 
(N) 

Propeller 
speed 
(rad/sec) 

Thrust 
Coefficient 
(b) 

Drag 
Coefficient 
(d) 

0.060 20% 0.013259 0.57879 169 202.65×10-7 4.639×10-7 
0.062 24% 0.018835 0.87309 206 205.70×10-7 4.432×10-7 
0.064 28% 0.024411 1.09872 232 204.10×10-7 4.532×10-7 
0.068 36% 0.035563 1.64808 285 202.80×10-7 4.378×10-7 
0.070 40% 0.041139 1.98162 324 190.78×10-7 3.911×10-7 
0.072 44% 0.046715 2.29554 350 190.56×10-7 3.834×10-7 
0.074 48% 0.052291 2.61927 374 187.6×10-7 3.738×10-7 
0.076 52% 0.056473 2.92338 401 181.8×10-7 3.507×10-7 
0.078 56% 0.063443 3.22749 425 178.68×10-7 3.512×10-7 
0.080 60% 0.069019 3.39426 420 192.41×10-7 3.912×10-7 
0.082 64% 0.073201 3.65913 435 193.32×10-7 3.863×10-7 
0.085 70% 0.080171 3.98286 460 188.22×10-7 3.788×10-7 

With average b=192.32×10−7 and average d=4.003×10−7 the neural structure shown in Fig. 
4 is set by selecting a linear output neuron, single hidden layer with hyperbolic tangent 
type neuronal activation functions. A total of 10 hidden neurons are utilized and a pwm 
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profile that has not been used during the training is presented to the neural network. The 
results are shown in Fig. 8, where a chirp signal is used as the pwm signal and the 
associated prediction procedure is executed. Clearly the neural model predicts the real 
time measurements of the angular speed and functions as an integral part of the dynamic 
model of the quadrotor UAV. Although not given here due to the space limit, the neural 
model predicting the pwm level (See Fig. 3) is trained and incorporated into the 
simulation model. 
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Fig. 8 The results for the neural model predicting the angular speed in the presence of battery 
voltage changes. 
 

The discussion presented so far aimed at building the realistic dynamic model of a 
quadrotor UAV that properly handles the changes in the battery voltage. In what follows, 
we present the nonlinear control simulations utilizing these handshaking tools of dynamic 
models. 

4 Attitude Control via PID Control Technique 

The purpose of the PID controller is to force the Euler angles to follow desired 
trajectories. We consider the hover condition and set U1=mg. The objective in PID 
controller design is to adjust the gains to arrive at an acceptable degree of tracking 
performance in Euler angles. The PID controller for the φ dynamics can be given as 



2 ( ) ( )dp d i d dU K K t Kφ φ φφ φ φ φ φ= − + − +∫  (16) 

which implements the derivative kick to avoid adverse effects of the possible sudden 
changes in the command signal. More explicitly, when a step change in φr occurs, the 
derivative term in the conventional sense would produce a very large value and this would 
result in undesired spikes in the control signal. To remedy this problem, the derivative 
operator is applied solely to the output of the process instead of error signal, which is 
given in (16). In order to design the PID controllers, nonlinear rotational dynamics of 
quadrotor are linearized around zero, which are given by (17). 
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The coefficients chosen are Kpφ=2.14, Kiφ =0.13, Kdφ =0.66. For the pitch dynamics, we set 
the same values and for the yaw dynamics, KpΨ=0.02, KiΨ =0.01, KdΨ =0.01 are selected. 
Angular measurement noise with 1e−5 rad variance is added to make the simulations 
more realistic. 
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Fig. 9 The tracking results for the selected PID controllers. 
 
The results of PID scheme are shown in Figs. 9-10, where it is seen that the attitude 
stabilization is obtained with satisfactory precision. Initial errors are compensated fairly 
quickly and the controller produces fairly smooth control signals having reasonable 
magnitudes. The controller tries to maintain the desired attitude by producing smooth 
control signals, whose initial behaviors are shown in the top row of Fig. 10, and as an 
example, the behavior around t=50 sec. are depicted in the bottom row of the same figure, 
all indicating acceptable time trends. 
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Fig. 10 The control signals for the PID control scheme U1=7.8448 Newtons. 
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Fig. 11 Behavior in the Cartesian space. 

5 Attitude Control via Sliding Mode Control Technique 

Sliding mode control is a well-established nonlinear control technique that displays 
certain degree of robustness against uncertainties and disturbances. Although it is 
vulnerable to noise and it suffers from chattering phenomenon, several approaches have 
been proposed to overcome these difficulties without giving concessions from the 
robustness property of the scheme. The behavior is composed of two phases, first the error 
dynamics is guided toward a predefined subspace of the state space, which we call the 



sliding manifold, and the behavior during this phase is called the reaching phase. This 
phase is known for the high magnitude control efforts that may undergo saturation 
sometimes. Second is the sliding phase, during which the error vector obeys the 
dynamical implications of the analytic description of the locus itself, which is stable by 
design and the error terminates at the origin inevitably. The control scheme takes its name 
from the latter dynamic behavior and is called sliding mode control. 

Let eφ=φ−φd be the error in roll dynamics. Sliding manifold for the roll dynamics can 
be written as s e eφ φ φ φλ= + . When sφ = 0 is reached at time t0, the solution for t0 is obtained 
as 0 0( ) ( )exp( ( ))s t s t t tφ φ φλ= − − . Now consider the Lyapunov function candidate in (18). 

2( ) / 2V s sφ φ=  (18) 

If the time derivative of the Lyapunov function candidate in (18) satisfies 
| |s s k sφ φ φ φ< −  with 0kφ > , then all initial conditions of the roll error is guided toward the 

loci characterized by sφ=0. To maintain | |s s k sφ φ φ φ< −  the control signal is chosen as 
follows to drive the roll angle to desired trajectory. 

( )2 1 4 6 2 4 1 2 1 1
3

1 ( ) ( )d d dU p x x p x x x x k sign s k s
p φ φ φ φλ= − − Ω + − − − −  (19) 

where 1dx  denotes desired angular roll rates, 1dx  denotes desired angular roll 
acceleration. In order to avoid chattering, during the implementation stage the sign 
function is approximated as ( ) / (| | )sign x x x ε≅ +  with a parameter ε determining the 
sharpness around s=0. Next we design U3 and U4 by following a similar design procedure 
yielding  

( )3 4 2 6 5 2 3 4 3 2
6

1 ( ) ( )d d dU p x x p x x x x k sign s k s
p θ θ θ θλ= − + Ω + − − − −  (20) 

( )4 7 2 4 5 6 5 3
8

1 ( ) ( )d dU p x x x x x k sign s k s
p ψ ψ ψ ψλ= − + − − − −  (21) 

Based on the aforementioned discussion, it is straightforward to see that λθ, kθ, k2 ,λΨ, 
kΨ, k3 are positive valued design parameters. In Table 3, the parameters of the SMC 
scheme and those of the simulations are given. In choosing the parameters determining 
the response of the vehicle, the real system’s behavior is considered in order to avoid 
claiming impossible maneuvers. 

The results of the simulations of SMC scheme are illustrated in Figs. 12-15. Although a 
similar tracking performance is observed with PID scheme, the switching nature of the 
control law enforces the motion to take place in the vicinity of the sliding manifold. This 



is reflected naturally to phase space behavior and the control signals shown in Figs. 13 
and 14, respectively. Clearly the ranges of the control signals are acceptable as well as the 
local fluctuations required to maintain the desired motion. The initial errors are quickly 
attracted by the sliding manifold, as seen in Fig. 13, and once got trapped, the errors stay 
there forever. The figure also provides the associated time values of the extreme points in 
the graphs. These time values are also adequate for a real time application of a sliding 
mode controller on a vehicle like the one we study here. 

Table 3 Simulation Parameters for the Sliding Mode Control Scheme 

Simulation Time T 200 sec 
Simulation Step Size ∆t 0.02 sec 
Slope parameters λφ, λθ, λΨ 1.00 
Angular measurement noise 
variance ∆φ, ∆θ, ∆ψ 1e−5 rad 

Reaching law parameter kφ, kθ, kΨ 0.20 
Reaching law parameter k1, k2, k3 0.10 
Sign function smoothing parameter ε  0.10 
Initial values of Euler angles 0( )tφ , 0( )tθ , 0( )tψ  0.3 rad 
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Fig. 12 The tracking results for the SMC scheme. 
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Fig. 13 Phase space behaviors of roll, pitch and yaw angles. 
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Fig. 14 The control signals for the SMC scheme U1=7.8448 Newtons. 
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Fig. 15 Behavior in the Cartesian space. 
 
A natural question here would focus on the robustness of the closed loop control system. 
In order to justify the robustness of SMC scheme, we design the controller for m=800 
grams and repeat our tests for m=750 grams. The results are illustrated in Figs. 16-19 
demonstrating virtually the same performance seen in Figs. 12-15. 
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Fig. 16 The tracking results with sliding mode control scheme. 
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Fig. 17 The control signals for the SMC scheme U1=7.8448 Newtons. 
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Fig. 18 Phase space behaviors of roll, pitch and yaw angles. 
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Fig. 19 Behavior in the Cartesian space. 

5 Attitude Control via Backstepping Control Technique 

Backstepping control scheme is based on the implementation of a control law designed 
via introducing virtual states and nested development of the stages. The dynamics of the 
quadrotor system considered in this paper is suitable for backstepping controller design 
and the details follow. Define first virtual state and derivative of the virtual state as, 

1 1 1dz x x= −  and 2 2 1 1dz x xα= − − , respectively. Choosing 2
1 1 / 2V z=  as the Lyapunov 

function candidate for the first stage, the time derivative of V1 is obtained as 
( )1 1 2 1V z z α= + . If 1 1 1: k zα = −  is selected, then we have 21

2
111 zzzkV +−= . For the second 

stage, we choose the Lyapunov function candidate 2
2 1 2 / 2V V z= + . Since 

2 1 4 6 2 4 3 2 1 1 1( )d dz p x x p x p U k z x= + Ω + − − −  (22) 

The time derivative of V2 can be written as below. 

( )
2 1 2 2

2
1 1 2 1 4 6 2 4 3 2 1 1 1   ( )d d

V V z z

k z z p x x p x p U k z x

= +

= − + + Ω + − − −
 (23) 

With k2>0, if we choose the control law as given in (24), then the time derivative of the V2 
can be written as in (25). 

2 1 1 4 6 2 4 1 2 1 1 1 2 2
3

1 ( ( ) )d dU z p x x p x k z k z x k z
p

= − − − Ω − − + −  (24) 



2 2
2 1 1 2 2V k z k z= − −  (25) 

Repeating the same procedure for the pitch and yaw dynamics, one obtains and U3 and U4 
as follows. 

3 3 4 2 6 5 2 3 4 3 3 3 4 4
6

1 ( ( ) )d dU z p x x p x k z k z x k z
p

= − − + Ω − − + −  (26) 

4 5 7 2 4 5 6 5 5 6 6
8

1 ( ( ) )U z p x x k z k z k z
p

= − − − − −  (27) 

A number of simulation studies are carried out in Matlab/Simulink® to find the most 
convenient parameters to drive states of quadrotor to their desired values. Noisy 
observations are considered to see the disturbance rejection capability of the closed loop 
control system. 
 

Table 4 Simulation Parameters for the Backstepping Scheme 

Simulation Time T 200 sec 
Simulation Step Size ∆t 0.02 sec 
Angular measurement noise variance ∆φ, ∆θ, ∆ψ 1e−5 rad 
Design parameter k1 , k3, k5 1.00 
Design parameter k2, k4, k6 0.50 
Initial values of Euler angles 0( )tφ , 0( )tθ , 0( )tψ  0.3 rad 
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Fig. 20 The tracking results for the backstepping control technique. 
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Fig. 21 The control signals for the backstepping scheme U1=7.8448 Newtons. 
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Fig. 22 Behavior in the Cartesian space. 
 

In Figs. 20-22, the tracking performances, the control signals and the journey of the 
vehicle in 3D space are shown respectively. The precise tracking is one prominent feature 
that is seen at the first glance and the instant spikes in the control signals is the price paid 
for this. Backstepping technique is seen to be one alternative in real time applications of 
the vehicle. Robustness of the backstepping technique is tested by considering uncertainty 
in the mass of the vehicle, 800 grams considered for the design of the controller whereas 
the quadrotor had a mass equal to 750 grams. The results are seen in Figs. 23-25, which 
are almost indistinguishable from those seen in Figs. 20-22. 
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Fig. 23 The tracking results for the backstepping control technique. 
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Fig. 24 The control signals for the backstepping scheme U1=7.8448 Newtons. 
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Fig. 25 Behavior in the Cartesian space 



6 Attitude Control via Feedback Linearization Technique 

The central idea of feedback linearization is to algebraically transform a given nonlinear 
system dynamics to dynamics of a linear one, so that the well established linear control 
techniques can be applied. Feedback linearization is achieved by exact state 
transformation and feedback, rather than by linear approximation of the dynamics. The 
relative degree and order of the roll, pitch and yaw subsystem is the same. Input-state 
feedback linearization can be applied to three subsystems. The nonlinear system is 
transformed into controllable canonical form after feedback linearization. The closed loop 
system is reduced to three double integrators after applying inputs U2, U3 and U4. The 
control inputs are given in (28)-(30). 

2 1 4 6 2 4 1
3

1 ( )rU p x x p x v
p

= − − Ω +  (28) 

3 4 2 6 5 2 2
6

1 ( )rU p x x p x v
p

= − + Ω +  (29) 

4 5 2 6 3
6

1 ( )U p x x v
p

= − +  (30) 

Three double integrators are 1 2 3,  ,  v v vφ θ ψ= = = . The signals denoted by vis are 
selected as given in (31)-(33) 

1 1 2dv e eφ φφ λ λ= + +  (31) 

2 3 4dv e eθ θθ λ λ= + +  (32) 

3 5 6dv e eψ ψψ λ λ= + +  (33) 

Error signals are defined as deφ φ φ= − , deθ θ θ= − , deψ ψ ψ= −  and with these 
choices, the tracking errors are governed by the following differential equations. 

1 2 0e e eφ φ φλ λ+ + =  (34) 

3 4 0e e eθ θ θλ λ+ + =  (35) 

5 6 0e e eψ ψ ψλ λ+ + =  (36) 



λ values are chosen to assign eigenvalues of linearized subsystems. Design criterion for 
all three subsystems is to observe critically damped response (ξ = 1) to step input and this 
requires 1 22λ λ= 3 42λ λ= 5 62λ λ= . The simulation settings and parameter values 

are tabulated in Table 5 and the results are shown in Figs. 26-28 with exact knowledge of 
the vehicle mass. In Figs. 29-31, we demonstrate the response of the closed loop system if 
there is uncertainty in the mass of the vehicle. The design phase assumes m=800 grams 
whereas the vehicle has m=750 grams in reality. Clearly, the results for both cases are 
almost indistinguishable, the initial errors are quickly driven toward zero and desired 
attitude is followed under the presence of measurement noise. 

Table 5 Simulation Parameters for the Feedback Linearization Scheme 

Simulation Time T 200 sec 
Simulation Step Size ∆t 0.02 sec 
Angular measurement noise variance ∆φ, ∆θ, ∆ψ 1e−5 rad 
Design parameter λ1 2 
Design parameter λ2 1 
Initial values of Euler angles 0( )tφ , 0( )tθ , 0( )tψ  0.3 rad 
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Fig. 26 The tracking results for the feedback linearization technique. 
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Fig. 27 The control signals for the feedback linearization scheme U1=7.8448 Newtons. 
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Fig. 28 Vehicle behavior in the Cartesian space. 
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Fig. 29 The tracking results for the feedback linearization technique. 
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Fig. 30 The applied control signals with feedback linearization approach. 
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Fig. 31 Behavior in the Cartesian space 

8 An Overall Assessment of the Considered Schemes 

Four approaches have been simulated on a model developed through Euler Lagrange 
formalism and several experiments to incorporate the effect of the change in the battery 
voltage. Although it is optional to use such modules in simulations, yet the results of 
works disregarding these effects are likely to be unrealistic. PID control scheme is first 
implemented, SMC and backstepping designs are tested and feedback linearization 
scheme is implemented as the last approach. Although PID is a simple method to follow, 
it –even in the experiments we carry out in real time- suffers from severe disturbances 
available in the operation of the prototype model. Based on the simulation results, its 
performance is acceptable. The advantage of PID scheme is the fact that it does not 
require a detailed dynamic model, whereas the other methods we consider do. In spite of 
this picture, nonlinear control schemes are more versatile than their linear counterparts if 
the plant under investigation is nonlinear and performance expectations are tight. The 
results we obtain demonstrate that SMC scheme is able to create the sliding subspace on 
which the phase space motion takes place. Backstepping design and feedback 
linearization techniques are also based on Lyapunov stability to meet the accurate tacking 
with realizable control signal. In terms of the transient responses, PID scheme needs two 
seconds (See the top row of Fig. 10), SMC needs one second (See the top row of Fig. 13), 
and the remaining two approaches need slightly more than 1 seconds. Indeed, one could 
shorten these settling times yet in those cases the applicability of the control signals 
disappear. Since the results obtained so far stipulate the merits and usefulness of the 
devised model, instead of pointing out a specific approach as the best one, we prefer 
demonstrating their qualities in such an application. The selection of the most appropriate 
parameter values for the controllers depends on the vehicle dynamics, disturbances and 



expectations of the user. The tuning process carried out is based on the trial and error 
search with the help of real time system being built in the UAV laboratory of TOBB ETU. 

9 Concluding Remarks 

Due to their low cost and versatility, UAVs find numerous application areas. This work 
focuses on modeling and low level control issues on a quadrotor type UAV. The vehicle 
model is formed then the issues of power loss during the flight are discussed and a method 
based on the neural network modeling is introduced to handle the time varying dynamics. 
It is seen that the neural models are useful in establishing the handshaking at the pwm 
level, which is the language in between the motors and the feedback controller. Neural 
network components have been developed by collecting a number of simultaneous time 
traces and Levenberg-Marquardt technique is utilized. The filters for transient behavior 
and battery modulation issues are explained. In the end, four approaches are simulated to 
see whether the introduced models function properly. These methods are the PID, SMC, 
backstepping and feedback linearization. All produced acceptably good results for some 
set of parameters. Although PID is simple in structure, its performance may not be 
adequate under conditions of severe disturbances. SMC is robust against disturbances yet 
it suffers from the chattering phenomenon. Backstepping and feedback linearization yield 
good tracking results yet they need the availability of the system nonlinearities, which is 
generally accepted as a drawback. The research in the UAV laboratory of TOBB 
Economics and Technology University is continuing toward implementing these 
algorithms in real time. 
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