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A fractional adaptation law for sliding mode control
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SUMMARY

This paper presents a novel parameter tuning law that forces the emergence of a sliding motion in the
behavior of a multi-input multi-output nonlinear dynamic system. Adaptive linear elements are used as
controllers. Standard approach to parameter adjustment employs integer order derivative or integration
operators. In this paper, the use of fractional differentiation or integration operators for the performance
improvement of adaptive sliding mode control systems is presented. Hitting in finite time is proved
and the associated conditions with numerical justifications are given. The proposed technique has been
assessed through a set of simulations considering the dynamic model of a two degrees of freedom direct
drive robot. It is seen that the control system with the proposed adaptation scheme provides (i) better
tracking performance, (ii) suppression of undesired drifts in parameter evolution, (iii) a very high degree
of robustness and improved insensitivity to disturbances and (iv) removal of the controller initialization
problem. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Owing to the linearity between its inputs and the output, and the simplicity brought about by this
fact, adaptive linear element (ADALINE) structure has been used in many applications of systems
and control engineering presumably under different names. From this perspective, proportional
integral derivative (PID) controllers, state feedback controllers and finite impulse response filters
are just to name a few of ADALINE applications. The output of an ADALINE is a weighted
sum of its inputs and the weight associated to each input is adjustable. As discussed in detail by
Haykin [1] and Jang et al. [2], ADALINEs are the building blocks of neural networks and some

*Correspondence to: Mehmet Onder Efe, Department of Electrical and Electronics Engineering, TOBB Economics
and Technology University, Sogiitozii Cad. No. 43, TR-06560 Sogiitozii, Ankara, Turkey.
TE-mail: onderefe@etu.edu.tr

Contract/grant sponsor: Turkish Scientific Council (TUBITAK); contract/grant number: 107E137

Copyright © 2008 John Wiley & Sons, Ltd.



A FRACTIONAL ADAPTATION LAW FOR SLIDING MODE CONTROL 969

types of fuzzy systems. The driving force for devising such complicated architectures was the fact
that ADALINEs were so simple that they could not capture complex input output relations with
frozen parameters. Yet it was possible to implement the ADALINE as an adaptive system, which
can respond appropriately by an adaptation scheme. Given a task to be accomplished, the process
describing the best evolution of the adjustable parameters is the process of learning, which is
sometimes called adaptation, tuning, adjustment or optimization, all referring to the same reality in
the context of adaptive systems. Many approaches have been proposed, perceptron learning rule,
gradient descent, Levenberg—Marquardt technique, Lyapunov-based techniques are just to name a
few; a good treatment can be found in [2]. A common feature of all these methods is the fact that
the differentiation and integration, or shortly differintegration, of quantities are performed in integer
order, i.e. D:=d/dr for the differentiation with respect to r and I=D~! for integration over 7 in the
usual sense. A significantly different branch of mathematics, called fractional calculus, suggests
operators D’ with BeR [3,4] and it becomes possible to write D f =D!/2(D1/2 ). Expectedly,
Laplace and Fourier transforms in fractional calculus are available to exploit in closed loop control
system design, involved with sP or Gw)ﬁ generic terms, respectively.

Fractional calculus and dynamics described by fractional differential equations (FDEs) are
becoming more and more popular as the underlying facts about the differentiation and integration is
significantly different from the integer order counterparts and, beyond this, many real life systems
are described better by FDEs, e.g. heat equation, telegraph equation and a lossy electric transmission
line are all involved with fractional order differintegration operators. A majority of works published
so far has concentrated on the fractional variants of the PID controller, which has fractional order
differentiation and fractional order integration, implemented for the control of linear dynamic
systems, for which the issues of parameter selection, tuning, stability and performance are rather
mature concepts utilizing the results from complex analysis and frequency domain methods of
control theory (see [5]) than those involving the nonlinear models (see [6]) and parameter changes
in the approaches.

Parameter tuning in adaptive control systems is a central part of the overall mechanism allevi-
ating the difficulties associated with the changes in the parameters that influence the closed loop
performance. Many remarkable studies are reported in the past and the field of adaptation has
become a blend of techniques of dynamical systems theory, optimization, heuristics (intelligence)
and soft computing. Today, the advent of very high-speed computers and networked computing
facilities, even within microprocessor-based systems, tuning of system parameters based upon
some set of observations and decisions has greatly been facilitated. In [7], an in-depth discussion
for parameter tuning in continuous and discrete time is presented. Particularly, for gradient descent
rule for model reference adaptive control, which is considered in the integer order in [7], has
been implemented in fractional order by Vinagre et al. [8], where the integer order integration is
replaced with an integration of fractional order 1.25, and by Ladaci and Charef [9], where the
good performance in noise rejection is emphasized. In [10], dynamic model of a ground vehicle
is given and an adaptive control law based on the gain adjustment is derived, the adaptation law is
changed to a fractional order and the benefits of using this form are shown through simulations.

Regarding the sliding mode control, Calderén ef al. [11] describes the switching function by
a fractional order PID controller and variants of it. The analysis continues with the computation
of the first derivative of the switching function and relevant reaching conditions are derived. The
method is experimented on a buck converter. In [12], sliding mode control framework is studied.
A double integrator and the conditions of stability are described. Modification of the equivalent
control is performed so that a fractionally integrated sign term provides reduction in high-frequency
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switching. In both papers, the stability has been analyzed through checking whether ss<0 is
satisfied, with s being the switching function.

The purpose of this paper is to present an adaptation approach that yields (i) better robustness and
noise rejection capabilities than those utilizing traditional integer order operators, (ii) nondrifting
parametric evolution when the essential factor driving the adaptation scheme is noise, (iii) better
tracking capability and better system response and (iv) removal of the controller initialization
problem. The four features mentioned above constitute the major results and contributions of the
paper.

This paper is organized as follows: In the following section, we give the Riemann-Liouville
definitions of fractional operators used throughout the paper. The sliding mode control in the
traditional sense is summarized in the third section. In the fourth section, a fractional order
adaptation scheme is introduced and the stability analysis with conditions for hitting in finite time
is discussed. In this section, the parameter adjustment for the ADALINE is viewed as a supervised
adaptation scheme. In the fifth section, the conditions for applying the scheme as an unsupervised
technique are presented. The dynamical description of a two degrees of freedom (DOF) SCARA¥-
type direct drive robot is presented in the sixth section. Simulation results and the concluding
remarks constitute the last part of the paper.

2. FRACTIONAL ORDER DERIVATIVE AND INTEGRAL

Given 0<f<1, Riemann-Liouville definition of the fth order fractional derivative operator oD,ﬁ
is given by

P = onﬂr)

—_oh
=Ta_ )dt/ =07 f(dE )]

where T'(-) is the gamma function® generalizing the factorial for noninteger arguments. According
to this definition, the derivative of a time function f(¢)=t* with a>—1,7>0 is evaluated as

FetD oy

Bo_
D -~ @ 7
O T Tat1-p)

2

Likewise, Riemann-Liouville definition of the fth order fractional integration operator OIﬁ
given by

Bron L ' apa
A F0=5 /0 (—OP FOde 3)

In addition to these definitions, following equalities are helpful in understanding the presented
approach. For 0<fi<1 and a finite end time, say ¢, the integral of the derivative is evaluated as

tSelectively compliant articulated robot arm.
$The gamma function is defined as F(ﬁ):fooo e 'tP=1dr.
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given in the following equation [4]:

p—1
B — B-D () [k
oy, /77 =) — [P 0) =— “)
§ I'(B)
The integral of a constant, say, 4 with the same integration limits is given as in the following
equation:
!
Ira+p

The material presented in the sequel is based on the above definitions of fractional differentiation
and integration.

B
oll A=

i (5)

3. AN OVERVIEW OF SLIDING MODE CONTROL

Owing to the robustness against uncertainties and disturbances, and the invariance properties
during the sliding regime, sliding mode control has become a popular design approach that was
implemented successfully for the control of robots [13, 14].

Consider a general dynamic system described by

~ m ~ .
0" = £,(©)+ fi(©)+ Y (ij(©)+2i;(O)tj, i=1.2...n ©6)
j=l1
where @ = (0, 01, . ..,9?'71), 05,04, ..., 9(;271), ey 00,0, .., 07~ D)T s the state vector of the
entire system, r; is the order of the ith subsystem, f;(®) and g;;(®) are scalar functions of
the state vector describing the nominal (known) part of the dynamics, f,-(G)) and g;;(®) are

the bounded uncertainties on these functions and the input vector T=(t1,12,...,7,)" is the
manipulated variable. This system of equations can be rewritten compactly as
O=F(®)+F(®)+(G(®)+G(O)T @)

where F(®) and F(©) are Z?:l ri x 1 dimensional vectors and G(®) and G (®) are Zle ri Xn
dimensional matrices. The designer has the nominal plant dynamics given by @ = F(®)+G(O)T.

Standard approach for the design of a sliding mode controller entails a switching function
defined as

T
Sz(s17s27"'ssn)

=A0O-0,) ®)

where @, = (041, éd,lv e, 91(;,]171), 04,2, éd,z, cee, 93‘2271), vy O, éd,na e, Qc(lr"'rfl))T is the vector
of desired states and the locus described by s=0 corresponds to the sliding manifold or the
switching hypersurface. The entries of A are chosen such that the ith component of the switching
manifold has the structure

d ri—1
§i = _+)Vl (91_961,!)’ l:17257n (9)
dr
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972 M. O. EFE AND C. KASNAKOGLU

where 4;>0. Choosing a Lyapunov function candidate as in (10) and setting the control vector as
given in (11), one gets the equality in (12) provided that the inverse (AG(®))~ ! exists:

v=1sTs (10)
tsmMe=—(AG (@) ' A(F(0) - 0,) — (AG(®)) "' Qsgn(s) (11)
§=—PQsgn(s)+P—-DA(®,; — F(®))+AF(O) (12)

where P:=A(G +G)(AG) ™!, which is very close to the identity matrix, and Q is a positive-definite
diagonal matrix chosen by the designer. If one sets T:=1tgpc, then the system enters the sliding
mode after a reaching phase.

The expression in (12) can be interpreted as follows:

e If there are no uncertainties, i.e. F=0 and G =0, then we have §=—Q sgn(s), and s T$<0 is
satisfied with any positive-definite Q. In this case we have P=1I and this result is straightforward.

o If only G =0, we obtain $=—Q sgn(s)+AF and sT$<0 is satisfied if Q is a positive-definite
diagonal matrix and the ith entry in the diagonal of Q is greater than the supremum value of
the ith row of |AF|. This would preserve the sign of s in the presence of the term AF and
the numerical computation would require the bounds of the uncertainties. In this case we have
P =1 too. _ _

e In the most general case, where neither of F nor G is zero, the expression in (12) is obtained.
In this case, depending on the uncertainties influencing the input gains (G), the matrix P is very
close to the identity matrix, and utilizing the uncertainty bounds, the matrix Q can be chosen
such that the sign of s is preserved and sT§<0 is satisfied.

With an appropriate choice of Q, sT§<0 can be obtained for |s|>0, and this result indicates
that the error vector defined by the difference @ —@®y is attracted by the subspace characterized
by s=0 and moves toward the origin according to what is prescribed by s=0. The motion during
s #0 is called the reaching mode, whereas the motion when s =0 is called the sliding mode. During
the latter dynamic mode, the closed loop system exhibits certain degrees of robustness against the
modeling uncertainties, yet the system is sensitive to noise as the sign of a quantity that is very
close to zero determines the control action heavily.

It is straightforward to show that a hitting to s; =0 occurs and the hitting time (#; ;) for the
ith subsystem satisfies the inequality #, ; <|s; (0)|/Q;;. One can refer to [15-17] for an in-depth
discussion on sliding mode control. Our goal will be to obtain the sliding regime by utilizing an
ADALINE structure introduced in the following.

4. SLIDING MODE CONTROL THROUGH A FRACTIONAL
ORDER ADAPTATION SCHEME

The classical sliding mode control law given in (11) clearly requires F(®) and G(@). In this
section, we will focus on an adaptation law that has the same effect on the closed loop system as
(11) does.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 22:968-986
DOI: 10.1002/acs
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Theorem 4.1

Letpi=(¢; 1, P; 0, --- ,qﬁi,,iJrl)T be an adjustable parameter vector and let u;=(e;, é;, . . . ,el.(r"_l), DT

be an input vector. The input output relation of the controller producing 7; is given by the ADALINE
L=piw, i=1,2,...,n (13)

Denote the response obtained with Tsyc as the desired response and let 74 ; be the control signal
resulting in the desired response at the ith subsystem. Let the bound conditions

3 ra+p (B=k)\T, (k)
)W S 14
k; r(1+k)F(1—k+[3) (pl ) i 1,i (14)
1)1< B0 s

hold true Vi €{1, 2, ...,n}. With arbitrary >0 and p>0, the tuning law given by
. sgn(u;)
pgﬁ):—%,‘i{asgn(o’i) (16)
/J—I-pui u;

with ¢; :=1; —74; drives the parameters of the ith controller to values such that the plant under
control enters the sliding mode characterized by s; =0, and hitting in finite time occurs if

Hi>(u+p)(B1,i+Bai) (17
is satisfied.
Proof
Define Y;:=) ;o (I'(1+8)/T(1+k)I(1 —k+ﬁ))(p§ﬁ7k))Tu§k) and check whether the quantity
)

o, o; for every i is negative or not. With these expressions, we have

o?ﬁ)ai = (rlgﬂ) —r[(f?)a,-
b
= (@M Tupai+ (=D

T

sgn(u;)

= (_jigiT’sgn(ai)> u; a,-—l—(Y,-—rg’gg)ai
U+ pu;u;

sgn(u;) Tu
= —f,gil,rl|01|+(Yl _T;{?)Gi

ptpu;u;

B

= 2@+ (X =)o,
<A P)oi + 1Y) loi| +170)] il
(A 2PW)+B1,i+PB2.i)|oil
B+ B2

<0 since A'i>(u+p)(AB1,i+%2i)> (18)
Z(u;)
where Z(u;) .= sgn(u,-)Tu,-/(,u—i—puiTu,-)>O and min2(w;)=1/(u+p).
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974 M. O. EFE AND C. KASNAKOGLU

This proves that the trajectories in the phase space are attracted by the subspace described by
=0. Owing to the definition in (1), claiming o-(ﬂ )

oi (1) g/’ ai($)
FA-pdtJo ¢=&F

0; <0 for stability is equivalent to the following:

P ()6 (1)=

d¢ (19)

Obtaining a(ﬁ )

(t)o; (t)<0 can arise in the following cases. In the first case, d;(#)>0 and the inte-
gral fo (ai(&)/(t— i)ﬁ) d¢ is monotonically decreasing. In the second case o; (¢) <0 and the integral
fot (ai(&)/(t— 5)ﬁ) d¢ is monotonically increasing. In both cases, the signal |o;(¢)| is forced to

converge to the origin faster than t~F. A natural consequence of this is to observe a very fast
reaching phase as the signal 1~Fisa very steep function around z ~0.
Now we must prove that first hitting to the switching function occurs in finite time denoted by

ty.;. Evaluate a(ﬁ ) utilizing (16) as given below:
o =—n % sgn(a) +Y; — 1) (20)
u+ pu

Applying the fractional integration operator described in (3) with final time =1, ; to both sides
of (20) one gets

ﬁ—l T,
(B-1) ] - sgn(u;) ] 0
oi(th,i) —0; F(ﬁ) =olj,, (—%TL Ty, gn(m)>+olth,,(T —T4.)

sgn(u;) T ()
= —A";sgn(a;(0))ol . Ti—1
g(l( ))O th,<#+pu’i1‘[> t/ll( dl)

= — A sgn(ei (0oLl 2 +oll, (X —<f) 1)

Th,i

where 2(u;) :=sgn(u;)Tu; /(u+ puiTul-). Noting that ¢;(r) =0 when ¢ =1, ;, multiplying both sides
of (21) by sgn(a;(0)), we have

t’H B
rp

Owing to the definition given in (3), we have

—aP"V0)sgn(o; — A ol P(ui) ol (sgn(a: (0) Y1) — oL, , (sgn(o; ()] (22)

¥ (sen(oi )Y <olf ;]

< olg”. B1.i
B
— (23)
"T(4+p)
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Similarly,
015“, (sgn(o; (0))@(53) =sgn(o; (0))015,,iflef3

p—1
B—1) o L
=sgn(o; (0)) | ta.i(ni)—74,; (0 (24)
: T
Since min 2 (u;)=1/(u+ p), we proceed as follows:
8 g1
ok, . Z(w) <ol , m
B
Ip.i
=2 (25)
(u+pI'(A+p)
Substituting the results in (23)—(25) into (22), we obtain an inequality given as
B-1 B B
: ity . t .
(=1 Ip.i il h.i
—0; 0)sgn(a; (0 <= + B ;i ——————sgn(c;(0))tq.;(ty;
i (0) sgn(o; ( ))F(ﬁ) (,U+,0)F(1+ﬁ) ]”F(l—i-ﬂ) gn(o; (0)) d,l(h,l)
f—1
(B-D h,i
+14; (0)sgn(o;(0)) (26)
¢ CUUTB)
The inequality above can be rearranged as
=Bt 5 @O+ 0)sen(@i 0) 4
ni S ty i —sgn(o;i(0)tq,i(tn,i)
(p+pld+p ™ IN0)) ’
(B-1 (B-1
|Gi (O)|+|Tdi O] B—1
< : t . (i 27
F(ﬁ) h,i +|Td,l(h,l)| (27)
which has the form
at) <btf ;' +c (28)

where a,b and c are clear from (27). Clearly, the left-hand side of (28) starts from zero and
increases monotonically as a>0 and O<f<1. The right-hand side, however, is monotonically
decreasing as b>0 and O<fi<1. The curve described on the right starts from infinity when #, ; =0
and converges to ¢ in the limit. Therefore, the inequality in (28) always suggests an upper bound.

As a special case, if f= %, the value of #;, ; can be computed as given by
2
V2 +4ab
i< <7c+ —_— ) (29)
2a
O
Remark

The tuning law in (16) can be interpreted as a filtering of the signal r; :=—2/"; (sgn(u;) /(u+ pul.Tui )
sgn(a;). The filter is a fractional integrator of order § having a higher magnitude than integer order
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976 M. O. EFE AND C. KASNAKOGLU

integrator at all frequencies except zero. In the integer order case, the information contained in the
high frequencies is not exploited as much efficiently as in the fractional order case. The presence
of sign term in r; is one evidence of the presence of valuable information in high frequencies.
The special treatment provided by the fractional order tuning law therefore extracts a better path
toward good parameter values than the integer order counterpart.

5. CONDITIONS FOR OBTAINING sgn(o)

In the third section, we summarized the conventional sliding mode control scheme for multi-input
multi-output systems of the form (6). On the other hand, if we could know a supervisory signal to
compute g, we would use it directly in the fractional adaptation scheme given in (16). However,
the nature of the control systems does not provide such an information; instead, one has to
develop strategies to observe a desired response in the closed loop by utilizing available quantities.
Therefore, a critically important stage of the approach presented in this paper is to extract an
equivalent measure about the sign of the error on the control signal to use in the parameter tuning
scheme. In other words, we need to develop a strategy together with a set of assumptions such
that we do not implement a conventional sliding mode controller, yet our tuning scheme drives the
closed loop system toward the behavior that can be obtained via the conventional design without
knowing the system parameters.

For this purpose, denote the response of the ADALINE controllers by Ta, which is n x 1. Since
there are n subsystems, there are n ADALINE controllers. Consider the difference

6 =Ty —Tsmc
=Ta+(AG(0)) ' A(F(©) —0,)+(AG(®))'Qsgn(s)

=Jsgn(s)+H (30)

where J:=(AG(®))"!Q and H:=TA+(AG(®))*1A(F(®)—Od). Let J' be a diagonal matrix
where J;i =J;;i. Let H:=H+(J—1J) sgn(s). With these definitions, (30) can be paraphrased as

o=J sgn(s)+H 31
whose rows can explicitly be written as
oi=J;sgn(sp)+H;, i=1,2,....n (32)

The expression in (32) stipulates that if |H;| <J§i then sgn(ag;) =sgn(s;). In other words, aside
from the bound conditions given in (14) and (15), a third one is given as follows:

O<|H)|<Y,,, i=1,2,....n (33)

i’

Note that one can obtain infinitely many different designs of H including those satisfying the
set of inequalities above. Aside from the components coming from the system dynamics and the
desired response, this depends also upon A and Q, the choice of which can change the desired
properties of the sliding mode. Therefore one needs to check whether J/; is positive or not.

Corollary
If the inequalities in (14) and (15) are satisfied, the tuning law in (16) enforces reaching a; =0
for Vi and this triggers the emergence of the sliding mode in the traditional sense. However, the
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A FRACTIONAL ADAPTATION LAW FOR SLIDING MODE CONTROL 977

conditions derived in this section imply a class of plants where such an induction could be valid.
In the following section, we give the dynamical description of a two DOF robot.

6. DYNAMICS OF THE ROBOT ARM AND THE CONTROL PROBLEM

In this paper, we consider the following system to visualize the contributions of this paper. The

motivation for choosing this system is the nonlinear and coupled nature of differential equations

describing the behavior. Furthermore, the adverse effects of noise, large initial conditions and

varying payload conditions make the control problem a challenge for conventional approaches.
The dynamics of the robot is given by

M(©®)®+C(0®,0)=T—-L (34)

where @ = (0, 0,)T is the vector of angular positions in radians and @:(01 OQ)T is the vector
of angular velocities in rad/s. In (34), T= (1 72)T is the vector of control inputs (torques) and
L=(; n,)7 is the vector of friction forces. The terms in (34) are given below:

+2p3cos(6r) + p3cos(6y)
M(®)= P1 p3 2) p2tp3 2 (35)
P2+ p3cos(62) P2
. —92(291 + éz)pg sin 0,
C(0,0)= , (36)
0, p3sin,

where p; =3.31655+0.18648M ,, p» =0.1168+0.0576 M, and p3=0.16295+-0.08616M ,. Here,
M, denotes the payload mass. The details of the plant model can be found in [18, 19]. The
constraints regarding the plant dynamics are |71|<245N, |12/<39.2N, and the friction terms are
1y =4.9sgn(0;) and 1, =1.67sgn(0,).

The control problem is to force the system states to a predefined and differentiable trajectories
within the workspace of the robot. More explicitly, e; =01 — 04,1, e2=02— 04 2 and the first order
(integer) time derivatives of these error terms are desired to converge to the origin of the phase
space.

According to the presented analysis and the model above, we have (AG)~!' =M(®). More
explicitly,

(37

Q11(p1+ p3cos(02))sgn(s1)

. (Qn (p1+2p3cos(02)) sgn(S1)) <sz(p1 + p3cos(02)) Sgn(sz)>
(AG)"'Q= +
Q22 p3sgn(s2)

The above separation of terms suggests that J’11 =Q11(p1+2p3cos(6r))>0 and J’22 =Qx»p3>0
for every possible angular state and payload condition. Clearly, the devised approach is suitable
for mechanical systems, robots and systems as they have a positive-definite inertia matrix. In the
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following section, we present the simulation studies comparatively with the integer order integration
scheme in the parameter adaptation stage.

7. SIMULATION RESULTS

The presented approach is implemented for the plant introduced in the second section. We set
ﬁ:% and the system runs for 20s of time for the reference trajectories shown in Figure 1. The
solid curves represent the reference trajectories, while the dashed ones stand for the response of
the robot. During the operation, a 5 kg of payload is grasped when ¢ =4 s and released when r =8s
and this is repeated when the robot is motionless at =12 and 16s. The manipulator is desired to
stay motionless after t =16s.

It should be noted that the payload scenario is a significant disturbance changing the dynamics
of the plant suddenly. Another difficulty is the initial conditions that the ADALINE controllers
are supposed to alleviate. Initially, 04,1 =042 =0, the system is motionless and 01(0)=§ and
0>(0)=—73, which indicate large initial positional errors to test the performance of the proposed
control scheme. During the simulations, we set 24 | =500 and .#", =100. The sliding lines for
both links are set by choosing 4; =1 and we set u=1 and p=1. Besides these, in order to avoid
exciting any undesired chattering phenomenon associated tightly with the discontinuous nature of

Dashed: Robot Response Solid: Reference Trajectory
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2
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(7] []
Q K '
5 05 1
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<
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Figure 1. Reference trajectories and the response of the robot.
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Figure 2. State tracking errors.

the sign function, we choose sgn(g;)~0g;/(|o;|+ ) with é being the parameter determining the
slope around the origin. This paper considers 0=0.01, which introduces a very thin boundary
layer and improves the performance of the control system. If such a smoothing is not used, the
fluctuations in the control signals are magnified and the practical applicability of the proposed
approach is influenced adversely.

The discrepancies between the reference trajectories and the system response are depicted
in Figure 2, where an exponential convergence is apparent even in the presence of noise
corrupting the observed system states and the changes in the system dynamics due to the payload
variations.

The behavior in the phase space illustrated in Figure 3 is another evidence of robustness of the
control system and insensitivity to variations in the plant dynamics. As mentioned previously, a
very fast reaching phase is followed by the desired sliding mode.

In Figure 4, the applied control signals are given with the window graphs for better visualizing
the initial transient. As expected, the control efforts during the first 0.2 s have higher magnitudes
than what comes later. The adverse effect of the noisy observations on the control signal is another
conclusion that is worth mentioning.

The time evolutions of the controller parameters, which are all started from zero, are shown
in Figure 5, where it is clearly visible that after a fast transient, the parameters multiplying the
errors and their derivatives settle down to constant values, while the parameters multiplied by unity
evolve bounded. If we remember the reference profiles, the system is desired to be motionless
after ¢>16s; this means that the tuning activity during this time is subject to the effects of noise.
That is to say, the system is at a desired state but we would like to figure out how the parameter
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Figure 4. Applied control signals and their initial transients.

tuning mechanism functions during this period. The answer to this question is in Figure 5, where
any possible undesired drifts in the controller parameters are suppressed appropriately.

In realizing the tuning law in (16), which entails the implementation of I’ terms, we choose
Crone approximation over the bandwidth 0.01-1000Hz, which is acceptable for a feedback
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Figure 5. Time evolution of the controller parameters for base link (left column)
and elbow link (right column).

control application of this type. The order is set to 25 and truncated Mclaurin expansion is
utilized in numerical computation. With these settings, a very good spectral approximation to the
desired operator is obtained. For more details on the numerical realization, the reader is referred
to [20].

It must be emphasized that the presented design does not utilize the terms seen in the dynamical
description of the plant. The approach adaptively determines the controller parameters so that the
plant displays robustness against disturbances and uncertainties.

The simulations have been repeated with different values of p and p. We did not consider
increasing or decreasing or both as this corresponds to change in ¢';, instead of this, we kept
p=1 and re-simulated the system with 0.01, 0.1, 10 and 100 as the values of u. Including the case
with =10, the system was observed to respond appropriately, yet for the larger values of u, the
sliding mode disappears, further increase causes the loss of tracking capability totally. A similar
response is observed with the change in p while u is kept at unity.

As a last issue, we turned back to u=p =1, and the system is run with f=1. This has changed
the parameter update law given in (16) as p; = —%’,-(sgn(u,-)/(u—l—puiTu,-)) sgn(g;). We have Y; :=
pTu; and the derivation with the conclusions given in (18) is seen valid for the integer order case
too. Many different parameter configurations have been tested and, in most of them, the feedback
system has grown instabilities. Among the tested conditions, the one with #; =10 has given
the best results that are illustrated in Figures 6-9. Although the error trends seen in Figure 6 are
promising, the applied torques resulting in this observation are illustrated in Figure 7. Clearly,
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Figure 6. State tracking errors when f=1.
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Figure 7. Applied control signals and their initial transients when f=1.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2008; 22:968-986
DOI: 10.1002/acs



A FRACTIONAL ADAPTATION LAW FOR SLIDING MODE CONTROL 983

0.5
10
0
-05 8
5 - 5 6
o o
©T -15 © 4
-2 2
-2.5
0
-3
0 0.5 1 -1.5 -1 -0.5 0
& €
Figure 8. Behavior in the phase space when f=1.
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Figure 9. Time evolution of the controller parameters for base link (left column)
and elbow link (right column).

the torques have provoked high-frequency components compared with the results of the fractional
order case in Figure 4. In addition to this, according to the window plots depicting the initial and
final phases of the simulation, the control signals saturate in the early instants of the simulation
and are observed to be very sensitive to noise. In Figure 8, the behavior in the phase space is
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Figure 10. The quantities described in (14), (15) and (33) are satisfied.

depicted for each link separately. Clearly, after many hittings, the sliding regime starts as there
are very high controller gains (-#;) and this triggers the saturating control signals whose practical
value is arguable.

Despite the fact that the implementation with the integer order case requires costly hardware as
its actuation scheme is supposed to produce control signals having demanding spectral qualities,
there is another reason making the proposed technique superior than the integer order counterpart:
the evolutions of the adjustable parameters. In Figure 9, the behavior of the ADALINE parameters
is shown. The first observation is the non-converging nature of the signals, the second is the
magnitude plotted in the bottom rows for both controllers, which fluctuates between very high
values, indicating a significant potential instability for a real-time application.

Since the figures shown so far support the usefulness of the presented approach, although it is
an open problem, we validate the design by checking whether the conditions given in (14), (15)
and (33) are satisfied. It is seen from the figure that with the chosen parameters, the prescribed

bound conditions are satisfied with the choice Q= ( 180 580> (Figure 10).

Final notes in this section are on the choice f=0.5. As f§ approaches unity, the robustness is
lost smoothly and many hittings take place before the sliding regime starts; on the other hand, as
p approaches zero, the errors signals are deteriorated and the control system becomes extremely
vulnerable to noise. This naturally suggests choosing f=0.5, which is equally distant to the
mentioned undesired regimes.

Overall, these results are indications of the usefulness of the proposed technique, which is based
on fractional calculus.
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8. CONCLUSIONS

In this paper, we propose a fractional order parameter tuning scheme. The dynamic model of a
DOF direct drive robotic manipulator is utilized to justify the claims and a set of trials have been
considered for making a comparison with the integer order version. After a comparison with the
integer order case, the presented form of the adaptation law provides:

better parametric evolution that displays no drifts,
better tracking capabilities,

better robustness and disturbance rejection capabilities,
easier initialization of controller parameters,

less sensitivity to measurement noise

than its integer order counterpart, which is only computationally simple.

Briefly, according to the considered application, the fractional order tuning law outperforms the
tuning mechanisms exploiting integer order operators.

Although seen empirically in this example, future work of the author aims to provide a rigorous
proof for the bounded evolution of the adjustable parameters.
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