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Abstract - A novel adaptive fuzzy sliding mode control design is 
developed for trajectory tracking of a class of nonlinear 
systems in this paper. This control design uses the modelling 
error to adaptively estimate the deterministic uncertainties as 
well as the control gain based on the fuzzy systems approach. 
By this design, the bounds of the uncertainties are not required 
to be known in advance, and the robust stability of closed loop 
systems is analysed in the Lyapunov sense. Simulation results 
are given to demonstrate the improved performance. 

 
 

I. INTRODUCTION 
 
The control of nonlinear systems has been an important 
research topic and many approaches have been proposed 
(see [1,2] for summary of the state of the art). Feedback 
linearisation based adaptive control is suitable for the control 
of nonlinear systems with accurate nominal models or 
linearly parametrizable dynamical models. However, due to 
modelling errors, these controls may not be very effective 
without proper compensation to overcome the modeling 
error effects.  The design of robust control for uncertain 
nonlinear systems is still a challenging problem. 
 
Sliding mode control (SMC) is well known for handling 
matched uncertainties[2,3,4]. A sliding-mode control law is 
formulated using a Lyapunov approach to guarantee that the 
system state first reaches the prescribed sliding mode in 
finite time from any initial state, and then remains on it 
thereafter by a discontinuous control. However, SMC suffers 
from a well known problem - chattering due to the high gain 
and high-speed switching control. The undesirable chattering 
may excite previously unmodelled system dynamics and 
damage actuators, resulting in unpredictable instability. 
Smoothing techniques such as the boundary layer approach 
have been employed to reduce its effects at the cost of giving 
concessions from performance. Therefore, a compromise 
must be sought between the desired control accuracy and 
controller bandwidth. 
 
As a model free design method, fuzzy systems have been 
successfully applied to control complex or ill-defined 
processes whose mathematical models are difficult to 
obtain[5]. The ability of converting linguistic descriptions 
into automatic control strategy makes it a practical and 

promising alternative to the classical control scheme for 
achieving control of complex nonlinear systems. A major 
drawback of fuzzy control systems is that the fuzzy rules 
must be previously tuned by time-consuming trial-and-error 
procedures because of lack of adequate analysis and design 
techniques. To overcome this problem, some research has 
been focused on the Lyapunov synthesis approach to 
construct stable adaptive fuzzy controllers[5-9]. The basic idea 
of most of these works is that with the universal 
approximation ability of fuzzy systems, the system 
uncertainties can be represented by linearly parameterized 
uncertainties so that the standard parametric adaptive 
techniques can be utilized.  
 
Similar to the conventional adaptive control, adaptive fuzzy 
control can be categorized into “direct”, “indirect” and 
“composite” schemes, respectively, according to the type of 
fuzzy rules[5]. For all the three methods, the adjustable fuzzy 
parameters are updated on-line by the tracking-error based 
adaptive laws for achieving specified tracking performance. 
Unfortunately, it is not sufficient to have successful function 
approximation by using tracking error only, although the 
convergence of fuzzy approximator may not be of interest[10]. 
However, accurate function approximation can facilitate 
achieving the tracking error specifications because tracking 
error is a direct result of the function approximation error[11]. 
Recently, modified “direct” and “indirect” approaches have 
been proposed according to the type of error the adaptive 
laws are based on, and a hybrid adaptive fuzzy control 
scheme based on the tracking error and modelling error has 
been developed for achieving improved tracking ability and 
parameter convergence[12]. However this kind of hybrid 
methods may lead to an undesirable adaptive approximation 
with perfect modelling but nonzero tracking error, resulting 
in unsatisfactory transient performance of the closed loop 
system. 
 
The apparent similarities between sliding mode control and 
fuzzy control motivate considerable research efforts in 
combining the two approaches for achieving more superior 
performances such as overcoming some limitations of the 
traditional sliding mode control[13-23]. The approaches tend to 
fall in two different classes of algorithms: non-adaptive and 
adaptive. The first approach attempts to replace the linear 
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control in conventional boundary layer with an equivalent 
fuzzy control which may be nonlinear for the same purpose 
of alleviating the chattering [13-16]. However, the advantages 
of these treatments are not clear compared with conventional 
boundary method because the control performance is 
influenced by the width, not the form of boundary layer[2]. 
The second approach is similar to the popular adaptive fuzzy 
control but is augmented with a sliding mode control scheme 
to deal with the residual modelling error[17-23], so that and  
the limitation on the known bounds of uncertainties can be 
released by an on-line estimation using fuzzy systems[19-23]. 
Although the trajectory-tracking objective can be 
guaranteed, these tracking-error based adaptive fuzzy sliding 
mode control schemes also cannot ensure a successful 
function approximation.  
 
In this paper, a new adaptive fuzzy sliding mode controller 
for uncertain nonlinear systems is proposed. The modelling-
error based adaptive laws are used to adjust three separate 
fuzzy systems for accurately approximating the unknown 
deterministic nonlinear uncertainties as well as the control 
gain, which are then used in the sliding mode control. As a 
result, chattering can be effectively reduced to a minimum 
level. 
 
The remainder of this paper is organized as follows. A 
statement about the problem concerned and some 
preliminaries are given in Section II. The main results are 
presented in Section III, which includes the design of the 
control structure and adaptation laws with stability and 
convergence analysis using the Lyapunov approach. A 
simulation is presented to validate the proposed approach in 
Section IV. Finally, some conclusions are given in section 
V. 
 
 
II. PROBLEM STATEMENT AND PRELIMINARIES 

 
A. Problem Statement 
Consider the SISO (single-input and single-output) affine 
nonlinear dynamical system  
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where [ ] [ ] nTnT
n Rxxxxxx ⊂∈== −

1
)1(

21 ,,,,,, Ωx L&L  is the 
system state vector which is assumed to be available for 
measurement, the scalar x  is the variable of interest (for 
instance the position of mechanical system), )(ix  being the 
ith order time derivative of x , RΩtu ⊂∈ 2)(  is the control 
input (for example, the motor torque), RRgf n →:,  are 

nonlinear system functions representing the dynamic system 
behaviour and control gain respectively. Note more general 
classes of nonlinear dynamic systems can be transformed 
into this structure[1,2]. 
 
In real world applications, the system functions )(xf  and 
g(x) may not be exactly known, which can be split into two 
parts as 

)()()( xxx fff ∆+= ,  )()()( xxx ggg ∆+=   (3) 

where )(xf  and )(xg  denote the nominal parts, and  )(xf∆  
and )(xg∆   the uncertain parts of  )(xf  and )(xg . Here we 
assume that  )(xf∆  and )(xg∆  are bounded as 

)()( xx Ff ≤∆ ,  )()( xx Gg ≤∆ ,  1Ωx∈∀         (4) 
where the bound functions )(xF  and )(xG  can be unknown 
but non-negative. Without loss of generality, we have the 
following assumption: 
 
Assumption 1: The gain )(xg is strictly positive and globally 

bounded away from zero by a known constant lg , i.e., 
0)( >≥ lgg x  for all 1Ωx∈    (5) 

Note that )(xg  can be assumed negative, and the controller 
can be similarly derived. 
 
In the following, [ ] nTn

dddd Rxxx ⊂∈= −
3

)1(,,, Ωx L&  
represents a given desired state trajectory which is assumed 
to be bounded and continuously differentiable. Define 

xxe d −=  as the tracking error and the tracking error vector 
as 

[ ]Tn
d eee )1(,,, −=−= L&xxe    (6) 

The control objective is to determine a robust feedback 
control ),( du xx  to drive the state x  to asymptotically track 
a desired reference signal x  in the presence of model 
imprecision on )(xf  and )(xg , i.e., the tracking error 

0→e , as ∞→t , under the condition that all involved 
signals in the closed loop remain bounded. 
 
If the bound functions )(xF  and )(xG  are known, the 
traditional sliding mode control with high switching gain can 
guarantee the robust tracking. However, such a control 
approach entails unnecessarily large control energy and may 
result in severe chattering. Therefore, this article pursues a 
new kind of active control approach, which attempts to 
approximate the unknown functions )(xf∆  and )(xg∆  in 
order to minimize the modeling errors. A direct benefit from 
it is the switching gain can be reduced to a minimum level. 
 
B. Sliding Mode Control 
For system (1), define a sliding surface in the space of the 
tracking-error vector by a scalar equation: 

01
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− ececes n

n
n L        (7) 

The coefficients 1,,2,1, −= nici L  are positive constants 
such that the polynomial 1

)2(
1

)1( cc n
n

n +++ −
−

− Lλλ  is Hurwitz. 
Now the nth-order trajectory-tracking problem in x  becomes 
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a first-order stabilization problem in s : designing a control 
law u  such that the state trajectory is forced onto the sliding 
surface 0),( =ts x  in finite time and then remain sliding on 
it. Define a Lyapunov function as  

2

2
1 sV =    (8) 

A sufficient condition for the stability of the system is 

ss
d
dtV η−≤= 2

2
1& , 0>η   (9) 

which leads to the reaching condition for 0),( =ts x  as 
sss η−≤&    (10) 

Differentiating s  along the system trajectories (1), we have 
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If the plant dynamics is known, i.e., the functions f  and g  
are completely known, the desired sliding mode control law 
can be chosen as 
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where d

equ  is the ideal equivalent control part which can 
achieve the sliding condition 0=s&  when the system is on 
the sliding surface 0=s , and d

swu  is the ideal switching 
control which can achieve the reaching condition (10) 
together with d

equ . 
 
However, )(xf  and )(xg  are actually unknown, so we 
cannot use them to construct the equivalent control in (12). 
Instead, we can only use the nominal portions )(xf  and 

)(xg  to replace )(xf  and )(xg . In order to satisfy the 
reaching condition (10), the system uncertainties have to be 
compensated by a switching control. The resulting sliding 
mode controller is 
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which can still guarantee the reaching condition (10). 
However, the large uncertainty bounds in the switching 
control of (13) usually result in large and chattering control 
efforts, which are usually undesirable in most applications.  
 
C. Fuzzy Logic Systems 
The basic configuration of a fuzzy logic system consists of a 
fuzzifier, a fuzzy rule base, a fuzzy inference engine and a 
defuzzifier. The fuzzy inference engine uses the fuzzy IF-
THEN rules to perform a mapping from an input vector 

[ ]Tnxxx ,,, 21 L=x  to an output scalar y . The fuzzy rule 
base consists of a collection of fuzzy IF-THEN rules in the 
following form 

jR : If 1x  is jF1  and … and nx  is j
nF , then y  is jθ       (14) 

where niF j
i ,,1, L=  are the fuzzy variables characterized 

by membership functions  )( iF xj
i

µ   and jθ  is the 
corresponding value of the output fuzzy singleton. The 
output of the fuzzy system with singleton fuzzification, 
product inference and centre average defuzzification can be 
expressed as 
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where M  is the total number of the fuzzy rules, 
T

M ],,,[ 21 θθθ L=θ  is the adjustable parameter vector, 
T

M )](,),(),([)( 21 xxxxξ ξξξ L=  is the vector of the fuzzy 

basis functions ( ) ( )( )∑ ∏∏ = ==
= M

j

n

i iF

n

i iFj xx j
i

j
i 1 11

)()()( µµξ x . 
 
Based on the universal approximation theorem [5], the above 
fuzzy logic system is capable of uniformly approximating 
any well-defined nonlinear function over a compact set U  to 
any degree of accuracy. 
 
 

III. MAIN RESULTS 
 
A. Fuzzy Sliding-Mode Control 
 
Due to the universal approximation property, we use two 
fuzzy logic systems to approximate the unknown nonlinear 
functions )(xf∆  and )(xg∆  respectively: 

( ) )(ˆ xξθθx T
ff

f =∆ , ( ) )(ˆ xξθθx T
gg

g =∆   (16) 

where fθ  and gθ  are adjustable parameter vectors. The 
fuzzy approximators are valid under the following 
assumptions 
 
Assumption 2: Let x  belong to a compact set 

{ }∞<≤∈= x
n

x mxRxU : . It is assumed that the optimal 

vectors ∗
fθ  and ∗

gθ  that minimize the modelling errors lie in 
some convex regions 
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where the radii xm , 
f

mθ  and 
g

mθ  are positive constants. 
 
Therefore, the unknown nonlinear functions )(xf∆  and 

)(xg∆  can be expressed as 
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where gf ωω , represent the modelling errors and  

ff x ωω ≤)(  and gg x ωω ≤)(  with fω  and gω  being the 
positive upper bounds. 
 
Assume the estimations ( )

f
f θxˆ∆  and ( )

g
g θxˆ∆  are ideal, we 

can then redesign the sliding mode controller (13) as 
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where )(ˆ kk θx is the third fuzzy logic system which is used 
to estimate the bound of switching gain. Here we call the 
controller (20) as a fuzzy sliding mode control. Because of 
the limited approximation ability of fuzzy system, the best 
fuzzy sliding mode control we can acquire is 
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where ( )( )( )ηωω +++= − **1* ˆˆ)()(ˆ eqgfglk ugggk θxxθx . The 
controller (21) is called the ideal fuzzy sliding mode control. 
Compared with the traditional sliding mode control (13), the 
switching gain in control (21) is reduced greatly without loss 
of the reaching and sliding condition because of use of 
approximation of uncertainties. However, the ideal control 
parameters are not known, so the controller (20) should be 
equipped with appropriate on-line adaptive algorithms to 
obtain the ideal controller (21). 
 
B. Function Approximation 
In this section, we develop the adaptive laws for adjusting 
the parameters of the fuzzy sliding mode controller (20). The 
goal of parameter adjustment is to make *

ff θθ →  and 
*
gg θθ → , and consequently make ( )ff θxˆ∆  and ( )gg θxˆ∆  to 

approximate )(xf∆  and )(xg∆  using the modelling errors 
respectively, therefore *ˆˆ uu → .  
 
If the controller (20) is applied into (11), we have 

( ) ( )( ) )()(ˆˆ)(ˆ)(ˆ ssignkuggffs kgf
θxxθxxθx −∆−∆+∆−∆=&  

(22) 
From the viewpoint of system identification, the system (1) 
is modelled as 
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then we can define the modelling error as 
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where *~
fff θθθ −=  and *~

ggg θθθ −=  are parameter errors, 
ω is the modelling error and um gf ˆ)()( xx ωω +=  is the 
modelling error residual. 
 
Therefore, the expression (22) can be redefined as 

( ) )()()()(ˆ ssignssignks T
kk xξθθx −=−= ωω&  (25) 

It is clear that the switching gain )(ˆ kk θx is just used to 
overcome the modelling error ω . Note that when ω  is very 
small, )(ˆ kk θx  can be as low  as the minimum level η , and 
the sliding mode 0=s  can be still reached in finite time. 
 
In order to obtain the ideal function approximations, the 
following modelling-error based adaptive laws are proposed 
to update the parameter vectors of fuzzy systems ( )

f
f θxˆ∆  

and ( )
g

g θxˆ∆  based on the fact that the optimal parameters 
are defined with respect to the plant model, not to the 
tracking performance: 

)(1 xξθ ωγ−=f
& , ug ˆ)(2 xξθ ωγ−=&   (26) 

where 0, 21 >γγ . 
 
If we choose the Lyapunov function as 
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we can easily get 
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Therefore, V  will keep decreasing till m=ω , which also 

means that the optimal approximation vectors ∗
fθ  and ∗

gθ  are 
obtained. 
 
C. Tracking Control 
To solve the tracking problem, i.e., the stabilization problem 

0=s , we turn back to the expression (25). In order to force 
the trajectory to reach the sliding mode 0=s , we must 
choose the switching gain to overcome the modelling error 
ω . We assume that there exists the ideal parameter vector 

*
kθ  such that 

ηω +≥)(* xξθ T
k     (29) 

Then we propose the following adaptive law to adjust the 
third fuzzy system for approximating the switching gain. 

sk )(3 xξθ γ=&    (30) 
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In summary, the adaptive laws in (26) lead to the function 
approximations of fuzzy systems in (16). Meanwhile, with 
the decreasing modelling error, the adaptive law (30) adjusts 
the switching gain to the minimum level for overcoming the 
residual modelling error, therefore unnecessary large 
magnitude chattering is avoided. 
 
 

IV. SIMULATIONS 
 
Given an unstable plant 
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where 1
1
1)(
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≤
+
−
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−

−

tx

tx

e
exf , it is clear that the plant is 

unstable without control input because if 0)( =tu , 0>x&  for 
0>x  and 0<x&  for 0<x . To build the proposed 

approximators, we define six fuzzy sets over the intervals [-
3,3] with labels 3N , 2N , 1N , 1P , 2P , 3P . The Gaussian 
membership functions are 

))2(5exp(1
1

3 ++
=

xNµ , ))5.1(exp( 2
2 +−= xNµ  

))5.0(exp( 2
1 +−= xNµ , ))5.0(exp( 2

1 −−= xPµ  

))5.1(exp( 2
2 −−= xPµ , 

))2(5exp(1
1

3 −−+
=

xPµ  

The control law is  
    ( ) )()(ˆˆ)(ˆ xsignkxfxxcu kdfd θxθx ++−−= &               (34) 

where )sin(txd =  is the desired state trajectory.  Here the 

modeling error is ( ) )(ˆ xθx ff
f
−=ω  and the tracking error 

is xxe d −= . With adaptive laws (26) and (30), the 
simulation results are shown in Figures 1-4, which 
demonstrate the convergence of the modelling error and 
tracking error is guaranteed with the unknown nonlinear 
function, and the chattering of traditional sliding mode 
control is eliminated. This is because the modelling error 
converges to a very small minimum value rapidly with 
adaptive law (26) as in Figure 1, therefore the discontinuous 

gain only needs to be kept at a very small positive value near 
zero with adaptive law (30), which can still guarantee the 
convergence of the tracking error as in Figures 2 and 3, and 
the chattering of control is eliminated as in Figure 4. 

 
V. CONCLUSIONS 

 
The proposed modelling-error based adaptive fuzzy sliding 
mode control scheme guarantees the asymptotic convergence 
of the modelling error and tracking error. The limitation of 
conventional tracking-error based adaptive law, which only 
assures the convergence of tracking error, is released. 
Furthermore, the bounds of the modelling error are not 
required a priori. The simulation results validate the 
usefulness of the proposed controller. 
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