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Abstract – Biochemical processes often display a
complicated dynamic behavior, the detailed
understanding of which frequently constitutes a barrier
between the theoretical foundations and practical
implementations. One way of handling the complexity is
to use intelligent approaches in the design of controllers.
This paper presents an analytic approach to design
controllers based on Radial Basis Function Neural
Networks (RBFNN) with particular emphasis on the
extraction of the error measure to be used in parameter
tuning. The simulation studies stipulate that the control
system exhibits a highly robust behavior against
disturbances and sharp changes in the command signal.
The most important contribution of the paper is that the
method presented does not require the analytical details
describing the plant dynamics available.

I. INTRODUCTION

The fundamental operation in most of the neural network
models existing in the literature is the evaluation of a dot
product of an input vector and a parameter vector, and to pass
the evaluated quantity through a nonlinear activation
function. The yield of the described process is the output of
the neuron. However, another class of neural networks dwells
on the evaluation of the neuron output by combining the
values of some appropriately defined basis functions. The
networks using basis functions constitute several number of
hidden neurons, the activation level of which depend on the
distance between the input vector and a prototype vector [1-
3]. The overall structure is called RBFNN, which possesses
the distributed information processing capability.

The problem of parameter tuning in RBFNN has
extensively been studied in the literature. Some important
ones of which are the gradient descent technique (Error
Backpropagation) [4], Levenberg-Marquardt algorithm [5],
and hybrid methods such as Variable Structure Systems
(VSS) theory based learning strategies [6-8]. At a first
glance, what a reader notices is the fact that the application of
above mentioned approaches for tuning the parameters of a

controller require the target value of the control signal, which
is unavailable by the nature of the problem. Therefore, the
extraction of the error on the control signal can be done
either by identifying the plant under control or by assuming
the plant under control is known and the Jacobian can be
evaluated. Clearly the former increases the computational
cost and the latter restricts the domain of applicability. A
qualitative analysis of extracting the equivalent control error
is discussed in [9], which considers the control of a 3-dof
anthropoid robot with large initial conditions and unknown
plant dynamics.

In this paper, an analytic approach towards the
calculation of the error at the output of the neurocontroller is
presented for a class of biochemical systems. In the next
section, RBFNN are introduced, the third section presents a
brief overview of variable structure control. The fourth
section is devoted to the computation of the error at the
output of the controller and in the fifth section the parameter
tuning law is given. The sixth section presents the results
obtained with the proposed technique. The concluding
remarks are presented at the end of the paper.

II. RADIAL BASIS FUNCTION NEURAL NETWORKS

In the literature, RBFNN are generally considered as a
smooth transition between Fuzzy Inference Systems (FIS)
and Neural Networks (NN). Structurally, a RBFNN is
composed of receptive units (neurons) which act as the
operators providing the information about the class to which
the input signal belongs. If the aggregation method, number
of receptive units in the hidden layer and the constant terms
are equal to those of a FIS, then there exists a functional
equivalence between RBFNN and FIS [10]. Although the
architectural view of a RBFNN is very similar to that of an
ordinary feedforward neural network illustrated in Fig. 1, the
hidden neurons of a RBFNN possess basis functions to
characterize the partitions of the input space. Each neuron in
the hidden layer provides a degree of membership value for
the input pattern with respect to the basis vector of the
receptive unit itself. The output layer is comprised of linear
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neurons. NN interpretation makes RBFNN useful in
incorporating the mathematical tractability, especially in the
sense of propagating the error back through the network,
while the FIS interpretation enables the incorporation of the
expert knowledge into the training procedure. The latter is of
particular importance in assigning the initial value of the
network’s adjustable parameter vector to a vector that is to be
sought iteratively. Expectedly, this results in faster
convergence in parameter space.

Referring to Fig. 1, mathematically, oi=Πm
j=1Ψij(uj) and a

common choice for the hidden layer activation function is the
Gaussian curve described as Ψij(u)=exp{-(uj-cij)

2/σij
2}, where

cij and σij stand for the center and the variance of the ith

neuron’s activation function qualifying the jth input variable.
The output of the network is evaluated through the inner
product of the adjustable weight vector denoted by φ and the
vector of hidden layer outputs, i.e. τ = φ To. Clearly the
adjustable parameter set of the structure is composed of {c,
σ, φ} triplet. In this paper, only φ parameters are tuned.

III. A BRIEF OVERVIEW OF VARIABLE STRUCTURE
CONTROL

Consider the feedback loop illustrated in Fig. 2, in which
a subscript d denotes the desired value of the relevant
quantity. Furthermore, it is shown in the figure that if a
supervisor provides the desired controller outputs, one might
evaluate the error on the control signal denoted by sc . The
plant shown in the figure is assumed to have the structure
described in (1), in which θ and τ are the (r1+r2+…+rn)×1-
dimensional state vector and n×1-dimensional input vector.

( ) ( ) nidf
n

j
jijp

r
i i

i ,...,2,1
1

=+= ∑
=

τθθ (1)

The system of (1) with these vectors can be restated as

( ) τθθ Df
p

+=� . The design problem is to enforce the

behavior of the system towards the desired response, which is
known but the control signal (τd) resulting in which is
unavailable. Therefore, the solution to this problem is a
search towards the synthesis of such a signal iteratively by a
RBFNN controller. Assuming that the controller in Fig. 2 is
composed of n individual RBFNN controllers, the ith one of
which is to construct the ith component of input vector τ, the
jth entry of the error vector driving this sub-controller can be
given as ei

(j)= θi
(j)−θdi

(j). Apparently, this component is the jth

derivative of the relevant state component. Consider the
vector of sliding surfaces for the system in (1):
sp(e)=Ge=G(θ−θd). The widespread selection of the matrix G
is such that the ith sliding surface function has the form

( ) i

r

iiip e
dt

d
es

i 1−





 += λ (2)

in which, λi is a strictly positive constant. Let Vp be a
candidate Lyapunov function given as

( ) p
T
ppp sssV

2

1= (3)

If the prescribed control signal satisfies

( ) ( )p
T
ppp sssV sgnξ−=� , the negative definiteness of the time

derivative of the Lyapunov function in (3) is ensured. In
above, ξ is a positive definite diagonal matrix of dimension

n×n. More explicitly, ( )p
T
pp

T
p ssss sgnξ−=�  must hold true to

drive the error vector towards the sliding hypersurface. On

the other hand, the use of ( ) 


 ++−= τθθ DfGGs
pdp

�

�

leads to the following control signal:

( ) ( ) 




 −−= −

dp
GfGGD θθτ �

1 ( ) ( )psGD sgn1ξ−− (4)

in which the first term is the equivalent control term and the
second term is the corrective control term. For the existence
of the mentioned components, the matrix GD must not be
rank deficient. In the literature, equivalent control is
considered as the low frequency (average) component of the
control signal. Because of the discontinuity on the sliding
surface, the corrective term brings a high rate component
[11-12]. If e(0)=0, the tracking problem can be considered as
keeping e on the sliding surface, however, for nonzero initial
conditions, the strategy must enforce the state trajectories
towards the sliding surface, which is ensured by the negative
definiteness of the time derivative of the Lyapunov function
as in (3). For the case of nonzero initial conditions, the phase
until the error vector hits the sliding surface is called the
reaching mode, the dynamic characteristics of the system
during which is determined by the control strategy adopted.
Application of the control input formulated in (5) imposes
the dynamics described as ( )pp ss sgnξ−=� , which clearly

enforce the error vector towards the sliding surface. Once the
sliding surface is reached, the value of (2) becomes zero; and
this enforces the error vector to move towards the origin.

Aside from the practical difficulties of conventional
Sliding Mode Control (SMC) schemes, the control signal in
(4) is applicable if a nominal representation of the system
under control is available. In the next subsection, a method
for obtaining the error on the control signal is presented for
unknown systems of structure (1).

IV. CONTROL ERROR COMPUTATION

Remark 4.1: The SMC task is achievable if the dynamics
of the system in (1) is totally known or if the nominal system
is known with the bounds of the uncertainties. It must be
noted that to satisfy the matching conditions, the disturbances
and uncertainties are always assumed to enter the system
through the control channels [13]. When the conventional
SMC strategy is applied to the system of (1), we call the
resulting behavior as the target SMC and the input vector
leading to it as the target control sequence (τ ), which is
described in (4). If the functional form of the vector function
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fp is not known, it should be obvious that the target control
sequence cannot be constructed by following the traditional
SMC design approaches.

Definition 4.2: Given an uncertain plant, which has the
structure described as in (1), and a command trajectory
vector θd(t) for t ≥ 0, the input sequence satisfying the
following vector differential equation is defined to be the
idealized control sequence denoted by τd, and the vector
differential equation itself is defined to be the reference SMC
model.

( ) ddpd Df τθθ +=� (5)

Mathematically, the existence of such a model and the
sequence means that the system of (1) perfectly follows the
command trajectory vector if both the idealized control
sequence is known and the initial conditions are set as
θ(t=0)= θd(t=0), more explicitly e(t) ≡ 0 for ∀ t ≥ 0.
Undoubtedly, such an idealized control sequence will not be
a norm-bounded signal when there are step-like changes in
the vector of command trajectories or when the initial errors
are nonzero. It is therefore that the reference SMC model is
an abstraction due to the limitations of the physical reality,
but the concept of idealized control sequence should be
viewed as the synthesis of the command signal θd from the
time solution of the differential equation set in (5).

Fact 4.3: Based on the Lyapunov stability results of the
previous subsection, if the target control sequence formulated
in (4) were applied to the system of (1), the idealized control
sequence would be the steady state solution of the control
signal, i.e. d

t
ττ =

∞→
lim . However, under the assumption of

the achievability of the SMC task, the difficulty here is again
the unavailability of the functional form of the vector
function fp. Therefore, the aim in this subsection is to
discover an equivalent form of the discrepancy between the
control applied to the system and its target value by utilizing
the idealized control viewpoint. This discrepancy measure is
denoted by sc=τ −τd and is of n×1 dimensional. If the target
control sequence of (4) is rewritten by using (5), one gets

( ) ( ) ( ) ( )
( ) ( ) ( ) dpp

pddpp

sfGGD

sDfGfGGD

τξθ

ξτθθτ

+


 +∆−=




 +


 +−−=

−

−

sgn

sgn

1

1

(6)

The target control sequence becomes identical to the
idealized control sequence, i.e. τ ≡ τd, as long as

( ) ( ) 0sgn =+∆ pp
sfG ξθ  holds true. However, this condition

is of no practical importance as we do not have the analytic
form of the vector function fp. Therefore, one should consider
this equality as an equality to be enforced instead of an
equality that holds true all the time, because its implication is
sc=0 and is the aim of the design. It is obvious that to enforce
this to hold true will let us synthesize the target control
sequence, which will ultimately converge to the idealized
control sequence by the adaptation algorithm yet to be

discussed. Consider the time derivative of the vector of
sliding surfaces

( ) ( )
( ) ( )

( ) 


 +∆=


 −+∆=




 −−+=

−==

cpdp

ddpp

dp

sDfGDfG

DfDfG

GeGes

ττ

τθτθ

θθ ��

��

(7)

Utilizing ( ) ( ) 0sgn =+∆ pp
sfG ξθ  in (7) and solving for sc

yields the following relation:

( ) ( )( )ppc ssGDs sgn1 ξ+= −
�  = dττ − (8)

Remark 4.4: The reader must here notice that the
application of τd to the system of (1) with zero initial errors
will lead to e(t) ≡ 0 for ∀ t ≥ 0, on the other hand, the
application of τ to the system of (1) will lead to sp=0 for ∀ t ≥
th, where th is the hitting time, and the origin will be reached
according to the dynamics of the sliding surface. Therefore,
the adoption of (8) as the equivalent measure of the control
error loosens e(t) ≡ 0 for ∀ t ≥ 0 requirement and introduces
all trajectories in the error space to tend to the sliding
hypersurface, i.e. ( ) ( ) 0sgn =+∆ pp

sfG ξθ  is enforced.

Consequently, the tendency of the control scheme will be to
generate the target SMC sequence of (4) without requiring
the analytical details of the plant.

Now consider the ordinary feedback control loop
illustrated in Fig. 2, and define the following Lyapunov
function, which is a measure of how well the controller
performs:

( ) c
T
ccc sssV

2

1= (9)

Remark 4.5: An adaptation algorithm ensuring ( ) 0<cc sV�

when sc≠0 enforces ( ) ( ) 0sgn =+∆ pp
sfG ξθ  and creates the

predefined sliding regime after a reaching mode lasting until
the hitting time denoted by th, beyond which sc=0 as the
system is in the sliding regime. If ( ) 0<cc sV�  when sc≠0, then

0lim =
→

c
tt

V
h

⇔ 0lim =
→ c

tt
s

h

⇔ ( ) 0sgnlim =+
→ pp

tt
ss

h

ξ�

. Note that

the meaning of sc = 0 is now equivalent to sp = 0 by Remark
4.4, therefore the limits above are evaluated as t→th.

V. PARAMETER TUNING STRATEGY

If the architecture introduced in the second section is
utilized for the purpose of control, without loss of generality,
the output of the ith controller can be restated as τi=φi

TΩi,
where Ωi is the vector of signals exciting the adjustable
parameters denoted by φi and the Lyapunov function in (9)
constitutes the basis of the design.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 15



In order not to be in conflict with the physical reality, the
designer must impose 

i
B

i φφ ≤ ,
i

Bi Ω≤Ω
�

�

id
Bid ττ

�

� ≤ , the truth

of which state that the adjustable parameters of the controller,
the time derivative of the signal exciting the adjustable
parameter set and the time derivative of the idealized output
of the controller remain bounded. Note that in Definition 4.2,
we stated that there may not be a finite ℜ∈

id
Bτ�  even in some

realistic situations like nonzero initial errors, however, the
practical meaning of imposing 

id
Bid ττ

�

� ≤  will lead us to the

construction of an approximation of the idealized control
sequence and the requirement of e(t) ≡ 0 for ∀ t ≥ 0 must
therefore be loosened.

Theorem 5.1: For the ith subsystem of the system
described in (1), adopting the controller of structure τi=φi

TΩi,
the adaptation of the controller parameters as described in
(10) enforces the value of the ith component of control
discrepancy vector (sci) to zero.

( )
ici

i
T
i

i
i

sk sgn
ΩΩ

Ω
−=φ� (10)

where, ki is a sufficiently large positive constant satisfying

idii
BBBki τφ �

�

+> Ω . The adaptation mechanism in (10) drives

an arbitrary initial value of sci to zero in finite time denoted
by thi satisfying the inequality in (11).

( )
( )

idii
BBBk

s
t

i

ic
ih

τφ �
�

+−
≤

Ω

0
(11)

Proof: See Sira-Ramirez et al [6] and Efe et al [9]. 

An important feature of this approach is the fact that the
controller parameters evolve bounded as assumed initially.
The details of the bounded parametric evolution analysis can
be found in [9,14].

VI. SIMULATION RESULTS

In the simulations, we consider the dynamic model of a
Continuously Stirred Tank Reactor (CSTR) discussed in [15],
which illustrate the SMC task with Gaussian networks and
wavelet networks. The governing equations of the process
dynamics are as described below, and the parameters are
defined in Table 1.

( )


















+
−+−=

γ
θ

θθθθ
1

2
111

1
exp1Da� (12)

( ) ( ) ηθθβ

γ
θ

θθθθ +−−



















+
−+−= cRDaT 2

1

2
122

1
exp1�

(13)

The control problem is to enforce the dimensionless
concentration (θ1) to follow a desired trajectory by altering
the dimensionless coolant temperature (θc). During the
control operation, the second state, which is the
dimensionless temperature (θ2), is constrained to evolve
bounded in time. In [15], the nominal operating point of the
CSTR system is described as θ1=0.4126, θ2=3.28 and
θc=3.04, the state values among which are used as the initial
state values in this paper. According to the simulation
settings given in Table 2, one should notice from the first row
that the controller uses solely the noise corrupted tracking
error information in synthesizing the necessary control
sequence. During the simulations, we tune solely the weight
parameters of the RBFNN controller and we set these
parameters initially to zero, i.e. the parametric evolution
starts from the origin. The noise sequences are Gaussians
having zero mean. In order to compute the error given in (8),
we use the following filter structure to evaluate the time
derivative of sp. Furthermore, we set δ=0.25 and α=1.

( )
αα

αα
++

==
SS

S

SQ

S
SH

2)( 2
(14)

where, S is the Laplace variable. In Fig. 3, the desired and the
observed states are illustrated. In the bottom right subplot of
this figure, the error is seen. At time t=3200sec, a step change
occurs in the reference trajectory, which is also studied by
Knapp et al [15], and the system successfully follows the
imposed trajectory. It must be noted that since the system
under control is of first order, the sliding surface of the
conventional design becomes a point in the single
dimensional error space, and this point corresponds to the
origin. Consequently, the problem does not require a λ
selection. In the top left subplot of Fig. 4, the applied control
signal (θc) is illustrated. This subplot reveals that the control
signal has a sufficiently smooth characteristic after the
transient phase. The remaining three subplots in Fig. 4 depict
the time evolution of the adjustable neurocontroller
parameters These subplots confirm the evolution in finite
volume claim of [6,9]. The variables seen in Figs. 3 and 4
have been redrawn in Figs. 5 and 6 with the same graphical
allocation but around t=3200sec, at which a step change
occurs in the command signal. When compared to the results
discussed in [15], it can be said that the settling time is not as
small as in [15], but the computational simplicity, i.e. the
number of neurons, and acceptable tracking accuracy make
the approach presented a good candidate for control of
chemical processes.

VII. CONCLUSIONS

This paper discusses a method for controlling a class of
nonlinear systems by using RBFNN. The well-known
problem of obtaining the error measure that is to be used in
parameter tuning is analyzed. In the simulations, a CSTR is
considered. The results obtained confirm the accurate
tracking and bounded parameter evolution claims of the
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paper. What makes the discussed technique attractive is its
low computational cost. In Fig. 7, a computational
complexity chart is depicted. Based on what is seen in the
figure, the application presented in this paper requires 143
floating point operations (flops) for performing a forward
pass through the neurocontroller for control signal evaluation
and a backward pass for parameter adjustment. The filter
equation in (14) is solved by 4th order Runge-Kutta approach
and the result obtained is found to be quite reasonable even
for average speed microcontrollers.
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Fig. 1. Structure of a RBFNN

Fig. 2. Block Diagram of the control system
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Fig. 5. Zoomed Fig. 3 around t=3200sec.
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Fig. 7. Computational complexity chart

Table 1. Parameters of the CSTR Dynamics

Dimensionless concentration θ1 State variable
Dimensionless temperature θ2 State variable
Dimensionless coolant temp. θc Control input
Damkohler number Da 0.072
Dimensionless cooling rate β 0.3
Dimensionless activation energy γ 20
Dimensionless heat of reaction TR 1
Disturbance η See Table 2

Table 2. Simulation Data

Controller Input Vector ii eu = , i=1

# of Hidden Neurons 3
Uncertainty Bounds k=20
Simulation Stepsize Ts=0.1sec
Initial Errors e(0)= -0.0566
Noise Variance 7.3543e-8
Noise Peak Value
with probability ≈ 1

1e-3

SMC Design Matrix ξ = 0.1I1×1

Initialization of the Basis
Functions, which are kept static
during the simulations
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