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ABSTRACT 
 
In this paper, design of a nonlinear controller for a 
Bioreactor Benchmark Problem is presented. The 
system under control simulates the dynamical behaviour 
of a biochemical process. The process has a few state 
variables but controller design is highly involved due to 
the nonlinear behaviour of the process, existence of limit 
cycles in the uncontrolled dynamics and the inherent 
delays. The proposed controller is also nonlinear, proven 
to be stable in the sense of bounded input/bounded 
output and locally stabilizing in the sense of Lyapunov. 
Additionally, neural networks are utilized in the 
controller design. A neural network is trained to 
partially identify the process dynamics and the trained 
network is used in the closed-loop control system. An 
error analysis is given for the neuro-identifier assisted 
controller performance. 
 

1. INTRODUCTION 
 
Chemical systems are often highly nonlinear and 
difficult to control. Nonlinearities may be intrinsic to the 
physics or the chemistry of a process or may arise 
through the close coupling of a number of simpler 
processes. In either case, complicated differential or 
difference equations of the system dynamics pose a 
challenging problem in the sense of mathematical 
tractability. This problem can somewhat be alleviated by 
using a simplified model, but a control approach 
designed on the basis of such a simplified model is 
unlikely to result in a satisfactory performance. A prime 
example is a bioreactor. The commonly used model for 
this process has few state variables but the controller 
design is highly involved due to the nonlinear 
characteristics of the process and the existence of limit 
cycles in the uncontrolled dynamics. Anderson and 
Miller [1] list this plant as a challenging control problem 
and Agrawal and Lim [2] give an analysis of various 
control schemes. 
 
In recent years tremendous advances have been made in 
technology and this has affected the practice of control 
engineering. With the advances in high speed 

computing, it is now possible and economically feasible 
to use complex, model-based control paradigms in 
practical applications, using advanced strategies derived 
from adaptive, non-linear, and robust control theories. 
The problem of bioreactor control has also benefited 
from these developments and various novel (mainly 
adaptive) strategies have been reported [3], with the 
objective of maintaining the process output close to the 
desired value in the presence of various uncertainties, 
including external disturbances, time-varying parameters, 
and unmodeled dynamics. A recent survey and 
comparison of various control configurations can be 
found in [4]. 
 
A more recent tendency in process control is the blending 
of algorithmic techniques with other elements, such as 
logic, reasoning and heuristics. Such systems have come 
to be known as intelligent control systems [5-6]. A host 
of new control approaches are being used in this respect, 
based on fuzzy logic, neural networks, evolutionary 
computing and other techniques adapted from artificial 
intelligence. In demonstrating the feasibility and efficacy 
of such approaches in the control of nonlinear processes, 
bioreactor control has been taken as a case study by 
many authors [7-9], some has addressed the topic 
directly. For example Feldkamp and Puskorius [10] take 
the bioreactor benchmark problem set by Ungar [11] and 
apply dynamic gradient methods, using neural networks 
for identification and control. In the work of Gorinevsky 
[12], the same benchmark problem is treated using affine 
radial basis function network architecture. It is shown 
that a completely adaptive control of this stongly 
nonlinear system can be achieved with minimal a priori 
knowledge of its dynamics. 
 
In this paper, the well-known Bioreactor Benchmark 
Problem is analyzed. The problem involves two state 
variables. One of them represents the biological cell 
concentration, and the other one represents the nutrient 
concentration in a tank. The objective is to keep the 
concentration of biological cell concentration at a desired 
level. The system has one control input meaning that 
external pure water is supplied into the tank and the same 
amount of mixture is removed from the reactor tank. This 
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is to keep the volume constant throughout the normal 
operation of the system. The second section describes 
the problem in detail. 
 
At the analysis level of the reactor dynamics, a special 
reference model and the philosophy that lies behind this 
specific choice are explained. By utilizing the well-
known Model Reference Control (MRC) technique, the 
structure of the controller (or the rule of control) is 
established. The third section dwells on MRC and its 
analysis, which constitute the basis of controller design. 
The fourth section explains how neural networks can be 
injected into the proposed rule of control. A brief 
explanation of neurocomputing is given and the partial 
identification scheme is scrutinised. The subsequent 
section is devoted to the error convergence analysis of 
the proposed control strategy. Finally the simulation 
results and conclusions are presented. 
 

2. PLANT MODEL 
 
As is previously stated, the model used is in this paper 
for the bioreactor is the one set by Ungar [11] as a 
benchmark problem. The process is a tank containing 
water, nutrients, and biological cells as shown in Fig. 1. 
Nutrients and cells are introduced into the tank where 
the cells mix with nutrients. The number of cells c1(t) 
and the amount of nutrients c2(t) characterize the state of 
this process. The volume in the tank is maintained at a 
constant level by removing tank contents at a rate equal 
to the incoming rate which is denoted by u(t). This rate 
is called the flow rate and is the variable by which the 
bioreactor is controlled. The system therefore has only 
one control input, which is the externally supplied pure 
water. The bioreactor control problem is to maintain the 
amount of cells at a desired level. Continuous time 
equations of the plant dynamics are given by (1) and (2). 
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The state variables c1(t) and c2(t) can take values 
between zero and one, the flow rate u(t) can take values 
between zero and two. In the benchmark problem, the 
stable state of the process is defined to be c1 = 0.1207, 
c2 = 0.8801, and u = 0.7500. The initial values of the 
state variables lie within plus or minus ten percent of the 
related stable state value and the initial value of each 
state variable is assumed to be uniformly distributed 
random variable over the above mentioned interval. 
 

In the simulations, these equations are discretized by the 
use of first order approximation with ∆ = 0.01sec. In (1) 
and (2), β = 0.02 (growth rate parameter), γ = 0.48 
(nutrient inhibition parameter). Controller inputs are the 
state variables and the command signal. The control 
interval is defined to be 50∆. The output of the controller 
is the flow rate u(t). The objective is to achieve and 
maintain a desired cell amount by altering the flow rate. 
 
The bioreactor is a challenging control problem for 
several reasons. Although the task involves few variables 
and is easily simulated, its non-linearity makes it difficult 
to control [11]. For example, small changes in the values 
of the parameters can cause the bioreactor to become 
unstable. The issues of delay, non-linearity, instability 
and limit cycles can be studied with the bioreactor 
control problem. Additionally, significant delays exist 
between changes in flow rate and the response in cell 
concentration [11]. 
 
3. MODEL REFERENCE CONTROL OF A 

BIOREACTOR 
 
Model reference control technique is applicable to a wide 
variety of linear and nonlinear systems. The strategy 
evaluates some control inputs so that the plant output 
tracks a stable reference model output. There are two 
approaches in the model reference control approach: 
direct adaptive control and indirect adaptive control. In 
this paper, the latter is employed and is illustrated in Fig. 
2. Indirect adaptive control scheme utilizes the 
instantaneous tracking error, which is denoted by ec, in 
parameter updating. Several past control inputs and plant 
outputs are provided by tapped delay lines which are 
represented by TDL blocks and which functions at the 
rate of 50∆ for this application. The parameters of the 
controller are directly adjusted to reduce some norm of 
the output error [13]. 
 
Indirect adaptive control scheme employs an additional 
plant identification model which can provide information 
about the nonlinear components that appear in the actual 
plant dynamics. In this study, a feedforward neural 
network is used as the identifier. The identification can 
be carried out on-line or off-line. The strategy adopted 
here is the indirect control scheme with off-line 
identification of the plant dynamics. 
 
By introducing f(c1,c2) and g(c2) and dropping the time 
variable, the governing equations of the bioreactor can be 
written more compactly as given by (3) and (4), 
 

),cu + f(cc = c 2111 −  (3) 
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))g(c,cu + f(cc = c 22122 −  (4) 

 
where, the definitions of f and g are clear from (1) and 
(2). 
 
For this system, a special reference model can be 
constructed with the following philosophy. Firstly, the 
model output c1m(t) must follow the command signal r(t) 
( i.e. assuming that c1m(t) = r(t) at the moment t0 , (5) is 
satisfied for all t>t0). Secondly, characteristic curves (or 
the integral invariants) of the model and the control 
system must coincide. This analysis imposes the model 
defined by (5) and (6). 
 

(t) + r(t)c(t) = c mm 11 −  (5)

( )r(t)(t)c(t) + gc(t) = c mmm 222 −  
(6)

 
Equations (3) and (4) can be rewritten as follows; 
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Since c1(t) and c2(t) are nonzero, (7) and (8) are valid. 
 
Proposition: There exists a function F(c1,c2,u(c1,c2,r)) 
such that, 
 

( )( )+r,r,cc,u,ccFc(t)=c 212111  −  (9)
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Proof of this proposition is omitted due to the limitation 
of space. For the full treatment of proof including the 
constraints in the state space, the reader is referred to 
[14]. The major implications of the proposition are as 
follows: 
 
a) Each choice of control input with a given command 

signal can be considered as a constant value of the 
function F, namely, F(c1,c2,u(c1,c2,r(t))) = K where K 
is a constant. 

b) On the characteristic curve, 
1

2
2 c

c
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In order to equate the reference model dynamics to the 
plant dynamics, the parameters of the system and the 
model are equated to each other on the characteristic 
curve. Therefore c1m = c1, then; 
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which implies F(c1,c2,u(c1,c2,r(t))) = 1. Equation (12) 
states the form of controller or the rule of control. 
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Equation (12) imposes that the cell concentration of the 
plant follows that of reference model. Since the c1m 
behavior of the reference model has a first order stable 
dynamics, the state c1 is forced to follow the command 
signal r(t) by construction of the reference model. In this 
context, the function F(c1,c2,u(c1,c2,r(t))) = 1, which can 
be considered as F(c1(t),c2(t),u(t)) = 1, is the integral 
invariant of the system and is nothing but the unit 
reaction volume. 
 
4. NEURAL NETWORKS AND PARTIAL 

IDENTIFICATION OF PROCESS 
DYNAMICS BY NEURO-IDENTIFIERS 

 
A neural network architecture, in the sense of 
feedforward data processing, comprises three main parts. 
The first part is the input layer that distributes the input 
data to the processors in the next layer. The second part 
is comprised of the hidden layers where the nonlinear 
behavior comes from. The third part is the output layer 
that transmits the response of the network to the real 
world. Input and output layers are directly accessible 
while the hidden layers are not. Each layer contains 
several number of processing elements that are generally 
called neurons. 
 
Neural networks can be used in identification and control 
of nonlinear dynamical systems [15-16]. This is 
generally done by the minimization of the cost function 
given by (13). 
 

∑ ∑
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The minimization can be achieved by utilizing well-
known Backpropagation Training Algorithm [16-17]. In 
(13), p

iy denotes the ith entry of pth pattern in neural 
network response, p

id denotes the ith entry of pth target 
vector. Equations (14) and (15) give the delta values for 
the output layer and hidden layer neurons respectively. 
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In (14) and (15), Sj denotes the net summation of the jth 
neuron in the (k+1)th layer, Ψ is the nonlinear activation 
function attached to each neuron in the hidden layer. 
Having evaluated the delta values during the backward 
pass, the weight update rule given in (16) is applied for 
each training pair. 
 

k,p
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k
ij  o   w 1+=∆ δη  (16)

 
The neural network structure imitating the bioreactor 
dynamics for the partial identification scheme is 
illustrated in Fig. 3. The reason why the term partial 
identification used is the fact that only the value of the 
function f(c1,c2) that appears in the bioreactor dynamics 
is needed. In order to construct the control to be applied, 
the state variables need to be observed and the function 
f(c1,c2) needs to be estimated. 
 
In Fig. 3, y1 and y2 realizes the first and the second terms 
in (1) respectively, y3 and y4 performs the same for (2). 
The bias values of the linear output neurons are set to 
previous state values so that the first order discretization 
of the governing equations is achieved. 
 
5. ERROR CONVERGENCE ANALYSIS 

 
In this section, it is shown that the tracking errors 
between the reference model outputs and the actual plant 
outputs tend to zero in the limiting case. If f(c1,c2 ) is 
estimated by a neural network and if that value is used 
in the control given by (12), the error dynamics is 
obtained as given by (17) and (18). 
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(t)
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From the approximation theorems given in [18-19], the 
function f(c1,c2 ) can be realized by neural networks such 
that the error in the neural network output remains 
within a prespecified level. As long as a neural network 
realizes the function f(c1,c2 ) precisely, the difference 
between the network output and the actual value of the 
function can be neglected. Equations (17) and (18) 
reveal that the unforced error dynamics is linear and its 
roots lie on the left half s-plane. Moreover, the error in 
c1 is forced to track ε(t) and the error in c2 is forced to 
track (g/f) ε (t). This clearly stipulates that the tracking 
performance of the control system strictly depends on 
the accuracy of the mapping performed by the neuro-

identifier. The better approximation leads to the better 
tracking performance. 
 

6. SIMULATION RESULTS 
 
The feasibility and the efficacy of the novel approach 
described in the previous sections have been studied by a 
series of simulations. It is seen that the algorithm results 
in a stable control of the bioreactor, the plant following 
the reference model quite closely. Two sets of simulation 
study results are given below. The first set is for the case 
of a sinusoidal reference signal. When choosing the 
upper bound of this command signal, the state space 
constraints analyzed in [14] are satisfied. Otherwise, the 
system outputs will not follow the reference model 
outputs. In Fig. 4, the time variation of the tracking errors 
in cell and the nutrient concentrations are given for the 
applied command signal described by (19). 
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Figure 5 illustrates the error trend for a pulse train type of 
command signal. The reason for this choice is to 
demonstrate the model following capability of the control 
system in the case of abrupt changes in the command 
signal. For this case, the applied command signal is given 
by (20). 
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Since the function to be realized by the neural network is 
a continuous function, and, since a finite number of 
training samples can be of interest, there will always be 
such kind of tracking errors stemming from the neural 
approximation errors. The perfect tracking is observed 
when the original f(c1,c2) function is used with the 
condition that the initial values of the state variables for 
both the reference model and the actual plant are equal to 
each other. 
 
In all the simulation results presented in this section, the 
neuro-identifier has the structure 3-8-4-2 with only the 
first hidden layer having tan-sigmoidal neuron 
nonlinearity. The training is continued until the mean 
squared error decreases to 1e-6. 
 

7. CONCLUSIONS 
 
In this paper, a special nonlinear controller for the 
bioreactor benchmark problem is formulated. The 
approach is based on Model Reference Control theory. A 
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stable reference model has been chosen and the 
philosophy that lies behind this choice is explained. The 
analysis and the design methodology stipulate that the 
controller is a static function of system variables and the 
command signal. It is shown that the controller itself is 
stable in the sense of bounded inputs/bounded outputs 
criterion as well as it is locally stabilizing the overall 
control system in the sense of Lyapunov [14]. 
Simulation results verify that the proposed approach is a 
good candidate for the control of bioreactors whose 
dynamics is modeled in the form of (3) and (4). Two 
different types of command signals are used to 
demonstrate the capability of model following property. 
In the first trial, a sinusoidal, in the second trial, a pulse 
train is applied as the command signal. 
 
The approach described in this paper requires a priori 
knowledge about the governing equations of the 
bioreactor dynamics. Future studies aim to realize 
nonlinear controllers utilizing on-line learning 
methodologies that need less a priori information about 
plant dynamics and environment. 
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Figure 1. The bioreactor tank and the process variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Indirect adaptive control scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Neural network architecture for partial 
identification of the bioreactor dynamics 
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Figure 4. Error graph for the cell and nutrient 
concentration for sinusoidal reference 
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Figure 5. Error graph for the cell and nutrient 
concentration for pulse train type of reference 
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