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Abstract:  This paper presents a novel approach for designing discrete time fuzzy sliding mode controllers for a class of 
nonlinear systems. The motivation of the study is to explain how a sliding regime can be created in the behavior of a 
computer-controlled SISO nonlinear system, the details of the dynamic representations of which is unknown. The 
scheme exploits the regional information contained in the fuzzy quantification of the error vector. The bottom-up 
approach is proven to be computationally efficient for real time control applications requiring the handling of 
uncertainty and impreciseness and yielding a good tracking performance under the presence of time-varying plant 
parameters and observation noise. The analytical claims have been confirmed on a biochemical process model. The 
results obtained through simulations justify the theoretical claims. 
 
Key-words: Discrete Time Sliding Mode Control, Fuzzy Control, Parameter Tuning, Biochemical Process Control 
 
1 Introduction 
Variable structure systems with a sliding mode have 
extensively been studied by many researchers. The 
invariance properties and insensitivity to parameter 
variations are the most prominent features that are 
observed from a variable structure control system. The 
method is based on the construction of a two-sided 
decision mechanism, the boundary of which is described 
by a function called switching function. Particularly for 
continuous time systems, the design procedure is well 
established and many aspects of the control technique 
have already been analyzed in detail [1-4]. The design 
and implementation of variable structure control systems 
in discrete time have later been considered, and still the 
framework of Discrete Time Sliding Mode Control 
(DTSMC) is in progress towards figuring out the design 
issues under a set of conditions describing the problem. 
One of the notable works discussing the stability issues 
in DTSMC is presented in [5], in which the sufficient 
conditions for convergence are discussed. 

This paper proposes a fuzzy control scheme for 
biochemical systems. The method is based on the tuning 
of the defuzzifier parameters while maintaining the 
membership functions time-invariant. The plant is under 
an ordinary feedback loop and the controller processes 
the plant state at discrete instants of time. The 
contribution of the paper is the postulation of a novel 
error extraction scheme and the use of a particular tuning 
mechanism to achieve a set of performance 
specifications under the presence of noise and 
uncertainties. In the second section, a thorough analysis 
of the control system is presented. At the outset, the 
class to which the plant belongs is described, the 

structure of the fuzzy controller is presented and the 
adaptation strategy is discussed. In the third section, the 
bioreactor control problem is described. The conclusions 
are presented at the end of the paper. 
 
 
2 Analysis of the Control System 
Consider the control system structure depicted in Fig. 1. 
 
 

 
Fig. 1. Structure of the Control System 

 
The behavior of the plant under control has the structure 
given by (1), in which a subscript k stands for time 
index. 
 

( ) ( ) kckknkkk uxxgxxfx −−+ += ,...,,...,1  (1)
 
where n and c are some integers determining the effect 
of delay depth, furthermore, the function f is unknown 
while g is available. The system above is a SISO one and 
can more compactly be written as kkkk ugfx +=+1 . 
According to Fig. 1, the error on the output x at time k is 
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expressed as kkk rxe −= , where r(t) is the command 
signal. Define the switching function as 
 

pkpkkk eees −− +++= ααα ...110  (2)
 
where the dynamics determined by sk=0 is stable, i.e. the 
roots of the polynomial α0zp+ α1zp-1+…+ αp lie inside 
the unit circle. Now adopt a closed loop switching 
dynamics described generically as ( )kk sQs =+1 , and 
evaluate sk+1, which is given below. 
 

( ) 1110

11101

...        

...

+−+

+−++

+++−+=

+++=

pkpkkkkk

pkpkkk

eerugf

eees

ααα

ααα
 (3)

 
Using ( )kk sQs =+1  and solving for uk gives the control 
sequence formulated as below. 
 

( ) ( )( )( )11
1

01
1 ... +−

−
+

− ++−+−= pkpkkkkkk eesQfrgu ααα  (4)
 
If the values of the functions fk and gk were available, the 
application of this sequence to the system of (1) would 
result in ( )kk sQs =+1 , where Q must satisfy the 
condition below to ensure reaching [5]. 
 

( ) ( )( ) 01 <−=−+ kkkkkk ssQssss  (5)
 

If the condition above is satisfied for ∀k≥0, the 
system is driven towards the dynamics characterized by 
sk=0. However in practice, sk=0 is rarely observed as the 
problem is described in discrete-time. A realistic 
observation is |sk|<ε, where ε is some positive number. In 
the literature, this phenomenon is called quasi-sliding 
mode, or equivalently pseudo-sliding mode. This mode 
has useful invariance properties in the face of 
uncertainties and time variations in the plant and/or 
environment parameters. Once the quasi-sliding regime 
starts, the error signal behaves as what is prescribed by 
|sk|<ε. 
 
2.1 Computing the Control Error 
Consider Fig. 1, which demonstrates that the quantity sCk 
would be the error on the applied control signal if we 
had a supervisor providing the desired value of the 
control denoted by udk. However, the nature of the 
problem does not allow the existence of such 
supervisory information, instead of it, the designer is 
enforced to extract the value of sCk from the available 
quantities. In what follows, we present a method to 
extract the error on the control signal. 
Assumption 2.1: The functions fk and gk of (1) are such 
that a desired quasi-sliding mode can be created with a 
suitable selection of the design parameters, more 

explicitly, we assume that the DTSMC task is 
achievable. 
Remark 2.2: A control sequence leading to DTSMC can 
be formulated if the dynamics of the system in (1) is 
totally known or if the nominal system is known with the 
bounds of the uncertainties. It must be noted that the 
disturbances and uncertainties are assumed to enter the 
system through the control channel [1]. When the control 
sequence in (4) is applied to the system of (1), we call 
the resulting behavior as the target DTSMC and the input 
signal leading to it as the target control sequence (uk). If 
at least the explicit forms of the nominal representations 
of fk and gk are not known, it should be obvious that the 
target control sequence cannot be constructed by 
following the traditional DTSMC design approaches. 
Definition 2.3: Given an uncertain plant, which has the 
structure described as in (1), and a command trajectory 
rk for k≥0, the input sequence denoted by udk satisfying 
the following difference equation is defined to be the 
idealized control sequence, and the difference equation 
itself is defined to be the reference DTSMC model. 
 

( )
( ) dkdkdkdckkk

bkdkdnkkdkk

uuurrg
uurrfr

−−−

−−−+ +=

,1,

,1,1

,...,,,...,          
,...,,,...,

 (6)

 

or more compactly dkkdkk ugfr +=+1 . Mathematically, 
the existence of such a model and the sequence means 
that the system of (1) perfectly follows the command 
trajectory (rk) if both the idealized control sequence (udk) 
is known and the initial conditions are set as x0=r0, more 
explicitly ek ≡ 0 for ∀k≥0. Undoubtedly, the reference 
DTSMC model is an abstraction as the functions 
appearing in it are not available, however, the concept of 
idealized control sequence should be viewed as the 
synthesis of the command signal rk from the time 
solution of the difference equation in (6). 
Fact 2.4: If the target control sequence formulated in (4) 
were applied to the system of (1), the idealized control 
sequence would be the steady state solution of the 
control signal, i.e. dkkk uu =∞→lim . However, under the 
assumption of the achievability of the DTSMC task, the 
difficulty here is again the unavailability of the 
functional forms of the functions fk and gk. Therefore, the 
aim in this subsection is to discover an equivalent form 
of the discrepancy between the control applied to the 
system and its target value by utilizing the idealized 
control viewpoint. This discrepancy measure is denoted 
by sCk=uk−udk. If the target control sequence of (4) is 
rewritten by using (6), one gets (7) and setting 

dkkk fff −=Δ  gives (8) 
 

)))...()((        
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( ) ( ) ( )( )11
1

0
1 ... +−

−− ++−++Δ= pkpkkkdkkkk eesQgufgu ααα  (8)
 

The target control sequence becomes identical to 
the idealized control sequence, i.e. uk≡udk as long as 

( ) 0... 110 =+++−Δ +− pkpkkk eesQf ααα  holds true for 

∀k≥0. However, this condition is of no practical 
importance as we do not have the analytic forms of the 
functions fk and gk. Therefore, one should consider this 
equality as an equality to be enforced instead of an 
equality that holds true all the time, because its 
implication is sCk=0, which is the ultimate goal of the 
design. It is obvious that to enforce this equality to hold 
true will let us synthesize the target control sequence, 
which will eventually converge to the idealized control 
sequence by the adaptation algorithm yet to be 
discussed. Consider sk+1 given below. 
 

( )kCkk

pkpkkCkkk

sQsg

eefsgs

+=

+++Δ+= +−+

0

11001

        

...

α

αααα
 (9)

 
Solving the above equation for sCk yields the following 
 

( ) ( )( ) dkkkkkCk uusQsgs −=−= +
−

1
1

0α  (10)
 
The interpretation of the above control error measure is 
as follows: Since we are in pursuit of enforcing 

( )kk sQs =+1  in the closed loop, during the time until 
which this equality does not hold true, the applied 
control sequence is not the sought one. However, if an 
adaptation strategy enforces (10) to approach zero, this 
enforces ( )kk sQs →+1 , consequently uk→udk as k 
increases. 
Remark 2.5: The reader must here notice that the 
application of udk for ∀k≥0 to the system of (1) with zero 
initial errors will lead to ek ≡ 0 for ∀k≥0, on the other 
hand, the application of uk for ∀k≥0 to the system of (1) 
will lead to sk=0 for ∀k≥kh, where kh is the hitting time 
index, at which the quasi-sliding regime starts. 
Therefore, the adoption of (10) as the equivalent 
measure of the control error loosens ek ≡ 0 for ∀k≥0 
requirement and enforces ( )kk sQs →+1 . Consequently, 
the tendency of the control scheme will be to generate 
the target DTSMC sequence of (4). 
Remark 2.6: Referring to (10), it should be obvious that 
if ( ) 01 <−+ CkkCCk sss  is satisfied ( ) 01 <−+ kkk sss  is 
enforced. Verbally, if the control signal approaches the 
target control sequence, the DTSMC task is achieved 
and the plant follows the command signal. 
 
2.2 Fuzzy Controller 
Consider a two-input, one output fuzzy controller having 
R rules in the rule base, triangular membership functions 

and product inference engine. The input-output relation 
of such a system is given by 
 

( )
( )∑ ∏

∑ ∏
= =

= == R
i j jkij

R
i j jkijik

k e

e
u

1
2

1

1
2

1

μ

μβ
 (11)

 
where, ejk is the jth component of the input vector at time 
k, μij is the ith rule’s jth membership function and βik is 
the scalar conclusion of ith rule and is adjustable. The 
fuzzy system above can more compactly be expressed as 

k
T
kku Ω= β , where β and Ω are R×1 vectors and 

( ) 1

1

−

=∑=Ω R
i ikkk ww  with ( )∏ == 2

1j jkijik ew μ . Set R=9 

and consider the fuzzy quantization depicted in Fig. 2. 
We set the membership functions time-invariant, and 
consider solely the adjustment of β vector. According to 
Fig. 2, 11 =∑ =

R
i ikw , therefore kk w=Ω . 

 

 
 

Fig. 2. Construction of the Membership Functions 
 
2.3 Adaptation Mechanism 
Define the following quantities: 11 ++ ΔΩ+Ω=Ω kkk  and 

1 1 ++ Δ+= kddkkd uuu . In order not to violate the 
requirements of the physical reality, we impose 

Ω≤ΔΩ Bk 2 for ∀k≥0 and 
dudk Bu 2≤Δ  for ∀k≥0, 

where BΩ and Bud are some positive constants satisfying 
Ω≤Ω Bk  and 

dudk Bu 2≤  for ∀k≥0 respectively. 
Furthermore, the adjustable parameter vector of the 
fuzzy controller is assumed to evolve bounded, i.e. 

ββ B
k

≤|||| , where Bβ is some positive constant. Using 

these quantities, we set 
duBBB 22 ++= Ωβζ  and 

assume that Γ>ΩΩΩΩ + )/()( 1 k
T
kk

T
k >0 is satisfied for some 

subspace of the space ℜ2. The existence of such a Γ and 
the meaning of the assumption will be discussed later. 
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Theorem 2.7: For a discrete time SISO system of 
structure (1), the use of a 2-input one output fuzzy 
controller described in (11) with a parameter adaptation 
rule as described in (12) leads to ( ) 01 <−+ CkkCCk sss . 
 

( )Ck
k

T
k

k
kk

ssgn
1 ΩΩ

Ω
−=

+
γββ  (12)

 
where, γ is a positive constant satisfying γ>ζ/Γ. 
 
Proof: 

( ) ( )Ckdkk
T
kCkCkCkCk sussss −−Ω=− ++++ 1111 β  

( ) )sgn   

(

1
1

1

CkdkCk
k

T
k

k
T
k

k
T
kdkdkk

T
kCk

sus

uus

−−
ΩΩ

ΩΩ
−

ΔΩ++−Ω=

+
+

+

γ

ββ

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Δ−

ΩΩ

ΩΩ
−ΔΩ= +

+
+ 1

1
1 sgn dkCk

k
T
k

k
T
k

k
T
kCk uss γβ  

( ) CkuCk
k

T
k

k
T
k sBBBs

d
221 +++

ΩΩ

ΩΩ
−≤ Ω

+
βγ  

Ck
k

T
k

k
T
k s⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ΩΩ
ΩΩ

−= + ζγ 1  

( ) Cksζγ −Γ−< < 0 (13)
 
This implies that the adaptation mechanism of (12) 
enforces the fuzzy controller to synthesize the target 
control sequence, which leads to the achievement of the 
prescribed DTSMC task, and the theorem is proved. 
Theorem 2.8: There exists a strictly positive Γ if the 
motion in the 2-dimensional controller input space 
satisfies the conditions in (14) and (15). 
 

( ) ( ) 1111 11 1 Λ−≤−+ kiki ee μμ  (14)
 

( ) ( ) 2221 22 1 Λ−≤−+ kiki ee μμ  (15)
 
where, 0<Λ1<1 and 0<Λ2<1. 
 
Proof: Since γ>ζ/Γ  and we assumed that 

Γ>ΩΩΩΩ + )/()( 1 k
T
kk

T
k >0, we need is to evaluate the least 

value of Γ>ΩΩΩΩ + )/()( 1 k
T
kk

T
k  and to show that it is 

strictly positive. Before going into the details, one has to 
notice from (14)-(15) that a binary change in any of the 
membership functions is prohibited. For example, if 
μi1(e1k)=1 for some k, the value of μi1(e1 k+1) can decrease 
at most to the level 1-Λ1. Referring to Fig. 2, let the input 
vector is to perform a transition from region A1 at time k 
to region A6, at time k+1, and denote this transition by 

A1 → A6. Clearly, the conditions in (14)-(15) require that 
the point ek in Fig. 2 can reach points in the shaded area 
at time k+1. This area is the largest area that can be 
reached from the region A1, as the point ek is at the 
mutual neighborhood of the regions A1 and A6. Having 
this in mind, we can claim that the least value of 1+ΩΩ k

T
k  

that can be observed from A1 → A6 transition is Λ1Λ2. In 
obtaining this, one should note that it is sufficient to 
check the least value of 1+ΩΩ k

T
k  because the supremum 

value of 1+ΩΩ k
T
k  is unity. Once the minimal least value of 

1+ΩΩ k
T
k  for all possible transitions is constructed, a 

candidate Γ value can be set if the globally minimum 
value of 1+ΩΩ k

T
k  is strictly positive. After straightforward 

manipulations, one can show that 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΛΛ⎟

⎠
⎞

⎜
⎝
⎛ Λ

−⎟
⎠
⎞

⎜
⎝
⎛ Λ

−ΛΛ>
ΩΩ

ΩΩ +
21

21
21

1 ,
2

1
2

1min
k

T
k

k
T
k  (16)

 
The result above ensures that a Γ>0 exists and it satisfies 
the inequality in (17). 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΛΛ⎟

⎠
⎞

⎜
⎝
⎛ Λ

−⎟
⎠
⎞

⎜
⎝
⎛ Λ

−ΛΛ<Γ< 21
21

21 ,
2

1
2

1min0  (17)

 
The result we obtained proves Theorem 2.8 and confirms 
the stability claim of Theorem 2.7. � 
Remark 2.9: A system of structure (1) in the feedback 
loop illustrated in Fig. 1 can be driven towards a quasi-
sliding mode if the adopted fuzzy controller has the 
structure discussed in subsection 2.2 and if the 
adaptation mechanism is as given in (12). The proposed 
scheme extracts the error measure by using (10), which 
is to be used in the adjustment of the fuzzy controller 
parameters. 
 
 
2.4 Practical Issues 
 
2.4.1. Sampling Time 
The multivariable functions f and g seen in the dynamics 
of the system of (1), must be smooth enough, and the 
command signal must be smooth enough in order not to 
cause jumps violating (14) and (15). This requirement is 
tightly dependent upon the sampling period Ts. 
 
2.4.2. Causality 
In (10), we have found that the error on the applied 
control at time k is ( ) ( )( )kkkCk sQsgs −= +

−
1

1
0α . 

However, the right hand side requires the value sk+1. In 
the studied process control application, we set 

( ) ( )( )1
1

10 −
−

− −= kkkCk sQsgs α , the right hand side of 
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which is actually the control error at time k-1. Assuming 
this form as practically equivalent measure of the control 
error, we introduce some amount of uncertainty into the 
control system, which can be represented in the system 
dynamics that has already been assumed to be unknown. 
 
2.4.3. Actuation Speed 
Another important issue is the actuation speed of the 
system under control, i.e. the ability to respond to what 
is imposed timely. Since we assume that the details 
concerning the dynamic model of the system are 
unavailable, what causes a difficulty from a practical 
point of view is the selection of Q(sk), which 
characterizes the behavior during the reaching mode. 
The parameters of this quantity can only be set by trial-
and-error due to the lack of system-specific details. 

In the application example, we utilize 
( ) ( )ksksk sTsTs sgn1 211 λλ −−=+ , where λ1>0, λ2>0 and 

(1−λ1Ts)>0. The sign function is smoothed out for 
eliminating the adverse effects of chattering 
phenomenon. 
 
 
3 Application Example 
The model used in this subsection is a bioreactor defined 
by Ungar [6] as a benchmark problem. In [7], a neural 
network assisted model reference control for this model 
is studied. Feldkamp et al [8] apply dynamic gradient 
methods using neural networks for control purpose, and 
Gorinevsky [9] studies the same benchmark problem 
using affine radial basis function network architecture. 

The process is a tank containing water, nutrients, 
and biological cells (x1) where the cells mix with 
nutrients (x2). The volume in the tank is maintained at a 
constant level by removing tank contents at a rate equal 
to the incoming rate which is denoted by u. This rate is 
called the flow rate and is the variable by which the 
bioreactor is controlled. The bioreactor control problem 
is to maintain the cell concentration (x1) at a desired 
level by appropriately altering the inflow rate (u). The 
plant is kept in an ordinary feedback loop as illustrated 
in Fig. 1, and the method discussed is applied as the 
control scheme. The observed state variable is corrupted 
by a Gaussian distributed random noise having zero 
mean and variance given in Table 1 for each application. 
Furthermore, we set δ = 0.25 for the sign function 
smoothing parameter. The continuous-time equations of 
the plant dynamics are given by (18) and (19). 
 

( ) 12 /
2111 1 κxexu + xx = x −−&  (18)

 

( )
22

2/
2122 1

11 12

x
exu+xx= x x

−+
+

−−
κ

κκ&  (19)

where 0<x1,x2<1, 0<u<2, κ1=0.48 (nutrient inhibition 
parameter) and κ2=0.02 (growth rate parameter). 
Furthermore, the initial values are random variables 
uniformly distributed over the intervals 
0.1086<x1(0)<0.1328 and 0.7921<x2(0)<0.9681. The 
control system has been simulated with a step size of 
0.01 sec, and the control period (Ts) has been set to 0.5 
sec [6]. The bioreactor is a challenging control problem 
for several reasons. Although the task involves few 
variables and is easily simulated, its nonlinearity makes 
it difficult to control. For example, small changes in the 
values of the parameters can cause the bioreactor to 
become unstable. The issues of delay, nonlinearity, 
instability and limit cycles can be studied with the 
bioreactor control problem. Additionally, significant 
delays exist between changes in flow rate and the 
response in cell concentration [6]. Based on the 
parameter settings given in the second column of Table 
1, the results obtained are given in Fig. 4. 

In Fig. 4(a), the reference signal (r, dashed line) and 
the cell concentration (x1, solid line) are illustrated. 
Especially after the sharp transitions in the reference 
signal, a fast transient is observed in the cell 
concentration, and the steady state is reached quickly. 
The behavior of control input and the nutrients are 
illustrated Fig. 4(b) and (c) respectively. It is apparent 
that the constraints of the control problem are met. Fig. 
4(d) shows the time evolution of the quantity 

)/()( 1 k
T
kk

T
k ΩΩΩΩ + . During the simulations, its minimal 

value is observed as 0.2464, which confirms the analysis 
presented in the previous section. 
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Fig. 4. Simulation Results 

 
• The method discussed does not require the detailed 

mathematical model of the plant under control, while 
most control schemes do. 
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• The observed response quickly converges to the 
desired levels. 

• The duration of the considered sampling periods in 
the studied example is feasible enough for data 
acquisition and control evaluation. 

• The algorithm is observed to be robust against 
disturbances, insensitive to parameter variations and 
is able to compensate large initial errors. 

• The computational burden of the algorithm is highly 
affordable. For the two input single output fuzzy 
controller having nine rules (R=9) in the rule base, a 
forward pass through the controller requires 57 
floating point operations per control period (flops/Ts) 
and 12 comparisons. The tuning of the parameter 
vector with (12) requires 56 flops/Ts, which strongly 
emphasizes the viability of the algorithm. A further 
attractiveness of the approach is that as the number 
of rules increases, the computational burden due to 
the tuning law of (12) increases linearly, and its 
exact contribution is equal to 6R+2 flops/Ts. 
Therefore the complexity due to the tuning 
mechanism is O(R) and the scheme can be 
implemented even with average speed 
microcontrollers. 

 
 

Table 1. Simulation Data 
 

Controller input vector e1k=x1(k)−r(k) 
e2k=e1k−e1 k-1 

Control period Ts=0.5 sec 
Simulation step size 0.01 sec 
Uncertainty bound γ = 0.001 
Initial conditions e1k(k=0)=0.0276 

e2k(k=0)=−0.0022 
x1k(k=0)=0.109837 
x2k(k=0)=0.800891 

Noise variance 6.4923e-008 
Noise peak value 
with probability ≈ 1 

1e−3 

sgn(.) function 
Smoothing Parameter 

δ=0.05 

Switching function sk=e1k 
Membership function 
parameters 

L1 = 0.2 
L2 = 0.2 

Reaching law 
parameters 

λ1= 1.98 
λ2= 10 

Initial controller 
parameters 

β k(k=0) = 0.1 1R×1 

 

 
4 Conclusions 
A novel method for discrete time fuzzy sliding mode 
control is studied in this paper. The method is based on 

the extraction of the equivalent control error, and the 
utilization of it in a new parameter tuning scheme. The 
controller is a standard fuzzy system, which has two 
inputs and single output. The adjustable parameters are 
those effective in the defuzzification stage. The proposed 
technique has been tested on the dynamic model of a 
biochemical process, the governing equations of which 
are assumed to be unknown but belong to a particular 
class. The results obtained through the simulations have 
shown that a good tracking performance can be achieved 
in under the presence of time-varying parameters, 
disturbances and large initial errors. The method has 
been shown to be computationally efficient for real time 
control applications. 

The future research on this topic aims both to prove 
that an upper bound for the Euclidean norm of the 
adjustable parameter vector exists and to demonstrate 
that a hitting is guaranteed to occur in finite time. 
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