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Abstract Feedforward neural network structures have extensively been considered in the
literature. In a significant volume of research and development studies hyperbolic tangent
type of a neuronal nonlinearity has been utilized. This paper dwells on the widely used neu-
ronal activation functions as well as two new ones composed of sines and cosines, and a sinc
function characterizing the firing of a neuron. The viewpoint here is to consider the hidden
layer(s) as transforming blocks composed of nonlinear basis functions, which may assume
different forms. This paper considers 8 different activation functions which are differentiable
and utilizes Levenberg-Marquardt algorithm for parameter tuning purposes. The studies
carried out have a guiding quality based on empirical results on several training data sets.

Keywords Activation functions · Dynamical system identification ·
Levenberg-Marquardt algorithm

1 Introduction

Artificial neural networks have been a useful tool in many disciplines especially in engi-
neering. Many different forms of neural systems were introduced in the past and the goal
of performance improvement in neural networks research has been a core issue that never
ended. The efforts toward a better performing neural network have concentrated mainly on
the following

• Structure selection, e.g. feedforward or feedback configurations
• Learning algorithm, e.g. error backpropagation, LM and so on
• Hybrid structures, e.g. fuzzy-neural, neuro-genetic and so on
• Type of neuron activation, e.g. sigmoid like functions, radial basis functions or others.
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This paper focuses on the dependence of performance on the type of neuronal activation
function. In the past, this was considered to some extent in [1–5]. In [1], traditional sigmoid
activation function, logarithmic activation function (log in Table 1) and the arctangent type
activation function (atan in Table 1) are comparatively considered with backpropagation
type learning. Among these, the network with atan function was found to be the most suc-
cessful. In [2], sigmoid, sinusoidal ( f (S) = sin(π S)) and Gaussian type ( f (S) = exp(−S2))

activation functions are compared and among those, the sinusoidal one is seen to display most
desirable characteristics. In [3], Wu et al. propose a trainable activation function based net-
work structure. This approach performs a weighted sum of the derived activation functions,
which are a differentiated sigmoid, a differentiated Gaussian and an exponential basis. Error
backpropagation is used and it is seen that the proposed combination provides good per-
formance at the cost of some computational intensity. In [4], a quadratic sigmoid function,
which resembles radial basis functions, is utilized and better performance indications than
sigmoid based networks are emphasized. An effort to adapt Type-2 fuzzy activation function
for neural systems is presented in [5], where the utility based on synergy of approaches is
the essence of the design. An in-depth discussion on methods and integrations can be found
in [6]. Although, backpropagation method is frequently used in the cited body of research,
due to its convergence speed, we choose Levenberg-Marquardt (LM) training algorithm for
parameter tuning purposes [7].

To our best knowledge, this paper presents the most extensive comparison compared to
the aforementioned references. Some of the references compare few activation functions yet
some other focus on few types of training data sets. This paper considers eight different
data sets, eight different activation functions with networks having fourteen different node
numbers in the hidden layer. Under these conditions, the research conducted gives a clear
idea about when an activation function is advisable.

The main contributions of the paper are as follows (i) the introduction of two novel acti-
vation functions described by f (S) = a sin(pS) + b cos(q S) and f (S) = sinc(S), (ii) the
figures for guiding a designer which function to choose for a particular sort of a problem, and
(iii) the diverse number of alternatives compared and (iv) the performance of the logarithmic
and arctangent type of activation functions for mid sized networks. Regarding the hardware
implementation, the remarkable performance of networks exploiting the activation function
f (S) = a sin(pS) + b cos(q S) especially for small sized networks is a prominent feature
contributed by the current study.

In the next section, we describe the neuronal activation functions considered in this study.
The considered data sets are described in the third section. The simulation results are pre-
sented in the fourth section and the concluding remarks are given at the end of the paper.

2 Neuronal Activation Functions

Feedforward neural network structure with sigmoid or hyperbolic tangent type neuronal
nonlinearity is probably the most frequently used connectionist architecture utilized in many
applications of engineering. The typical network connectivity with m input neurons, R hidden
neurons and single output is depicted in Fig. 1. Although the considered network has a stan-
dard structure, the research on the discovery and optimization of neuronal details embodying
a neuron is still an active field having a strong influence on the overall capabilities of a neural
network. In other words, one type of neuron performs better while another does not. The
goal of this paper is to draw a conclusion guiding the designers based on several sets of
experiments.
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Fig. 1 A feedforward neural
network architecture with single
hidden layer, m inputs, R hidden
neurons and single output
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The net sum of the neurons in the hidden layer are computed using (1), where a super-
script k denotes the discrete time index and wi j s are the adjustable parameters of the hidden
layer.

Sk
i = wk

i, j+1 +
m∑

j=1

wk
i j u

k
j , i = 1, 2, . . ., R (1)

The output of the i th hidden neuron is computed by using (2), where the function f (•) is the
neuronal nonlinearity and is the entity under investigation here. The overall response (y) of
the neural network is obtained through the use of (3), where the output neuron is a linear one
having vi s as the adjustable parameters. The use of linear output neuron is deliberate as the
output nonlinearity introduces reachability constraint as well as prior information about the
bounds of output signal.

ok
i = f

(
Sk

i

)
(2)

y = vk
i+1 +

R∑
i=1

vk
i ok

i (3)

The research problem in this paper is the following: Can an alternative form of neuronal
activation function yield better results than networks with standard settings? Having this in
mind, we utilize the set of activation functions listed in Table 1. In the leftmost column of the
table, we give the label associated with each activation function. Briefly, the first row gives the
hyperbolic tangent type of the activation, the second line describes a polynomial multiplied
by a decaying exponential labeled as polyexp, the third line describes a neuronal activation
function which is the sum of shifted hyperbolic tangents yielding a multilevel (quantized)
activation. This is labeled as quan, and the number of different quanta is determined by the
variable M , which can be set by the designer. The following one is a sinc function used
frequently in signal analysis. The activation function given in the fifth row is a scaled sine
at one adjustable frequency added to a scaled cosine at another adjustable frequency, which
is labeled sincos. The activation function inspired from wavelets is given and is labeled
wave, arctangent function is given next with atan label and lastly a logarithmic activation
function is described with the label log.

The second column of the table describes the analytic form of the function and the number
of adjustable parameters of a network for each case is given in the third and the associated
derivatives are given in the rightmost column of the table. Clearly, if there is no extra param-
eter associated to the adopted neuron activation function, then the number of adjustable
parameters are those from the weight matrices and the biases, which add up to (m + 2)R + 1
for the network illustrated in Fig. 1.
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Novel Neuronal Activation Functions 67

3 Data Sets

This section introduces the problems utilized to assess capabilities of the neural network
models built individually with the aforementioned activation functions. Among the consid-
ered eight individual data sets, four contain synthetic data and four are from real life. Two
of the real life data are classification examples and the remaining six sets are regression
problems.

3.1 Data Sets 1–2: Bioreactor Benchmark Problem

Bioreactor benchmark problem is one of the problems considered for analyzing the effect
of activation functions on the overall performance. The process is valuable as its dynamics
consists of coupled and nonlinear differential equations, which display a rich set of behaviors
containing limit cycles, attractors and repellers [9,10]. The bioreactor is a tank containing a
mixture of water, biological cells and nutrients. The tank is fed by an inflow rate (wk ∈ [0, 2])
and the same amount of mixture is removed from the tank, so that the reaction volume is
kept constant. Though characterized by few state variables, the process is a good test bed for
benchmarking the performance of numerical data based models and regression approaches.
The state of the process is the amount of cells denoted by ck

1 ∈[0,1] and the amount of nutri-
ents denoted by ck

2 ∈ [0, 1]. The two difference equations obtained after the discretization
of the continuous time process are given in (4)–(5), where γ = 0.48 and β = 0.02 are the
nutrient inhibition parameter the growth rate parameter, respectively [9–11].

ck+1
1 = ck

1 + �
(
−ck

1w
k + ck

1

(
1 − ck

2

)
eck

2/γ
)

(4)

ck+1
2 = ck

2 + �

(
−ck

2w
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1

(
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2
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2/γ 1 + β

1 + β − ck
2

)
(5)

In above, � = 0.01 s is the discretization period. The performance of the considered neural
network structure is evaluated in predicting the cell mass (ck

1) under various operating con-
ditions. An initial condition is chosen randomly and (6)–(7) are executed for 50 successive
discrete time instants. This operation is repeated for 50 different initial conditions yielding
a total of 2500 training samples. A similar strategy is followed for generating the validation
data set containing 750 samples. The input vector of the network contains ck

1, ck
2, wk and the

auxiliary variables if any (See Fig. 1). The regression problem is to yield accurate predictions
for the state variables individually.

3.2 Data Set 3

Although the bioreactor benchmark problem displays a quite rich set of dynamical proper-
ties, due to the discretization in (4)–(5), the network is guided dominantly by the previous
response of the variable being predicted. For very small �, this becomes more apparent in
(4)–(5). We therefore perform the tests on different models reported by many research studies.
The model considered in [12] is given in (6). The training data is generated as explained for
the bioreactor benchmark process. The input vector of the network in Fig. 1 contains xk , wk

and the auxiliary variables if any. This model is a good candidate to investigate learning of
nonlinearities influencing the behavior dominantly in a discrete map.

xk+1 = xk

1 + (
xk

)2 +
(
wk

)3
(6)
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For this model, the operating range is chosen as xk ∈ [−1, 1] and wk ∈ [−1, 1]. The expres-
sion in (6) emphasizes that the next state of the system is dependent upon the current state
and the current input nonlinearly. The regression problem is to obtain a neural network
approximating the right hand side of (6) as much accurate as possible.

3.3 Data Set 4

The input/output relation of the third system is given by (7). Although (6) is from a frequently
cited resource, the model below is a good example that clearly differentiates the activation
functions in terms of the results obtained, which is the main motivation of including this
process.

xk+1 = −xk + sin
(
2πxk

)
wk

√
1 + (

xk
)2 + sin

(
2πxk

)2
(7)

The training and checking data sets are generated as described for the bioreactor benchmark
process and the operating ranges and the network inputs are the same as in Sect. 3.2.

3.4 Data Set 5: Subsonic Cavity Flow

Aerodynamic flow modeling is a highly interesting engineering problem as the corresponding
physics is involved directly with the Navier-Stokes equations, turbulence and complex flow
geometries. One particular example is the flow past a rectangular cavity. A photo and the
schematic view of the experimental setup considered in this paper are given in Fig. 2a,b. The
goal of the modeling problem is to predict the floor pressures based on the pressure measure-
ments from several critical locations of the cavity geometry [13–15]. These locations include
the signal to the host computer (x1), the output of the actuator (x2), the measurement at the
receptivity point (x3), the measurement at cavity trailing edge (x5) and the measurements
before and after the rectangular cutout (x4, x7) are also depicted in Fig. 2a. The modeling
strategies for such problems typically enjoy decomposition methods and these models are
very likely to have many state variables and subject to inaccuracies. The neural network based
modeling approach is an alternative technique that utilizes the local information to predict
the behavior at the cavity floor (x6).

The experimental setup is composed of a host computer having a digital signal proces-
sor, a filter to remove the spurious flow content at high frequencies, a Titanium diaphragm
synthetic actuator and an air system providing the flow at a desired Mach number. Since the

x1

x2
x3

x4

x5

x6

x7

(a)
(b)

Fig. 2 (a) Schematic view and sensor locations on the cavity flow setup (b) the view of the experimental
setup at The Ohio State University, GDTL
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spectral view is rich at Mach 0.25, we consider the modeling problem based on data obtained
under the conditions mentioned above.

The training and testing data sets have 2500 and 750 pairs, respectively. The data have
been collected at a sampling frequency of 50 kHz. Half of the data have been obtained with a
sinusoidal excitation at x1 with frequency 3920 Hz and magnitude 4.06 V, and the other half
are obtained again with a sinusoidal excitement of frequency 3250 Hz and magnitude 2.35 V.
The experiments on this setup, data collection scheme, and some preliminary modeling results
are discussed in detail in [13].

The neural network based modeling problem is to develop the function f (·) in (8) such
that the response matches the real time data precisely and minimum amount of sensory
information is exploited.

xk+1
6 = f (xk

1 , xk
3 , xk

5 , xk
6 , xk−1

6 ) (8)

3.5 Data Set 6: Servo Data Set from UCI Repository

The data provided in [16] describes a prediction problem for a servomechanism’s rising
time that varies according to several mechanical settings and gain selections. The data set is
claimed to describe a highly nonlinear phenomenon motivating the research studies like the
one presented here. The set is composed of a total of 167 instances of data, among which the
first 100 are used for the training and the remaining 67 are reserved for testing set, which is
used to stop training at the best level of generalization.

3.6 Data Set 7: Iris Data Set from UCI Repository

The data provided in [16] describes a classification problem for three classes of Iris plants.
The input vector to the classifier contains sepal length, sepal width, petal length and petal
width, all in centimeters. The output of the classifier is one of the three labels Iris Setosa, Iris
Versicolour or Iris Virginica. In the training we assign −1 for the label Iris Setosa, 0 for the
label Iris Versicolour and +1 for the label Iris Virginica and convert the classification problem
into a tractable regression problem in between the three integers. Thresholding is possible
after the training is finished, yet, the performance of the classifier is directly proportional to
final RMSE value achieved.

In the UCI repository, 150 instances are provided. The training data has been selected in
such a way that every class contributes 40 instances, adding up to 120 instances for three
classes, and the remaining 30 instances have been used as testing data set.

3.7 Data Set 8: XOR Data

The most traditional data set used in the research of best neural network configuration is
perhaps the XOR data. Since it contains binary entries, the data set describes a highly simple
classification in between the two levels of voltage, namely High and Low. Clearly four lines
of data are used for training and each particular trial is continued until the completion of max-
imum number of epochs, which is equal to 250 in this study, as there is no testing data to stop.

4 Simulation Results

During the performance comparison phase, we first choose R = 2, 4, 5, 6, which describe
small sized networks. This is deliberate as we wish to compare the performance of simple
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structured networks, which are potentially useful for hardware implementations and are
generally more preferable than those introducing computational intensity for better perfor-
mance. Then we consider the cases with R = 8, 10, 12, 14, 16, 18, 20, 25, 40 and 100 to see
how the performance is influenced as the number of neurons in the hidden layer increases.

Initially, all adjustable parameters of the network are assigned to small random num-
bers distributed uniformly in between −0.01 and +0.01. This is another deliberate choice as
we would like to observe similar initial values for the Root Mean Squared Error (RMSE)
levels obtained for the experiments carried out with a particular activation function. This
would make it possible to see the effect of an activation function statistically over a set of
experiments and remove the possible effect of “lucky” initial conditions.

The neural network described in Sect. 2 is trained 100 times for every one of the neuronal
activation functions listed in Table 1, and the achieved RMSE value after the completion of
each training trial is recorded. Every individual training trial is terminated after the comple-
tion of 250 epochs unless the checking routine stops the process. If the epoch error increases
for 5 consecutive epochs, then the training is terminated before 250 epochs are completed.
A pseudo code describing the whole process is given below.

Having finished the implementation of the pseudo code in Fig. 3, we have a set of 100
element arrays containing the final values of RMSEs. Denote one such generic array by
A = {r1, r2, . . . , r100}. Clearly, this array contains information about what could be the
achievable best and what is a likely result of a training trial. In order to develop a descriptive
idea from the content of array A, a 20-bin histogram of the array A is constructed and the mean
of the distribution is computed then to describe the performance associated to a particular A
array. Such a method is clearly an unbiased qualifier of a particular set of experiments. Note
that, obtaining the mean of A directly would be an incorrect way to follow as there may be a
large number in A, and this number, though it is very unlikely to emerge, might dominate the
entire set of numbers available in the array A. Having obtained the mean of the distributions
associated to each A, since there are 8 different types of activation functions, we follow a
grading policy such that the activation function resulting in the best average value is assigned
a grade 7 and that associated to the least average value is assigned a grade 0. For each one of
the different hidden layer configurations, we obtain the Tables 2–15. For example, in Table 2,
R = 2 and we see that for the first data set (c1 prediction of biochemical process denoted
by Eq. 4 in the first column), best result is obtained for the sincos type activation function
and worst result is obtained with quan type activation, for which the relevant box is shaded
gray. This is clear from the first numeric column of the table. The same interpretation is

% Pseudo Code 
FOR R = 2,4,5,6,8,10,12,14,16,18,20,25,40,100 

FOR data set = 1 to 8 
FOR nonlinearity = {sincos, sinc, tanh, atan, log, wave, polyexp, quan} 

FOR trial = 1 to 100 
FOR Epoch = 1 to 250 

     Train The Network 
IF Test Error Increases 

     Terminate this training trial 
END

END
    Write the final RMSE value to RMSE(trial) 

END
   SAVE the RMSE array for this particular nonlinearity

END
END

END

Fig. 3 A pseudo code for the collection of final RMSE arrays
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Table 2 The results of grading procedure for R = 2

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
7

0.0083 
7

0.0232 
7

0.0843 
7

0.1138 
3

0.0921 
5

0.5270 
6

0.1532 
5

0.0002 

sinc
4

0.0083 
6

0.0233 
2

0.1331 
5

0.1981 
1

0.1146 
2

0.6850 
4

0.1735 
6

0.0002 

tanh
6

0.0083 
5

0.0233 
5

0.1251 
4

0.2321 
6

0.0784 
3

0.6399 
3

0.2012 
3

0.0729 

atan
5

0.0083 
4

0.0234 
6

0.1237 
3

0.2346 
7

0.0784 
7

0.4597 
7

0.1386 
4

0.0629 

log
3

0.0084 
3

0.0237 
3

0.1289 
2

0.2488 
5

0.0784 
6

0.5226 
5

0.1671 
1

0.1780 

wave
1

0.0124 
1

0.0387 
0

8.9616 
0

0.4253 
0

0.5814 
0

153.6120
0

4.3915 
7

0.0002 

quan
0

0.0272 
0

0.0464 
4

0.1288 
1

0.2875 
4

0.0790 
1

0.7524 
2

0.2085 
0

0.4739 

polyexp
2

0.0097 
2

0.0258 
1

0.1629 
6

0.1639 
2

0.1115 
4

0.5538 
1

0.2086 
2

0.0930 

Table 3 The results of grading procedure for R = 4

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
4

0.0082 
6

0.0223 
7

0.0123 
7

0.0413 
7

0.0774 
6

0.3800 
5

0.1432 
5

0.0002 

sinc
5

0.0082 
3

0.0226 
5

0.0250 
6

0.0610 
4

0.0777 
2

0.4428 
3

0.1481 
6

0.0001 

tanh
7

0.0082 
4

0.0224 
6

0.0215 
5

0.1361 
6

0.0775 
3

0.4298 
7

0.1312 
2

0.0051 

atan
6

0.0082 
5

0.0224 
4

0.0313 
4

0.1478 
5

0.0775 
7

0.2986 
6

0.1321 
1

0.0054 

log
3

0.0082 
7

0.0221 
2

0.0549 
2

0.1769 
3

0.0778 
5

0.3806 
4

0.1462 
3

0.0010 

wave
1

0.0103 
2

0.0228 
0

0.5323 
0

0.4699 
0

522.0249
0

929.9038
0

0.2406 
7

0.0001 

quan
0

0.0235 
0

0.0432 
3

0.0346 
1

0.3505 
1

0.0855 
1

0.6344 
1

0.1890 
0

0.1935 

polyexp
2

0.0092 
1

0.0288 
1

0.1205 
3

0.1754 
2

0.0786 
4

0.4051 
2

0.1547 
4

0.0003 

valid for the remaining columns, each of which is dedicated to a particular data set shown
on the top row of the table. Every cell in Table 2 contains a second number to describe the
mean of the distribution of A array associated to that particular cell. That is to say, the best
performer of the first column of Table 2 is sincos with a distribution average 0.0083, the
worst performer is quan with a distribution average 0.0272. Clearly, these values guide the
designer about positioning every single case among the others more precisely.

Regarding the other network configurations, a similar tabling is performed and the results
are tabulated in Tables 3–15. Naturally, such a sorting is a good way of distinguishing the well
performing and poor performing approaches. Having these data in front, three more tables
are given to interpret the total behavior under three categories. In Table 16, the comparison of
total grade of each case is presented. The first four data sets, namely the biochemical process
(4)–(5) and the processes described by (6) and (7) are separated as synthetic data sets and
the remaining four, i.e. cavity flow, servo data, Iris data and XOR table, are called the real
(or real-time) data sets. These subsets are also compared among themselves to figure out the
capabilities of neural networks, which might demonstrate excellence for one subset whereas
performing poor for the other is a possibility as well.
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Table 4 The results of grading procedure for R = 5

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
4

0.0082 
5

0.0222 
7

0.0114 
7

0.0340 
7

0.0772 
4

0.3545 
4

0.1415 
5

0.0002 

sinc
5

0.0082 
3

0.0224 
6

0.0132 
6

0.0402 
1

0.0835 
2

0.3641 
3

0.1426 
6

0.0001 

tanh
7

0.0081 
4

0.0223 
4

0.0165 
5

0.0715 
6

0.0773 
5

0.3378 
7

0.1305 
1

0.0030 

atan
6

0.0081 
6

0.0220 
5

0.0140 
4

0.0869 
5

0.0773 
7

0.2433 
6

0.1313 
2

0.0029 

log
3

0.0082 
7

0.0219 
2

0.0632 
2

0.1408 
3

0.0776 
6

0.3369 
5

0.1379 
3

0.0008 

wave
2

0.0090 
2

0.0229 
0

0.2465 
1

0.3225 
4

0.0775 
0

1.5708e8
0

0.2324 
7

0.0001 

quan
0

0.0171 
0

0.0394 
3

0.0308 
0

0.3430 
0

0.0866 
1

0.6304 
1

0.1787 
0

0.1643 

polyexp
1

0.0093 
1

0.0302 
1

0.1007 
3

0.1377 
2

0.0786 
3

0.3636 
2

0.1471 
4

0.0004 

Table 5 The results of grading procedure for R = 6

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
7

0.0114 
7

0.0335 
7

0.0770 
2

0.3337 
2

0.1400 
5

0.0001 

sinc
5

0.0082 
3

0.0223 
5

0.0126 
6

0.0352 
4

0.0771 
3

0.3242 
3

0.1398 
6

0.0001 

tanh
7

0.0081 
5

0.0220 
4

0.0159 
5

0.0535 
6

0.0771 
6

0.2717 
7

0.1305 
2

0.0024 

atan
6

0.0081 
6

0.0218 
6

0.0123 
4

0.0614 
5

0.0771 
7

0.2432 
6

0.1313 
1

0.0029 

log
4

0.0082 
7

0.0216 
2

0.0342 
3

0.1043 
2

0.0774 
5

0.2938 
5

0.1375 
3

0.0007 

wave
1

0.0093 
2

0.0228 
0

0.1667 
1

0.2838 
3

0.0774 
0

1.0321 
0

0.3692 
7

0.0001 

quan
0

0.0183 
0

0.0399 
3

0.0258 
0

0.3708 
0

0.0870 
1

0.5201 
1

0.1747 
0

0.1241 

polyexp
2

0.0088 
1

0.0296 
1

0.0892 
2

0.1344 
1

0.0784 
4

0.3174 
4

0.1392 
4

0.0003 

Table 6 The results of grading procedure for R = 8

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
6

0.0113 
7

0.0331 
6

0.0768 
2

0.3155 
2

0.1393 
5

0.0001 

sinc
4

0.0082 
3

0.0223 
5

0.0123 
6

0.0336 
7

0.0767 
3

0.2861 
4

0.1372 
6

0.0001 

tanh
7

0.0081 
5

0.0219 
4

0.0177 
5

0.0385 
4

0.0769 
5

0.2524 
7

0.1295 
2

0.0015 

atan
6

0.0081 
6

0.0216 
7

0.0106 
4

0.0436 
5

0.0769 
7

0.1612 
6

0.1310 
1

0.0015 

log
5

0.0081 
7

0.0213 
2

0.0286 
3

0.0717 
2

0.0770 
4

0.2611 
5

0.1324 
3

0.0006 

wave
1

0.0098 
2

0.0229 
0

0.1440 
1

0.1836 
3

0.0769 
1

0.4739 
3

0.1375 
7

0.0001 

quan
0

0.0116 
0

0.0367 
3

0.0178 
0

0.3694 
0

0.0858 
0

0.5530 
0

0.1649 
0

0.0913 

polyexp
2

0.0088 
1

0.0292 
1

0.0861 
2

0.1067 
1

0.0781 
6

0.2521 
1

0.1405 
4

0.0002 
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Table 7 The results of grading procedure for R = 10

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0081 
4

0.0221 
6

0.0113 
7

0.0328 
5

0.0767 
3

0.2999 
1

0.1397 
5

0.0001 

sinc
4

0.0081 
3

0.0223 
4

0.0122 
4

0.0438 
7

0.0764 
4

0.2591 
3

0.1357 
6

0.0001 

tanh
6

0.0081 
5

0.0219 
2

0.0169 
6

0.0334 
4

0.0767 
1

0.5531 
7

0.1296 
2

0.0013 

atan
5

0.0081 
6

0.0217 
7

0.0106 
5

0.0343 
6

0.0766 
7

0.1503 
5

0.1318 
1

0.0014 

log
7

0.0081 
7

0.0209 
5

0.0115 
3

0.0577 
2

0.0768 
5

0.2283 
6

0.1298 
3

0.0006 

wave
1

0.0094 
2

0.0229 
0

0.1390 
1

0.1730 
3

0.0768 
0

0.5990 
4

0.1325 
7

0.0001 

quan
0

0.0138 
0

0.0364 
3

0.0162 
0

0.3904 
0

0.0830 
2

0.4241 
0

0.1656 
0

0.0747 

polyexp
2

0.0086 
1

0.0279 
1

0.1081 
2

0.0906 
1

0.0784 
6

0.2262 
2

0.1386 
4

0.0002 

Table 8 The results of grading procedure for R = 12

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
5

0.0113 
5

0.0327 
2

0.0766 
3

0.2908 
1

0.1403 
5

0.0001 

sinc
4

0.0082 
3

0.0224 
4

0.0122 
4

0.0332 
7

0.0763 
5

0.2481 
3

0.1345 
6

0.0001 

tanh
5

0.0081 
5

0.0218 
3

0.0149 
7

0.0299 
4

0.0765 
1

0.5416 
7

0.1295 
2

0.0010 

atan
6

0.0081 
6

0.0217 
7

0.0106 
6

0.0302 
3

0.0765 
4

0.2677 
4

0.1318 
1

0.0011 

log
7

0.0081 
7

0.0210 
6

0.0111 
3

0.0515 
5

0.0765 
6

0.2143 
6

0.1305 
3

0.0005 

wave
1

0.0089 
2

0.0228 
0

0.1306 
1

0.1447 
6

0.0764 
0

0.5779 
5

0.1314 
7

0.0001 

quan
0

0.0120 
0

0.0362 
2

0.0159 
0

0.3489 
0

0.0821 
2

0.3675 
0

0.1676 
0

0.0743 

polyexp
2

0.0085 
1

0.0280 
1

0.0954 
2

0.0805 
1

0.0783 
7

0.2118 
2

0.1396 
4

0.0002 

Table 9 The results of grading procedure for R = 14

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
5

0.0112 
5

0.0329 
2

0.0765 
3

0.2754 
2

0.1397 
5

0.0001 

sinc
4

0.0082 
3

0.0224 
4

0.0121 
4

0.0335 
7

0.0761 
4

0.2536 
3

0.1342 
6

0.0001 

tanh
6

0.0081 
5

0.0219 
3

0.0137 
6

0.0300 
4

0.0764 
0

0.5883 
6

0.1294 
2

0.0009 

atan
5

0.0081 
6

0.0217 
6

0.0111 
7

0.0292 
3

0.0765 
7

0.1748 
4

0.1317 
1

0.0010 

log
7

0.0081 
7

0.0206 
7

0.0108 
3

0.0454 
5

0.0763 
5

0.2096 
5

0.1294 
3

0.0005 

wave
2

0.0085 
2

0.0229 
0

0.1311 
1

0.1164 
6

0.0763 
1

0.4773 
7

0.1289 
7

0.0001 

quan
0

0.0092 
0

0.0373 
2

0.0150 
0

0.3415 
0

0.0823 
2

0.3697 
0

0.1709 
0

0.0630 

polyexp
1

0.0085 
1

0.0272 
1

0.1040 
2

0.0800 
1

0.0785 
6

0.1964 
1

0.1432 
4

0.0002 
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Table 10 The results of grading procedure for R = 16

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
5

0.0112 
5

0.0329 
2

0.0765 
4

0.2706 
2

0.1410 
5

0.0001 

sinc
4

0.0082 
3

0.0224 
4

0.0120 
3

0.0758 
6

0.0761 
5

0.2531 
3

0.1339 
6

0.0001 

tanh
6

0.0081 
5

0.0219 
3

0.0132 
6

0.0290 
3

0.0764 
0

0.7728 
6

0.1295 
2

0.0009 

atan
5

0.0081 
6

0.0218 
6

0.0111 
7

0.0283 
4

0.0763 
2

0.3260 
4

0.1318 
1

0.0009 

log
7

0.0081 
7

0.0206 
7

0.0108 
4

0.0422 
7

0.0760 
6

0.2016 
5

0.1299 
3

0.0005 

wave
1

0.0088 
2

0.0229 
0

0.1258 
1

0.1083 
5

0.0763 
1

0.3262 
7

0.1291 
7

0.0001 

quan
0

0.0108 
0

0.0353 
2

0.0158 
0

0.3597 
0

0.0829 
3

0.3194 
0

0.1666 
0

0.0610 

polyexp
2

0.0084 
1

0.0268 
1

0.134
2

0.0760 
1

0.0787 
7

0.1726 
1

0.1423 
4

0.0002 

Table 11 The results of grading procedure for R = 18

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
5

0.0112 
5

0.0330 
2

0.0765 
4

0.2576 
2

0.1413 
5

0.0001 

sinc
4

0.0081 
3

0.0225 
4

0.0120 
3

0.0674 
6

0.0760 
5

0.2462 
3

0.1343 
6

0.0001 

tanh
6

0.081
5

0.0218 
3

0.0129 
6

0.0302 
3

0.0763 
0

0.4932 
6

0.1297 
2

0.0008 

atan
5

0.0081 
6

0.0218 
7

0.0107 
7

0.0280 
4

0.0763 
1

0.3431 
4

0.1322 
1

0.0009 

log
7

0.0081 
7

0.0207 
6

0.0107 
4

0.0405 
7

0.0757 
6

0.1905 
5

0.1300 
3

0.0004 

wave
1

0.0087 
2

0.0228 
0

0.1280 
1

0.1076 
5

0.0763 
2

0.3205 
7

0.1297 
7

0.0001 

quan
0

0.0096 
0

0.0352 
2

0.0155 
0

0.3357 
0

0.0811 
3

0.2849 
0

0.1698 
0

0.0590 

polyexp
2

0.0084 
1

0.0270 
1

0.1043 
2

0.0795 
1

0.0789 
7

0.1567 
1

0.1430 
4

0.0002 

Table 12 The results of grading procedure for R = 20

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0221 
5

0.0111 
5

0.0332 
2

0.0764 
3

0.2656 
2

0.1405 
5

0.0001 

sinc
4

0.0082 
3

0.0225 
4

0.0119 
4

0.0336 
6

0.0760 
4

0.2496 
3

0.1339 
6

0.0001 

tanh
6

0.0081 
5

0.0219 
3

0.0132 
6

0.0306 
4

0.0763 
0

0.7388 
6

0.1302 
2

0.0007 

atan
5

0.0081 
6

0.0218 
6

0.0107 
7

0.0283 
5

0.0763 
1

0.3448 
4

0.1319 
1

0.0008 

log
7

0.0081 
7

0.0207 
7

0.0107 
3

0.0385 
7

0.0756 
6

0.1834 
5

0.1308 
3

0.0004 

wave
2

0.0082 
2

0.0229 
0

0.1278 
1

0.1012 
3

0.0763 
2

0.2703 
7

0.1292 
7

0.0001 

quan
0

0.0095 
0

0.0347 
2

0.0158 
0

0.3450 
0

0.0807 
5

0.2362 
0

0.1707 
0

0.0545 

polyexp
1

0.0084 
1

0.0269 
1

0.0876 
2

0.0796 
1

0.0792 
7

0.1498 
1

0.1436 
4

0.0002 
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Table 13 The results of grading procedure for R = 25

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
4

0.0223 
5

0.0110 
5

0.0331 
3

0.0765 
3

0.2567 
2

0.1427 
5

0.0001 

sinc
4

0.0082 
3

0.0225 
4

0.0118 
4

0.0335 
6

0.0758 
4

0.2355 
3

0.1346 
6

0.0001 

tanh
6

0.0081 
5

0.0221 
3

0.0129 
6

0.0300 
4

0.0763 
0

0.7967 
6

0.1299 
2

0.0007 

atan
5

0.0081 
6

0.0218 
6

0.0109 
7

0.0276 
5

0.0762 
1

0.4350 
5

0.1322 
1

0.0007 

log
7

0.0081 
7

0.0210 
7

0.0106 
3

0.0355 
7

0.0751 
6

0.1840 
4

0.1324 
3

0.0004 

wave
2

0.0082 
2

0.0229 
0

0.1332 
1

0.1052 
2

0.0766 
5

0.2055 
7

0.1293 
7

0.0001 

quan
0

0.0107 
0

0.0346 
2

0.0153 
0

0.3686 
0

0.0818 
2

0.2761 
0

0.1777 
0

0.0524 

polyexp
1

0.0083 
1

0.0258 
1

0.0806 
2

0.0750 
1

0.0794 
7

0.1521 
1

0.1453 
4

0.0002 

Table 14 The results of grading procedure for R = 40

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
3

0.0082 
2

0.0228 
6

0.0110 
4

0.0337 
2

0.0764 
2

0.2382 
2

0.1462 
5

0.0001 

sinc
4

0.0081 
5

0.0225 
5

0.0116 
3

0.0349 
6

0.0763 
4

0.2247 
3

0.1349 
6

0.0001 

tanh
6

0.0081 
4

0.0225 
4

0.0123 
6

0.0308 
4

0.0763 
1

0.5413 
5

0.1313 
2

0.0005 

atan
5

0.0081 
6

0.0220 
3

0.0125 
7

0.0280 
5

0.0763 
0

0.6297 
4

0.1323 
1

0.0006 

log
7

0.0081 
7

0.0218 
7

0.0106 
5

0.0313 
7

0.0745 
5

0.2210 
6

0.1307 
3

0.0004 

wave
2

0.0082 
3

0.028
0

0.1228 
1

0.0937 
3

0.0764 
7

0.1589 
7

0.1291 
7

0.0001 

quan
0

0.0120 
0

0.0308 
2

0.0148 
0

0.4508 
0

0.0802 
3

0.2326 
0

0.1905 
0

0.0417 

polyexp
1

0.0082 
1

0.0247 
1

0.0448 
2

0.0665 
1

0.0800 
6

0.2050 
1

0.1477 
4

0.0002 

Table 15 The results of grading procedure for R = 100

Eq.(4) Eq.(5) Eq.(6) Eq.(7) Cavity Servo Iris Xor

sincos
2

0.0082 
3

0.0231 
6

0.0108 
5

0.0337 
6

0.0765 
3

0.2055 
1

0.1523 
5

0.0001 

sinc
3

0.0082 
7

0.0223 
5

0.0115 
3

0.0355 
3

0.0796 
5

0.1867 
4

0.1372 
6

0.0001 

tanh
7

0.0081 
2

0.0231 
4

0.0128 
6

0.0320 
4

0.0766 
1

0.5136 
6

0.1313 
2

0.0004 

atan
4

0.0081 
4

0.0230 
3

0.0134 
7

0.0295 
5

0.0766 
0

0.8380 
5

0.1323 
1

0.0005 

log
5

0.0081 
6

0.0223 
7

0.0106 
4

0.0346 
7

0.0751 
2

0.2273 
2

0.1474 
3

0.0003 

wave
6

0.0081 
5

0.0227 
0

0.0946 
1

0.0947 
0

0.0831 
6

0.0786 
7

0.1305 
7

0.0001 

quan
0

0.0127 
0

0.0282 
2

0.0137 
0

0.4689 
1

0.0818 
4

0.1893 
0

0.1997 
0

0.0370 

polyexp
1

0.0082 
1

0.0238 
1

0.0382 
2

0.0804 
2

0.0797 
7

0.0667 
3

0.1446 
4

0.0003 
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Table 16 Overall comparison of the results for the entire sets of data
R = 2 4 5 6 8 10 12 14 16 18 20 25 40 100 Average 

sincos 47 47 43 37 35 34 28 29 30 30 29 30 26 31 34.0 
sinc 30 34 32 35 38 35 36 35 34 34 34 34 36 36 34.5
tanh 35 40 39 42 39 33 34 32 31 31 32 32 32 32 34.6 
atan 43 38 41 41 42 42 37 39 35 35 35 36 31 29 37.4
log 28 29 31 31 31 38 43 42 46 45 45 44 47 36 38.3
wave 9 10 16 14 18 18 22 26 24 25 24 26 30 32 21.0 
quan 12 7 5 5 3 5 4 4 5 5 7 4 5 7 5.6 
polyexp 20 19 17 19 18 19 20 17 19 19 18 18 17 21 18.6 

The information conveyed through the Tables 2–15 is informative yet still implicit as each
table is dedicated to a particular neural network configuration determined by the parame-
ter R. In the following three tables, the collected information is evaluated for the goal of
extracting a guiding knowledge for the practitioners of neural networks. For this purpose, in
Table 16, the total number of grades for each approach is presented. For every studied value
of R, the activation type with the highest grade is designated in a black box, and its follower
is designated in a box shaded gray. The rightmost column gives the average grade over the
rows of the table. In a sense, this average can be considered as the overall performance of
each neuronal activation function.

Three important findings from Table 16 are as follows:

• For small networks that have few neurons, sincos type activation function is more
advisable than the other alternatives.

• log type neuronal activation function has the highest average value, which is 38.3, and
this activation function is the best for mid sized and large sized network structures.

• As opposed to the traditional choice, tanh type activation function demonstrates an
average performance and it is poorer than sincos for small sized networks.

Briefly, if the number of neurons is a critical parameter, e.g. in analog implementations,
then utilizing sincos type activation function is more advantageous, otherwise one’s good
choice would be to select the log type activation function as its performance is generally
good.

When we confine ourselves to the results obtained with the synthetic data, we do not see
to much difference from the major results drawn from Table 16. Following observations are
visible from Table 17.

• Networks exploiting sincos type neuronal activation function maintain the good per-
formance for small R.

• atan type neuronal activation function has the highest average value, which is 22.2,
and this activation function is either the best or the second best in most of the cases.
Noting that the log type activation function’s average grade and its behavior for varying
R indicates that the log type of activation function is still a powerful candidate.

• Similar to the previous table, for small R, tanh type activation function is still poorer
than network structures exploiting sincos function.

Finally, the performances for the last four data sets have been considered separately in
Table 18. These data sets include the cavity flow data, servo data, Iris data and XOR data. The
values in Table 18 do not consistently point a specific type of neuronal activation. According
to the results seen in the table, following remarks need emphasis.

• For small sized networks, sincos and atan type activation functions seem to be the
best approaches and for the remaining R values, sincos behaves very similar to tanh
type neuronal activation function utilizing network configurations.
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Table 17 Overall comparison of the results for the synthetic data
R = 2 4 5 6 8 10 12 14 16 18 20 25 40 100 Average 

sincos 28 24 23 21 20 20 17 17 17 17 17 17 15 16 19.2 
sinc 17 19 20 19 18 15 15 15 14 14 15 15 17 18 16.5 
tanh 20 22 20 21 21 19 20 20 20 20 20 20 20 19 20.1 
atan 18 19 21 22 23 23 25 24 24 25 24 24 21 18 22.2
log 11 14 14 16 17 22 23 24 25 24 24 24 26 22 20.4
wave 2 3 5 4 4 4 4 5 4 4 5 5 6 12 4.8 
quan 5 4 3 3 3 3 2 2 2 2 2 2 2 2 2.6 
polyexp 11 7 6 6 6 6 6 5 6 6 5 5 5 5 6.1 

Table 18 Overall comparison of the results for the real (or real-time) data
R = 2 4 5 6 8 10 12 14 16 18 20 25 40 100 Average 

sincos 19 23 20 16 15 14 11 12 13 13 12 13 11 15 14.8 
sinc 13 15 12 16 20 20 21 20 20 20 19 19 19 18 18.0
tanh 15 18 19 21 18 14 14 12 11 11 12 12 12 13 14.4 
atan 25 19 20 19 19 19 12 15 11 10 11 12 10 11 15.2 
log 17 15 17 15 14 16 20 18 21 21 21 20 21 14 17.9
wave 7 7 11 10 14 14 18 21 20 21 19 21 24 20 16.2
quan 7 3 2 2 0 2 2 2 3 3 5 2 3 5 2.9 
polyexp 9 12 11 13 12 13 14 12 13 13 13 13 12 16 12.6 

• For mid-sized networks, sinc and atan type functions perform well and sinc type
activation function becomes the best in average, with a grade 18.0.

• Surprisingly, for large size networks, the best performing network structure is the one
utilizing wave type activation function. For these networks, the table shows that log type
activation function is a good alternative as well.

• Similar to the previous two tables,tanh type activation function demonstrates an average
performance according to the table.

Concatenating the three tables, one sees thatsincos type neuronal nonlinearity performs
well for small R. Particularly for synthetic data, this type of neuronal activation function yields
significantly better results than the others. Again for small sized networks, in average, sinc
type activation function performs good for real data. The best performer and its follower are
scattered in the table concerning the real data and considering the three tables together, one
sees that the sincos type activation function would be a good choice if the small network
size is a constraint.

As a last issue, a comparison of average computing times denoted by TA in microseconds
for the considered activation functions are presented in Table 19. Every activation function
in the left column is presented an argument and the neuron output is computed for 2,000,000
randomly chosen input values. The elapsed times are measured and averaged to obtain the TA

value of the same row. According to the table, it is seen that the highest value is encountered
with the sinc type and this is still affordable when the capabilities of today’s microproces-
sors are taken into account.

Clearly, the values seen above put forth a tradeoff. For a fixed network structure, if the
achievable smallest RMSE values for a given data set were the same for all eight activation
functions, the designer’s choice would be the one having smallest TA value to minimize
possible propagation delays caused by the neural network. On the other hand, under the same
condition, the designer might choose the minimum-number-of-adjustable-parameters neural
model to minimize the delays for on line learning applications. This discussion shows that
the tradeoff in choosing the most preferable neuronal activation function is tightly coupled
with the priorities of the designer as well as the nature of the problem in hand.
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Table 19 A comparison of the
computational complexity
obtained on a Pentium II
computer

Nonlinearity type TA

atan 0.3435

wave 0.3830

polyexp 0.3840

tanh 0.6160

sincos 1.1020

quan 2.7500

log 6.1090

sinc 104.3360

The major contribution of this paper is to illustrate that a neural network’s representa-
tional performance could be made better if the activation scheme for a neuron is reinterpreted.
Though not based upon an inspiration from biology,sincos andsinc type of neuron firing
schemes are proposed and among them sincos is found to be very useful for small R.

5 Conclusions

This paper presents a comparison of neuronal activation functions utilized mostly in neural
network applications. In order to render the results distinguishable, we consider eight different
data sets and eight different neuronal activation functions for a given network configuration.
The presented research covers single hidden layer networks having 2, 4, 5, 6, 8, 10, 12, 14,
16, 18, 20, 25, 40 and 100 hidden neurons for all experiments described above. Every training
trial is repeated 100 times and the final value of the RMSE is recorded. Clearly, a total of
89,600 training trials, each composed of 250 epochs, carry significant information about the
effect of neuronal activation function.

The first important conclusion drawn from the tables is that the networks having sincos
type activation function, proposed in this paper, display better performance than its alterna-
tives operated with small R. This is a substantially important finding letting the designers
and engineers build more compact neural systems displaying the same performance of the
traditional yet more complicated systems.

Second conclusion of the presented study is the consistently good performance of log
type of activation function employing neural networks. Considering the widespread use of
hyperbolic tangent (tanh) type neural networks, it is believed that this is another guiding
conclusion for the practitioners of connectionist models.

In sum, for small sized networks, the usefulness of the neuronal activation function named
sincos and described by f (S) = a sin(pS)+b cos(q S) is one; for mid sized networks, use-
fulness of atan and log type of activation function instead of hyperbolic tangent function
is another major contribution of this paper.

Future work of the author aims at implementing the best performing approaches for the
identification and control of unmanned lightweight systems.
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