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Abstract − Variable Structure Systems (VSS) Theory, which is
particularly well developed for tracking control of uncertain
nonlinear systems, has inspired the scientists in developing
solutions to ill-posed problems like the design of training criteria
under a set of conditions and performance metrics. The
underlying idea has been to exploit the invariance properties
introduced by the theory together with the parametric flexibility of
the architectures of computational intelligence. Since the
traditional approaches utilizing the gradient information are
oversensitive against disturbances, the robustification becomes an
inevitable need, and as a powerful tool for handling the
nonlinearity, time-delays, saturations and similar system specific
difficulties, VSS theory becomes a good candidate for safely
expanding the search space.

The tutorial focuses on the architectures of common use, and
postulates several tuning laws based on the VSS theory.

I. INTRODUCTION

Twentieth century has witnessed widespread innovations in
all disciplines of engineering sciences. Two snapshots from
early 1900s and late 1990s differ particularly in terms of the
active role of humans in performing complicated tasks. The
trend during the last century had the goal of implementing
systems having some degrees of intelligence to cope with the
problem specific difficulties that are likely to arise during the
normal operation of the system. Today, it is apparent that the
trend towards the development of autonomous machinery will
maintain its importance as the tasks and the systems are getting
more and more complicated. A natural consequence of the
increase in the complexity of the task and physical hardware is
to observe an ever-widening gap between the mathematical
models and the physical reality to which the models correspond.
Having this picture in front of us, what now becomes evident is
the need for research towards the development of approaches
having the capability of self-organization under the changing
conditions of the task and the environment. Computational
Intelligence (CI) is a framework offering various solutions to
handle the complexity and the difficulties of information-limited
operating environments. The diversity in the solution space is a
remarkable advantage that the designer utilizes either in the
sense of algorithm-oriented manner or in the sense of
architecture-oriented manner, hence, the result is an autonomous
system exploiting these advantages.

Autonomy is one of the most important characteristics
required from a computationally intelligent system. A basic
requirement in this context is the ability to refresh and to refine
the information content of the dynamics of the system. It
therefore requires a careful consideration in the realm of
engineering practice. From a systems and control engineering
point of view, the designer is motivated by the time-varying

nature of structural and environmental conditions to realize
controllers that can accumulate the experience and improve the
mapping precision [1-2]. Methodologies imitating the inference
mechanism of the human brain are good in achieving the former
and those imitating the massively interconnected structure of the
human brain are good in achieving the latter. In the literature,
the linguistic aspects of intelligence are discussed in the area
Fuzzy Logic (FL) while the connectionist aspects are scrutinized
in the area Neural Networks (NN). The integration of these
methodologies that exploit the strength of each collectively and
synergistically is a driving force to synthesize hybrid intelligent
systems. Being not limited to what is mentioned, methods
mimicking the process of evolution, which are discussed under
the title Genetic Algorithms (GA), and those adapted from
artificial intelligence constitute other branches of CI and fall
beyond the focus of the approaches presented in this chapter.

NN are well known with their property of representing
complex nonlinear mappings. Earlier works on the mapping
properties of these architectures have shown that NN are
universal approximators [3-5]. The mathematical power of
intelligence is commonly attributed to the neural systems
because of their structurally complex interconnections and fault
tolerant nature. Various architectures of neural systems are
studied in the literature. Feedforward and Recurrent Neural
Networks (FNN, RNN) [6], Radial Basis Function Neural
Networks (RBFNN) [1,6], dynamic neural networks [7], and
Runge-Kutta neural networks [8] constitute typical topologically
different models.

FL is the most popular constituent of the CI area since
fuzzy systems are able to represent human expertise in the form
of IF antecedent THEN consequent statements. In this domain,
the system behavior is modeled through the use of linguistic
descriptions. Although the earliest work by Prof. Zadeh on fuzzy
systems [9] has not been paid as much attention as it deserved in
the early 1960s, since then the methodology has become a well-
developed framework. The typical architectures of Fuzzy
Inference Systems (FIS) are those introduced by Wang [10],
Takagi and Sugeno [11] and Jang, Sun and Mizutani [1]. In [10],
a fuzzy system having Gaussian membership functions, product
inference rule and weighted average defuzzifier is constructed
and has become the standard method in most applications.
Takagi and Sugeno change the defuzzification procedure where
dynamic systems are used in the defuzzification stage. The
potential advantage of the method is that under certain
constraints, the stability of the system can be studied. Jang et al
[1] propose an adaptive neuro-fuzzy inference system, in which
polynomials are used in the defuzzifier. This structure is
commonly referred to as ANFIS in the related literature.

When the applications of NN and FL are considered the
process of learning gains a vital importance. Although there is
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not a standard definition, the process of improving the future
performance of the structures of CI by tuning the parameters can
be described as learning. The approaches existing in the
literature employ various techniques in achieving the desired
parameter set, which is unknown and which require an
iteratively evolving search mechanism. It should be noted that
the most common technique that can be used in performing a
suitable search operation in a multidimensional parameter space
is based on the use of an appropriately defined cost function.
Alternatively, the search procedure can be implemented without
using the derivative information; such as is done by the use of
methods adapted from the evolutionary computation, e.g. GAs,
or random search methods [1].

Error Backpropagation (EBP) technique [12] and
Levenberg-Marquardt (LM) optimization technique [13] are the
frequently used techniques used for parameter adaptation in CI.
Both approaches are based on the utilization of gradient
information and necessitate the differentiability of the nonlinear
activation functions existing in the architecture with respect to
the parameter to be updated, and frequently utilize some
heuristics for improved realization performance. These typically
concern the selection of learning rate, momentum coefficient,
and adaptive learning rate strategies in EBP or stepsize
considerations in LM technique. However, the problem of
convergence or that of maintaining the bounded parameter
evolution is an open problem associated with these approaches.
More explicitly, the learning strategy is not protected against
disturbances, which may excite the undesired internal modes of
EBP or LM approaches. The multidimensionality of the problem
is another difficulty in coming up with a thorough analysis
distinguishing the useful training information and disturbance-
related excitation signals. Since the ultimate goal of the design is
to meet the performance specifications, reducing the adverse
effects of the disturbances requires that the adopted learning
dynamics should be robustified. This steers the designer to seek
for methods known in the conventional design framework. From
this point of view, a learning strategy based on Variable
Structure Systems theory constitutes a good candidate for
eliminating the adverse effects of disturbances.

VSS with a sliding mode were first proposed in early 1950s
[14-15]. However, due to the implementation difficulties of high
speed switching, it was not until 1970s that the approach
received the attention it deserved. Sliding Mode Control (SMC)
technique nowadays enjoys a wide variety of application areas;
such as in general motion control applications and robotics, in
process control, in aerospace applications, and in power
converters [16-19]. The main reason for this popularity is the
attractive properties that SMC have, such as good control
performance for nonlinear systems, applicability to Multi-Input-
Multi-Output (MIMO) systems, and well established design
criteria for discrete time systems. The most significant property
of a sliding mode control system is its robustness. Loosely
speaking, when a system is in a sliding mode, it is insensitive to
parameter changes or external disturbances.

From a systems and control theoretic point of view, the
primary characteristic of variable structure control is that the
feedback signal is discontinuous, switching on one or more
manifolds in the state space. When the state crosses each
discontinuity surface, the structure of the feedback system is
altered. Under certain circumstances, all motions in the
neighborhood of the manifold are directed towards the manifold

and thus a sliding motion on a predefined subspace of the state-
space is established in which the system state repeatedly crosses
the switching surface [20]. This mode has useful invariance
properties in the face of uncertainties in the plant model and
therefore is a good candidate for tracking control of uncertain
nonlinear systems. The theory is well developed, especially for
single-input systems in controller canonical form.

The theory of VSS with a sliding mode has been studied
intensively by many researchers. A recent comprehensive survey
is given in [17]. Motion control, especially in robotics, has been
an area that has attracted particular attention and numerous
reports have appeared in the literature [21-25]. One of the first
experimental investigations that demonstrates the invariance
property of a motion control system under a sliding mode is due
to Kaynak et al [26].

In practical applications, a pure SMC approach suffers from
the following disadvantages. Firstly, there is the problem of
chattering, which is the high frequency oscillations of the
controller output, brought about by the high speed (ideally at
infinite frequency) switching necessary for the establishment of
a sliding mode. In practical implementations, chattering is
highly undesirable because it may excite unmodeled high
frequency plant dynamics and this can result in unforeseen
instabilities.

Secondly, a SMC based feedback loop is extremely
vulnerable to measurement noise since the control input depends
tightly on the sign of a measured quantity that is very close to
zero [27]. Thirdly the SMC may employ unnecessarily large
control signals to overcome the parametric uncertainties. Last
but not least, there exists appreciable difficulty in the calculation
of what is known as the equivalent control. A complete
knowledge of the plant dynamics is required for this purpose
[28]. To alleviate these difficulties, several modifications to the
original sliding control law have been proposed [29], the most
popular being the boundary layer approach, which is, in essence,
the application of a high gain feedback when the motion of the
system reaches ε-vicinity of a sliding manifold [22,28]. This
approach is based on the idea of the equivalence of the high gain
systems and the systems with sliding modes [30]. Another
variation of the scheme is called provident control that combines
variable structure control and variable structure adaptation and
performs hysteretic switching between the structures so as to
avoid a sliding mode [31-32]. Both approaches are based on the
calculation of the equivalent control, requiring a good
mathematical model of the plant.

The essence of the discussion presented in this tutorial is to
integrate SMC technique and CI in an appropriate manner such
that the difficulties of SMC approach are alleviated by
intelligence and the mathematical intractability of intelligence is
alleviated by SMC technique. Such a hybrid approach,
particularly operating as the learning mechanism of CI
architectures, is therefore a good candidate to represent the
autonomous behavior of intelligent systems with a robustified
learning performance.

The tutorial is organized as follows: The second section
presents a functional overview of the CI architectures, this is
followed by the SMC based tuning laws. Two illustrative
examples are presented in the fourth section. To complete the
picture, the fifth section briefly explains how CI can be
incorporated into variable structure control, and conclusions are
given at the end of the tutorial.
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II. AN ARCHITECTURAL OVERVIEW

A. Adaptive Linear Elements (ADALINEs)

Being categorized as a member of neither FL nor NN,
ADALINE performs an inner product of two vectors, which is
the basic operation in all architectures of CI. The output is a net
sum in the case of NNs, or the response of the system in the
cases of RBFNN, SFS, ANFIS. The vectors of interest are the
adjustable parameter vector and the excitation input denoted by
φ and u respectively. The input-output relation can now be
described as τ = φ Tu, where τ is the scalar output. Clearly, the
applications requiring multiple outputs τ would be a vector
while φ would be a matrix of appropriate dimensions.

B. Feedforward Neural Networks (FNNs)

FNNs constitute a class of NN structures in which the data
flow is from input to the output and no feedback connections are
allowed. Because of the structural diversity of neural models,
this discussion is devoted to the architecture and the
mathematical representation of FNN structure, which is
discussed from the point of control engineering. The architecture
of a typical FNN is illustrated in Fig. 1, in which the neural
network has three layers implying the sufficiency for realizing
any continuous mapping to a desired degree of accuracy as long
as the hidden layer contains sufficiently many neurons [3-5].
The number of neurons in the hidden layer is a design variable
and is mostly determined either by trial and error or by empirical
results.

Fig. 1 Structure of a FNN

Functionally, o=Ψh(Whu) and τ=Ψo(Woo), where Ψh and Ψo

stand for the vectors of nonlinear activation functions for the
hidden layer and the output layer respectively. Adaptation is
carried out on the adjustable weights contained in Wh and Wo

matrices. In most applications of NNs, hyperbolic tangent or
sigmoid functions are used in Ψh whereas the selection of Ψo is
generally a linear function of its argument, e.g. Ψo(x)=x. The
standard approach for tuning the paraamenter of FNNs is EBP or
LM techniques [12-13].

Information contained in such a nonlinear map is
distributed over its architectural constituents, i.e. neurons, such
that a local failure in the structure can be tolerated because of
the parametric redundancy existing in the structure, which is an
analogue of the fault tolerance in biological systems. More
explicitly, the task can be redistributed upon death of neurons
forming a local infrastructure of a massive network.

C. Dynamic Neural Networks (DNNs)

Dynamical neural networks are composed of dynamical
neural units (DNU), which possess a second order discrete
system and an output sigmoidal nonlinearity. The neuron model
is comprised of synaptic and somatic parts and adaptation is
carried out on the coefficients of this second order block
(synaptic part) and the on the slope of its nonlinear activation
function (somatic part).

The topology of a single dynamical neural unit consists of
delay elements, feedforward and feedback synaptic weights and
a nonlinear somatic operator. The architecture of the DNU
model is illustrated in Fig 2. The difference equation which
describes the behavior of the second order dynamical structure is
given in (1) in which v

i
(k), ui(k) ∈ ℜ. Similarly, the pulse

transfer function of this part is described in (2).
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The output of the DNU is evaluated as follows;
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Fig. 2 Structure of a Single DNU

Fig. 3 Construction of DNU Layer
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When a number of such dynamic neuron structures are
connected to form a layer as illustrated in Fig. 3, the resulting
network has been shown to be a universal approximator [7]. In
Fig. 3, DNU layer includes the desired number of individual
DNU blocks whose inputs are connected together and whose
outputs are added to form the output τ(k). Depending on the
magnitude of the output error, the algorithm updates the
feedforward and feedback weights and the gain of the nonlinear
activation function of each dynamical neural unit in the DNU
layer. The derivation of the gradient based parameter tuning
algorithm is given in [7] in detail.

D. Radial Basis Function Neural Networks (RBFNNs)

In the literature, RBFNNs are generally considered as a
smooth transition between FL and NNs. Structurally, a RBFNN
is composed of receptive units (neurons) which act as the
operators providing the information about the class to which the
input signal belongs. If the aggregation method, number of
receptive units in the hidden layer and the constant terms are
equal to those of a FIS, then there exists a functional
equivalence between RBFNN and FIS [1]. Although the
architectural view of a RBFNN is very similar to that of a FNN
illustrated in Fig. 1, the hidden neurons of a RBFNN possess
basis functions to characterize the partitions of the input space.
Each neuron in the hidden layer provides a degree of
membership value for the input pattern with respect to the basis
vector of the receptive unit itself. The output layer is comprised
of linear neurons. NN interpretation makes RBFNN useful in
incorporating the mathematical tractability, especially in the
sense of propagating the error back through the network, while
the FIS interpretation enables the incorporation of the expert
knowledge into the training procedure. The latter is of particular
importance in assigning the initial value of the network’s
adjustable parameter vector to a vector that is to be sought
iteratively. Expectedly, this results in faster convergence in
parameter space.

Mathematically, oi=Πm
j=1Ψij(uj) and a common choice for

the hidden layer activation function is the Gaussian curve
described as Ψij(u)=exp{-(uj-cij)

2/σij
2}, where cij and σij stand for

the center and the variance of the ith neuron’s activation function
qualifying the jth input variable. The output of the network is
evaluated through the inner product of the adjustable weight
vector denoted by φ and the vector of hidden layer outputs, i.e. τ
= φ To, which is just as in the case of output evaluation in
ADALINEs. Clearly the adjustable parameter set of the structure
is composed of {c, σ, φ} triplet.

E. Standard Fuzzy Systems (SFSs)

Contrary to what is postulated in the realm of predicate
logic, representation of knowledge by fuzzy quantities can
provide extensive degrees of freedom if the task to be achieved
can better be expressed in words than in numbers. The concept
of fuzzy logic in this sense can be viewed as a generalization of
binary logic and refers to the manipulation of knowledge with
sets, whose boundaries are unsharp [33]. Therefore the paradigm
offers a possibility of designing intelligent controllers operating
in an environment, in which the conditions are inextricably
intertwined, subject to uncertainties and impreciseness.

Understanding the information content of fuzzy logic
systems is based on the subjective judgements, intuitions and the
experience of an expert. From this point of view, a suitable way
of expressing the expert knowledge is the use of IF antecedent
THEN consequent rules, which can easily evaluate the necessary
action to be executed for the current state of the system under
investigation.

Structurally, a fuzzy controller is comprised of five building
blocks, namely, fuzzification, inference engine, knowledge base,
rule base, and defuzzification. Since the philosophy of the fuzzy
models is based on the representation of knowledge in fuzzy
domain, the variables of interest are graded first. This grading is
performed through the evaluation of membership values of each
input variable in terms of several class definitions. According to
the definition of a membership function, how the degree of
confidence changes over the domain of interest is characterized.
This grading procedure is called fuzzification. In the knowledge
base, the parameters of membership functions are stored. Rule
base contains the cases likely to happen, and the corresponding
actions for those cases through linguistic descriptions, i.e. the
IF-THEN statements. The inference engine emulates the
expert’s decision making in interpreting and applying
knowledge about how the best fulfillment of the task is
achieved. Finally, the defuzzifier converts the fuzzy decisions
back onto the crisp domain [34].

SFS architecture that has been proposed by Wang [35] uses
algebraic product operator for the aggregation of the rule
premises and bell-shaped membership functions denoted by µ.
The overall representation of SFS structure is given in (4), in
which R and m stand for the number of rules contained in the
rule base and the number of inputs of the structure.

( )
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=
= =

=
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i R
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1 1

1
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with ith rule as: IF u1 is U1i AND u2 is U2i AND … AND um is
Umi THEN fi=φi. In the IF part of this representation, the
lowercase variables denote the inputs and the uppercase
variables stand for the fuzzy sets corresponding to the domain of
each linguistic label. The THEN part is comprised of the
prescribed decision in the form of a scalar number denoted by φi.
Clearly, the adjustable parameters of the structure are comprised
of the parameters of the membership functions together with the
defuzzifier parameters φi. Another common feature of the
representation in (4) is the linearity of the output in the
defuzzifier parameters.

F. Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Adaptive neuro-fuzzy inference systems are synthesized by
an appropriately integrating the neural and fuzzy system
interpretations. The resulting hybrid combination therefore
inherits the numeric power of NN as well as the verbal power of
FL [1,36]. An ANFIS structure having m-inputs and single
output with product inference rule and first order Sugeno model
can be described as in (4) with fi being described as in the rule
consequent. The structural view of such a system is illustrated in
Fig. 4, in which Ñ stands for the normalization operator seen as
the last term of (4).
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Fig. 4 Structure of an ANFIS

The rule structure for an ANFIS utilizing first order Sugeno
model has the following representation: IF u1 is U1i AND u2 is
U2i AND … AND um is Umi THEN fi = φi,1u1+…+ φi,mum+φi,m+1.
When the consequent part of the rule structure is compared with
that of rules in SFS architecture, it is seen that the polynomial
representation of the decision introduces higher parametric
flexibility extending the realization capability. Being not
confined to what is discussed above, depending on the
requirements of the problem in hand, the designer can choose
higher order polynomials to improve the realization accuracy.
When the issue of parameter tuning in ANFIS is considered the
well-known gradient approaches as well as the method of least
mean squares or SMC based approaches can easily be utilized.

ANFIS structure has been utilized with gradient based
training strategies for identification of nonlinear systems [37]
and with SMC based training strategies for variable structure
control of motion control systems. In [1], an in-depth discussion
is given with numerous examples on the use of ANFIS structure.

III. SMC BASED PARAMETER TUNING IN INTELLIGENT
CONTROL SYSTEMS

The studies reporting the use of SMC for parameter tuning
in CI by Sanner and Slotine [38], and Sira-Ramirez and Colina-
Morles [39] have been the stimulants, which proved that the
robustness feature of SMC could be exploited in the training of
the architectures of CI. These studies pioneered a vast majority
of researchers working on SMC and CI. Sanner and Slotine
considered the training of GRBFNN which has certain degrees
of analytical tractability in explaining the stability issues, and
Sira-Ramirez et al have shown the use of ADALINEs with a
SMC based learning strategy. As an illustrative example, the
inverse dynamics identification of a Kapitsa pendulum has been
demonstrated together with a thorough analysis towards the
handling of disturbances. Hsu and Real [40-41] demonstrate the
use of SMC with Gaussian NNs, Yu et al [42] introduces the
dynamic uncertainty adaptation of what is proposed in [39], and
demonstrate the performance of the scheme on the Kapitsa
pendulum. Parma et al [43] use the SMC technique in parameter
tuning process of multilayer perceptron. Latest studies towards
the integration of SMC and CI have shown that the tuning can
be implemented in dynamic weight filter neurons [44], in
parameters of a controller [45]. A different viewpoint towards
this integration is due to Efe et al [46-47], which has the goal of

reducing the adverse effects of noise driven parameter tuning
activity in gradient techniques. The key idea in these works is to
mix the two training signals in a weighted average sense. A
good deal of review is provided in the recent survey of Kaynak
et al [48]. The survey illustrates how SMC can be used for
training in CI as well as how CI can be utilized for the tuning of
parameters in conventional SMC.

In what follows, the use of SMC approach for intelligent
control of nonlinear systems is presented together with the
analytical details wherever required. The emphasis is mainly on
the works presented in [44-45] with the authors’ latest research
outcomes towards the direction of control engineering.

A. Control System Structure

Consider the feedback loop illustrated in Fig. 5, in which a
subscript d denotes the desired value of the relevant quantity.
Furthermore, it is shown in the figure that if a supervisor
provides the desired controller outputs, one might evaluate the
error on the control signal denoted by sc.

The plant shown in Fig. 3.1 is assumed to have the structure
described in (2), in which θ and τ are (r1+r2+…+rn)×1-
dimensional state vector and n×1-dimensional input vector. The
system of (2) with these vectors can be restated as

( ) τθθ Df
p

+=� .

( ) ( ) nidf n
j jijp

r
i i

i ,...,2,11 =+= ∑ = τθθ (5)

Fig. 5 Block diagram of the control system

The design problem is to enforce the behavior of the system
towards the desired response, which is known but the control
signal (τd) resulting in which is unavailable. Therefore, the
solution to this problem is a search towards the synthesis of such
a signal iteratively by an intelligent controller. Assuming that
the intelligent controller in Fig. 5 is composed of n individual
controllers, the ith one of which is to construct the ith component
of input vector τ, the jth entry of the error vector driving this sub-
controller can be given as ei

(j)= θi
(j)−θdi

(j). Apparently, this
component is the jth derivative of the relevant state component.

B. Conventional SMC Design – An Overview

Consider the vector of sliding surfaces for the system in (5):
sp(e)=Ge=G(θ−θd). The widespread selection of the matrix G is
such that the ith sliding surface function has the form

( ) i

r

iiip e
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i 1−
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in which, λi is a strictly positive constant. Let Vp be a candidate
Lyapunov function given as

( ) p
T
ppp sssV

2

1= (7)

If the prescribed control signal satisfies

( ) ( )p
T
ppp sssV sgnξ−=� , the negative definiteness of the time

derivative of the Lyapunov function in (7) is ensured. In
above, ξ is a positive definite diagonal matrix of dimension n×n.

More explicitly, ( )p
T
pp

T
p ssss sgnξ−=�  must hold true to drive

the error vector towards the sliding hypersurface. On the other

hand, the use of ( ) 


 ++−= τθθ DfGGs
pdp

�

�  leads to the

following control signal:

( ) ( ) 


 −−= −
dp

GfGGD θθτ �

1 ( ) ( )psGD sgn1ξ−− (8)

in which, the first term is the equivalent control term and the
second term is the corrective control term. For the existence of
the mentioned components, the matrix GD must not be rank
deficient. In the literature, equivalent control is considered as the
low frequency (average) component of the control signal.
Because of the discontinuity on the sliding surface, the
corrective term brings a high rate component [20,25]. If e(0)=0,
the tracking problem can be considered as keeping e on the
sliding surface, however, for nonzero initial conditions, the
strategy must enforce the state trajectories towards the sliding
surface, which is ensured by the negative definiteness of the
time derivative of the Lyapunov function as in (7). For the case
of nonzero initial conditions, the phase until the error vector hits
the sliding surface is called the reaching mode, the dynamic
characteristics of the system during which is determined by the
control strategy adopted. Application of the control input
formulated in (8) imposes the dynamics described as

( )pp ss sgnξ−=� , which clearly enforce the error vector

towards the sliding surface. Once the sliding surface is reached,
the value of (6) becomes zero; and this enforces the error vector
to move towards the origin.

Aside from the practical difficulties of conventional SMC
schemes, the control signal in (8) is applicable if a nominal
representation of the system under control is available. In the
next subsection, a method for obtaining the error on the control
signal is presented for unknown systems of structure (5).

C. Calculation of the Control Error

Remark 3.1: The SMC task is achievable if the dynamics
of the system in (5) is totally known or if the nominal system is
known with the bounds of the uncertainties. It must be noted that
to satisfy the matching conditions, the disturbances and
uncertainties are always assumed to enter the system through the
control channels [17]. When the conventional SMC strategy is
applied to the system of (5), we call the resulting behavior as the
target SMC and the input vector leading to it as the target
control sequence (τ ), which is described in (8). If the functional
form of the vector function fp is not known, it should be obvious

that the target control sequence cannot be constructed by
following the traditional SMC design approaches.

Definition 3.2: Given an uncertain plant, which has the
structure described as in (2), and a command trajectory vector
θd(t) for t ≥ 0, the input sequence satisfying the following vector
differential equation is defined to be the idealized control
sequence denoted by τd, and the vector differential equation
itself is defined to be the reference SMC model.

( ) ddpd Df τθθ +=� (9)

Mathematically, the existence of such a model and the
sequence means that the system of (5) perfectly follows the
command trajectory vector if both the idealized control sequence
is known and the initial conditions are set as θ(t=0)= θd(t=0),
more explicitly e(t) ≡ 0 for ∀ t ≥ 0. Undoubtedly, such an
idealized control sequence will not be a norm-bounded signal
when there are step-like changes in the vector of command
trajectories or when the initial errors are nonzero. It is therefore
that the reference SMC model is an abstraction due to the
limitations of the physical reality, but the concept of idealized
control sequence should be viewed as the synthesis of the
command signal θd from the time solution of the differential
equation set in (9).

Fact 3.3: Based on the Lyapunov stability results of the
previous subsection, if the target control sequence formulated in
(8) were applied to the system of (5), the idealized control
sequence would be the steady state solution of the control signal,
i.e. d

t
ττ =

∞→
lim . However, under the assumption of the

achievability of the SMC task, the difficulty here is again the
unavailability of the functional form of the vector function fp.
Therefore, the aim in this subsection is to discover an equivalent
form of the discrepancy between the control applied to the
system and its target value by utilizing the idealized control
viewpoint. This discrepancy measure is denoted by sc=τ −τd and
is of n×1 dimensional. If the target control sequence of (8) is
rewritten by using (9), one gets

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) dpp

dpdpp

pddpp

sfGGD

sfGfGGD

sDfGfGGD

τξθ

τξθθ

ξτθθτ

+




 +∆−=

+




 +−−=




 +




 +−−=

−

−

−

sgn

sgn

sgn

1

1

1

(10)

The target control sequence becomes identical to the
idealized control sequence, i.e. τ ≡ τd, as long as

( ) ( ) 0sgn =+∆ pp
sfG ξθ  holds true. However, this condition is

of no practical importance as we do not have the analytic form
of the vector function fp. Therefore, one should consider this
equality as an equality to be enforced instead of an equality that
holds true all the time, because its implication is sc=0 and is the
aim of the design. It is obvious that to enforce this to hold true
will let us synthesize the target control sequence, which will
ultimately converge to the idealized control sequence by the
adaptation algorithm yet to be discussed. Consider the time
derivative of the vector of sliding surfaces
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DfG

DfDfG

G
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ττ

τθτθ

θθ ��
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Utilizing ( ) ( ) 0sgn =+∆ pp
sfG ξθ  in (11) and solving for sc

yields the following relation:

( ) ( )( )ppc ssGDs sgn1 ξ+= −
�  = dττ − (12)

Remark 3.4: The reader must here notice that the
application of τd to the system of (5) with zero initial errors will
lead to e(t) ≡ 0 for ∀ t ≥ 0, on the other hand, the application of τ
to the system of (5) will lead to sp=0 for ∀ t ≥ th, where th is the
hitting time, and the origin will be reached according to the
dynamics of the sliding surface. Therefore, the adoption of (12)
as the equivalent measure of the control error loosens e(t) ≡ 0 for
∀ t ≥ 0 requirement and introduces all trajectories in the error
space to tend to the sliding hypersurface, i.e.

( ) ( ) 0sgn =+∆ pp
sfG ξθ  is enforced. Consequently, the

tendency of the control scheme will be to generate the target
SMC sequence of (8) without requiring the analytical details of
the plant.

Now consider the ordinary feedback control loop illustrated
in Fig. 5, and define the following Lyapunov function, which is
a measure of how well the controller performs:

( ) c
T
ccc sssV

2

1= (13)

Remark 3.5: An adaptation algorithm ensuring ( ) 0<cc sV�

when sc≠0 enforces ( ) ( ) 0sgn =+∆ pp
sfG ξθ  and creates the

predefined sliding regime after a reaching mode lasting until the
hitting time denoted by th, beyond which sc = 0 as the system is

in the sliding regime. If ( ) 0<cc sV�  when sc≠0, then

0lim =
→

c
tt

V
h

⇔ 0lim =
→ c

tt
s

h

⇔ ( ) 0sgnlim =+
→ pp

tt
ss

h

ξ� .

Note that the meaning of sc = 0 is now equivalent to sp = 0 by
Remark 3.4, therefore the limits above are evaluated as t→th.

D. Parameter Tuning based on a Single-Term Lyapunov
Function

If the architectures introduced in the second section are
utilized for the purpose of control, without loss of generality, the
output of the ith controller can be restated as τi=φi

TΩi, where Ωi

is the vector of signals exciting the adjustable parameters
denoted by φi. Therefore the algorithm discussed here is
applicable to ADALINE, GRBFNN, SFS and ANFIS

architectures. Furthermore, the Lyapunov function in (10)
constitutes the basis of the design.

In order not to be in conflict with the physical reality, the

designer must impose 
i

B
i φφ ≤ ,

i
Bi Ω≤Ω

�

�

id
Bid ττ

�

� ≤ ,

the truth of which state that the adjustable parameters of the
controller, the time derivative of the signal exciting the
adjustable parameter set and the time derivative of the idealized
output of the controller remain bounded. Note that in Definition
3.2, we stated that there may not be a finite ℜ∈

id
Bτ�  even in

some realistic situations like nonzero initial errors, however, the

practical meaning of imposing 
id

Bid ττ
�

� ≤  will lead us to the

construction of an approximation of the idealized control
sequence and the requirement of e(t) ≡ 0 for ∀ t ≥ 0 must
therefore be loosened.

Theorem 3.6: For the ith subsystem of the system described
in (5), adopting the controller of structure τi=φi

TΩi, the
adaptation of the controller parameters as described in (14)
enforces the value of the ith component of control discrepancy
vector (sci) to zero.

( )
ici

i
T
i

i
i

sk sgn
ΩΩ

Ω
−=φ� (14)

where, ki is a sufficiently large positive constant satisfying

idii
BBBki τφ �

�

+> Ω . The adaptation mechanism in (14) drives

an arbitrary initial value of sci to zero in finite time denoted by thi

satisfying the inequality in (15).

( )
( )

idii
BBBk

s
t

i

ic
ih

τφ �
�

+−
≤

Ω

0
(15)

Proof: See Sira-Ramirez et al [39] and Efe et al [45]. 

An important feature of this approach is the fact that the
controller parameters evolve bounded as assumed initially. The
details of the bounded parametric evolution analysis can be
found in [42,45].

E. Parameter Tuning based on a Two-Term Lyapunov
Function

Similar to what is initially designated in the previous
subsection, the output of the ith controller is described as
τi=φi

TΩi. In addition to the stated boundedness conditions the

truth of 
i

Bi Ω≤Ω is imposed. Consider the Lyapunov function

given in (16), in which µ and ρ are the weights to be selected by
the designer.

2

2

1

i

c
c

i
i

V
VV

φ
ρµ

∂

∂
+=  with 2

2

1
ii cc sV = (16)

Theorem 3.7: If the adaptation strategy for the adjustable
parameters of the ith controller is chosen as
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with ki is a sufficiently large constant satisfying( )
ii

BBBk
ii ΩΩ+>

�

ρµ φ , then the negative definiteness of the

time derivative of the Lyapunov function in (16) is ensured.

Proof: See Efe [49]. 

F. A Generalization of EBP and LM Techniques in the
Context of SMC

A recent contribution towards the generalization of EBP
and LM techniques is due to Yu et al [50]. The approach
postulated is applicable to all architectures discussed in the
second section and is based on the Lyapunov function given in
(18).

( )
2

2

1
,

i

i
iii

J
JJV

φ
ρµφ

∂
∂+= (18)

where ∫ −
−= t

t ci dsJ
iγ σσγ )(1  with γ being the length of a time

window to evaluate the training efficiency [51-52].

Theorem 3.8: For a computationally intelligent structure
whose input-output relationship is τi(t)= ℑ(φi(t),ui(t)), if

(a) 0<
∂

∂
t

Ji

(b) The parameter adaptation rule is
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Then 
iiJ φ∂∂ /  tends to zero.

Proof: See Yu et al [50].

The formulation of Ji is particularly useful for on line
training and continuous time learning. However, for discrete
data, since the evaluation of errors can only be done at discrete
instants of time, Ji at time tk can be defined as

)()(lim)( 1

0
kc

t
t cki tsdsttJ

ii
=== ∫ −

−
→ γγ

σσγ . The conven-

tional gradient descent learning algorithm can be now obtained
by setting ρ=0 and η=0. Since ∂2Ji(t=tk)/(∂t∂φi

T)=0 one obtains
the law in (20), whose learning rate in the conventional sense is
µ-1ς.

( )
T

ki ttJ

φ
ςµφ

∂
=∂−= −1

�

(20)

The Gauss-Newton algorithm can be obtained by setting
µ=0 and η=0. Since ∂Ji(t=tk)/∂t=0 and∂2Ji(t=tk)/(∂t∂φi

T)=0, from
(19) one gets the law in (21).
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Similarly, the LM algorithm can be easily obtained by
setting η=0. Since ∂Ji(t=tk)/∂t=0 and ∂2Ji(t=tk)/(∂t∂φi

T)=0, from
(19) the law in (22) is obtained.
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1
2

� (22)

G. Practical Issues

The analysis and the design approach presented so far have
tried to illuminate the SMC based training problem from a
theoretical perspective. In this subsection, we discuss several
issues related to the practical applications of the discussed
methodologies.

i) Chattering

Since the control decision during the sliding mode is tightly
dependent to the sign of a measured quantity being noisy and
very close to zero, the decision along the sliding manifold
exhibits sensitivity to noise on the observations. Among many
alternatives available [17,28,53], a common approach to
eliminate the chattering is to smooth the sign function, which
corresponds to introduce a boundary layer [28]. A widespread
choice is the following approximation for the sgn(.) function.

( )
δ+

≅
x

x
xsgn (23)

where δ determines the sharpness around the origin. Since the
function in (23) is not discontinuous at the origin, the decision
mechanism softly switches inside the boundary layer.

ii) Actuation Speed

Another important issue is the actuation speed of the system
under control, i.e. the ability to respond to what is imposed
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timely. Since the details concerning the dynamic model of the
plant under control are assumed to be unavailable, what causes a
difficulty from a practical point of view is the selection of the
matrix ξ, which characterizes the behavior during the reaching
mode. The values of this quantity can only be set by trial-and-
error due to the lack of system-specific details.

iii) Obtaining the Equivalent Error from the Observed Data

Lastly in this subsection, we focus on the construction of
the sc of (12), which requires the differentiation of sp. A suitable
approach is to filter the measured values of sp and differentiate
afterwards. Denote S as the Laplace variable, and use the linear
dynamic system given as

( )
)(SQ

S
SH

α= (24)

where Q(0) = α > 0 and Real{roots(Q(S))} < 0. The order of
the denominator polynomial and the locations of the roots are
left to the designer, because these issues require several trials to
refine the selections and are subject to the application together
with its operating environment. It should be noted that the cost
of the information loss by using such a filter, whose input is sp

and output is an estimate of ps� , is a matter of how robust the

devised control algorithm is. More explicitly, the separation of
the noise and the actual value of sp leads to a corruption on sp,
and when differentiated afterwards, some valuable information
is lost together with the elimination of the noise component.
Here it is assumed that mentioned loss causes an uncertainty,
which enters the system through the control channels, and which
is particularly effective during the sliding mode; and this
uncertainty can be alleviated if it falls within the limits allowing
the maintenance of the invariance during the sliding mode [17].

iv) Computational Burden

One of the factors qualifying the physical implementability
of control schemes is the number of computations to be
performed by the controller. In this part, a discussion of the
computational burden of the tuning mechanisms is presented. It
should be noted that the structure of the controller adopted
strictly influences the required number of floating point
operations (flops) between the two consecutive sampling
instants. Therefore, the discussion given here focuses on the
ADALINE controller, as it constitutes a basis for all structures.
If an ANFIS structure is to be used, the designer must consider
the extra calculations to generate the vector signal exciting the
adjustable parameter set of the defuzzifier.

Another point to clarify is the computational complexity
due to the approach postulated in Theorem 3.8, whose practical
applications generally subject to the following: the cost function
Ji is evaluated at the discrete instants of time and it does not
depend explicitly on time, i.e. ∂Ji(t=tk)/∂t=0
and∂2Ji(t=tk)/(∂t∂φi

T)=0.
Fig. 6 illustrates a bar graph composed of triplets. The

leftmost component represents the flops required to evaluate the
ADALINE output and to adjust its parameters once by utilizing
the method discussed in the subsection III-D. The middle and
the rightmost components stand for the required number of flops

for the methods presented in subsections III-E and III-F
respectively. It is clear from the figure that the complexity due
to the first approach is considerably smaller than the other two
as the order of the subsystem under control increases. This fact
is primarily because of the matrix inversion to be performed at
each step. However, the set of criteria qualifying the
performance of an intelligent control system is strictly
dependent upon the application specific details, which does not
give a clue in choosing a tuning mechanism. Therefore, the
designer is encouraged to try the alternatives in discovering the
one performing the best.

1 2 3 4 5 6 7 8
0
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2500

3000

Fig. 6 Computational burden of the discussed schemes

H. Summary

What we have discussed so far have illuminated the design
considerations at microscopic levels forming the whole picture.
When implementing the control system with a SMC based
tuning mechanism updating the parameters of an intelligent
controller, one has to remember that the plant is in an ordinary
feedback loop as illustrated in Fig. 5. Having decided on the
controller structure, the error vector is processed until the
control to be applied is obtained. Since the desired control inputs
are unavailable, using the error measure given in (12), the
similarity between the applied control and the target control
sequence is qualified, then the parameter tuning is performed
according to the chosen tuning strategy.

A particular difference in applying the ADALINE structure
as the controller with (14) and (17) is that the controller input
vector is formed by augmenting the error vector, which is of
dimension ri×1, with a constant bias of value unity yielding a
(ri+1)×1-dimensional excitation to the controller. The reason for
such an augmentation is twofold:

i) If the denominator of (14) were considered, without such
an augmentation the derivative would tend to infinity as the
error vector moves towards the origin. However, having such a
tendency in the adjustable controller parameters cannot result in
convergence. When (17) is considered from the same point of
view, together with the open form of matrix inversion, one sees
that a convergent behavior enforces the tuning mechanism to
behave like gradient descent. Although gradient descent can
appropriately be used for controller training purposes, the
structural simplicity of ADALINE will not allow the observation
of a convergent behavior. This particular structure corresponds
to linear time varying state feedback, which is well developed
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especially for systems whose dynamic representations are
known totally or partly with known uncertainty bounds.

ii) When the sliding mode starts, the error vector rapidly
converges to origin and the system starts tracking the desired
trajectory precisely. However, since the magnitudes of the
entries of the error vector are very close to zero, the
corresponding controller parameters do not receive sufficient
excitation to maintain the synthesis of target control sequence.

In implementing RBFNN, SFS and ANFIS architectures,
the designer will not need such an augmentation since the
parameter vector is persistently excited by the hidden neuron
outputs of RBFNN or rule outputs of FL based structures.

A last remark here is on the applicability of FNN and DNN
structures, to which solely the method in subsection III-F is
applicable among what we have discussed.

IV. ILLUSTRATIVE EXAMPLES

A. First Example: Control of a Third Order System

This section demonstrates the performance of the algorithm
discussed in subsection III-D for a third order system studied
previously by Roy et al [54] and Yilmaz et al [55]. The dynamic
equation describing the system is given in (25).

( ) ( )
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( )( )
( )( ) θθπ
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++−−−=

(25)

where κ1(t)=0.2sin(4πt) is the disturbance used in [54-55], and
κ2(t) is the zero mean Gaussian noise corrupting the state
information to be used by the controller additively. The work
presented by Roy et al assume that the nominal system dynamics
is known and the uncertain part is comprised of what we give as
the last three terms in (25). The primary difference between
what has been discussed so far and what is assumed in [54]
should be stressed as the approaches we discuss only assume the
achievability of the SMC task, hence the uncertainties are
represented in the system dynamics, whose form is known but
the details are not. As the controller, a three input single output
ANFIS structure is used and the tuning is performed only on the
defuzzifier parameters, which are initially set to zero. The rule
base has 27 rules quantifying the relevant input variable as
Negative, Zero or Positive. Once the rule outputs are evaluated,
the crisp decision of the controller is computed as described in
(4).

Parallel to [54], the reference state trajectory described as
θd=0.5cos(πt/5) is used in the simulations. Initially, the states of

the system have the following values, θ (0) = 1, dθ� (0) = 1 and

θ�� (0) = 1. One important note here should be on the selection of
λ. The value is taken as 5 in [54]; however we use λ = 1,
because the behavior with this value results in a better system
response. Fig. 7 illustrates the trajectory followed in the phase

space. The error vector hits the sliding surface several times and
starts moving on it as enforced by the algorithm.

Fig. 7 Behavior in the phase space

B. Second Example: Control of a Biochemical Process

Chemical process engineering is another application field
utilizing the techniques of control engineering expertise. In this
subsection, we consider the dynamic model of a CSTR
discussed in [65], which illustrate the SMC task with Gaussian
networks and wavelet networks. The governing equations of the
process dynamics are as described below, and the parameters are
defined in Table I.
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Table I. Parameters of the CSTR Dynamics

Dimensionless concentration θ1 State variable
Dimensionless temperature θ2 State variable
Dimensionless coolant temp. θc Control input
Damkohler number Da 0.072
Dimensionless cooling rate β 0.3
Dimensionless activation energy γ 20
Dimensionless heat of reaction TR 1
Disturbance η See Table II

The control problem is to enforce the dimensionless
concentration (θ1) to follow a desired trajectory by altering the
dimensionless coolant temperature (θc). During the control
operation, the second state, which is the dimensionless
temperature (θ2), is constrained to evolve boundedly in time.

In [65], the nominal operating point of the CSTR system is
described as θ1=0.4126, θ2=3.28 and θc=3.04, the state values
among which are used as the initial state values in this paper.

t ≈ 0.25sec
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According to the simulation settings given in Table II, one
should notice from the first row that the controller uses solely
the noise corrupted tracking error information in synthesizing
the necessary control sequence.

In Fig. 8, the desired and the observed states are illustrated.
In the bottom right subplot of this figure, the error is seen. At
time t=3200sec, a step change occurs in the reference trajectory,
which is also studied by Knapp et al [65], and the system
successfully follows the imposed trajectory. It must be noted
that since the system under control is of first order, the sliding
surface of the conventional design becomes a point in the single
dimensional error space, and this point corresponds to the origin.
Consequently, the problem does not require a λ selection. In the
top left subplot of Fig. 9, the applied control signal (θc) is
illustrated. This subplot reveals that the control signal has a
sufficiently smooth characteristic after the transient phase. The
remaining three subplots in Fig. 9 depict the time evolution of
the adjustable neurocontroller parameters These subplots
confirm the evolution in finite volume claims that have already
been discussed. The variables seen in Figs. 8 and 9 have been
redrawn in Figs. 10 and 11 with the same graphical allocation
but around t=3200sec, at which a step change occurs in the
command signal. When compared to the results discussed in
[65], it can be said that the settling time is not as small as in
[65], but the computational simplicity, i.e. the number of
neurons, and acceptable tracking accuracy make the approach
presented a good alternative for control of chemical processes.

Table II. Simulation Data for the Process Control Example

Controller Input Vector ii eu = , i=1

# of Hidden Neurons 3

Uncertainty Bounds k=20

Simulation Stepsize Ts=0.1sec

Initial Errors e(0)= -0.0566

Sliding Line Parameter None

Noise Variance 7.3543e-8

Noise Peak Value

with probability ≈ 1

1e-3

SMC Design Matrix ξ = 0.1I1×1

Filtering Parameter α=1

Initialization of the Basis
Functions, which are kept static
during the simulations
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Fig. 8 Desired and observed states with error signal in
CSTR control example
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Fig. 9 Control signal and parametric evolution
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Fig. 10 Zoomed Figure 5 around t=3200sec.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1573



3150 3200 3250

0

5

10

15

20

Time (sec)

θ c

3150 3200 3250
10

15

20

25

30

Time (sec)

φ 1

3150 3200 3250
-5

0

5

10

15

Time (sec)

φ 2

3150 3200 3250
-6.4

-6.3

-6.2

-6.1

-6

Time (sec)

φ 3

Fig. 11 Zoomed Figure 6 around t=3200sec.

V. COMPUTATIONAL INTELLIGENCE IN VARIABLE
STRUCTURE CONTROL

What we have focused on so far mainly contemplates the
use of VSS theory for parameter adaptation in CI. However, the
integration of SMC technique with the architectural and
algorithmic methods of CI can also be utilized in

• Chattering elimination through filtering [48,56]
• Design of the parameters of a conventional sliding mode

controller [48,57-58]
• Modeling of the uncertainties [48,59-61]
• Generating a complementary control action [48,62-63]
• Generating the equivalent control and corrective control

actions separately [48,64]

The use of CI in VSS may be a remedy in the situations
where the available knowledge is insufficient to produce a safe
control action. The selection of the uncertainty bound in this
respect constitutes an apparent example. As the value of the
uncertainty bound increases, the produced control action is more
likely to have high frequency components having high
magnitude, which arise through the sign measurement during the
sliding mode. In such a situation, CI supported schemes can
offer smoothed control signals with a reasonable uncertainty
bound selection. Furthermore, the conventional framework may
underestimate the actuation speed of the system under control
and may lead to unnecessarily large control inputs. In these
cases, the tuning of SMC parameters, e.g. the slope of the sliding
line, can be designed using the methods of CI. Being not limited
to these, the methods of CI can be used as auxiliary subsystems
for improving the control signal, i.e. a complementary control
signal is produced so that the undesired effects of conventional
sliding mode controller can be reduced. Last but not the least,
the components of the control signal driving the system behavior
to a predefined sliding regime can separately be realized by a
learning system. This can eventually result in a comprehensible
way of formulating the equivalent control and the corrective
control.

VI. CONCLUSIONS

This study discusses the design of a VSS theory based
training strategies for CI, when the traditional gradient based
training approaches are utilized for which, some handicaps arise
due to the imperfect modeling, noisy observations or time
varying parameters. If the effects of these factors are
transformed to the cost hypersurface, whose dimensionality is
determined by the adjustable design parameters, it becomes
evident that the surface may have directions along which the
sensitivity derivatives assume large values. In these cases,
gradient based optimization procedures tend to evaluate large
parametric displacements, which can eventually lead to a locally
divergent behavior. In control engineering practice, such a
behavior constitutes a potential danger from a safety point of
view. The approaches presented in this work take care of the
mentioned difficulties. Since the VSS theory is well known with
its robustness property, a training strategy equipped with which
retains a high degree of robustness against disturbances and
uncertainties. When these approaches are considered for the
training of intelligent controllers, under the assumption that the
SMC task is achievable, the task is fulfilled without knowing the
analytic details describing the plant dynamics. In order to
corroborate the performance claims, tracking control of a third
order nonlinear system is presented. The behavior in the phase
space clearly demonstrates the superior performance despite the
unavailability of system-specific details.
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