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Abstract: This paper presents a method for stabilizing and robustifying the artificial 
neural networks trained by utilizing the gradient descent. The method proposed 
constructs a dynamic model of the conventional update mechanism and derives the 
stabilizing values of the learning rate. The stability in this context corresponds to the 
convergence in adjustable parameters of the neural network structure. It is shown that 
the selection of the learning rate as imposed by the proposed algorithm results in stable 
training in the sense of Lyapunov. Furthermore, the algorithm devised filters out the 
high frequency dynamics of the gradient descent method. The method analyzed in this 
paper integrates the gradient descent technique with variable structure systems 
methodology. In the simulations, control of a three degrees of freedom anthropoid robot 
is chosen for the evaluation of the performance. 
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1. INTRODUCTION 

 
Artificial neural networks are well known with their 
property of representing complex nonlinear 
mappings. Earlier works on the mapping properties 
of these architectures have shown that neural 
networks are universal approximators (Hornik, 1989; 
Funahashi, 1989). Most of the studies reported adopt 
the Error Backpropagation (EBP) method, which is 
based on gradient descent, for tuning the parameters 
of the network structure. The primary drawback of 
the EBP technique is the lack of stabilizing forces 
ensuring the convergence. 
 
As stated earlier, the issues of stability and 
robustness are of crucial importance from safety 
point of view. Because of this an implementation-
oriented control engineering expert is always in 
pursuit of a design, which provide accurate tracking 
as well as insensitivity to environmental disturbances 
and structural uncertainties, which can be achieved 
by a suitable learning strategy. One way of studying 
the stability and robustness issues is the use of 
Variable Structure Systems (VSS) technique. 
 
Variable Structure Control (VSC) has successfully 
been applied to a wide variety of systems having 
uncertainties in the representative system models. 
The philosophy of the control strategy is simple, 
being based on two goals. First, the system is forced 
towards a desired dynamics, which is a predefined 

subspace of the state-space, second, the system is 
maintained on that differential geometry. In the 
literature, the former dynamics is named the reaching 
mode, while the latter is called the sliding mode. This 
mode has useful invariance properties in the face of 
uncertainties in the system model and therefore a 
good candidate for tracking control of nonlinear 
systems. The control strategy borrows its name from 
the latter dynamic behavior, and is called Sliding 
Mode Control (SMC). 
 
Numerous contributions to VSS theory have been 
made during the last decade; some of them are as 
follows. Hung et al. (1993) has reviewed the control 
strategy for linear and nonlinear systems. In this 
reference, the switching schemes, putting the 
differential equations into canonical forms and 
generating simple SMC strategies are considered in 
detail. Gao et al. (1993) and Erbatur et al. (1999) 
consider the applications of SMC scheme for robotic 
manipulators and study and the quality of the scheme 
from the point of robustness. The performance of 
SMC scheme is proven to be satisfactory in the face 
of external disturbances and uncertainties in the 
system model representation. Kaynak et al. (1993) 
considers the design of discrete time SMC with 
particular emphasis on the system model 
uncertainties. 
 
The objective of this paper is to develop a stabilizing 
training procedure for artificial neural networks. The 
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procedure enforces the adjustable parameters to settle 
down to a steady state solution while meeting the 
design specifications. This is achieved through an 
appropriate combination of EBP and VSS techniques. 
The eventual form of the parameter update formula 
alleviates the handicaps of the gradient descent. 
 
This paper is organized as follows. The second 
section briefly reviews the standard EBP technique, 
which is responsible for achieving the desired 
performance specifications. The parameter stabilizing 
part of the training methodology is derived in the 
third section. The section starts with a continuous 
time representation of the EBP algorithm and 
continues with an explanation of how the VSS based 
training criterion and EBP based training strategy are 
combined. The section gives the constraints on the 
design parameters. In the fourth section, the neural 
network structure with standard learning scheme is 
introduced and the application of the devised training 
strategy is presented. The fifth section introduces a 
plant, which is to be controlled by using the neural 
network architecture and the proposed learning 
algorithm. Simulation results are discussed in the 
sixth section and the conclusions are presented at the 
end of the paper. 
 

2. STANDARD EBP TECHNIQUE 
 
In most applications of artificial neural networks, 
EBP method constitutes the central part of the 
learning. In this section, the technique is briefly 
reviewed for systems in which the outputs are 
differentiable with respect to the parameter of 
interest. The method has first been formulated by 
Rumelhart et al. (1986). The approach has 
successfully been applied to a wide variety of 
optimization problems. The algorithm can be stated 
as follows. The observation error (e) in (1) is used to 
minimize the realization cost (Jr) in (2) by utilizing 
the rule described by (3), or more explicitly by (4), 
which is known as gradient descent or EBP in the 
related literature. Here φ is a generic parameter of the 
network structure and ηφ is the learning rate. 
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The minimization proceeds recursively as given in 
(4). Since the update rule in (4) entails the 
observation error e, the algorithm is quite sensitive to 
the noisy observations, which directly influence the 
value of the adjustable parameter and degrade the 
learning performance. The next section presents the 
derivation of a method capable of reducing the 

adverse effects of noise thereby increasing the 
robustness in this sense. 
 

3. STABILIZATION ALGORITHM 
 
A continuous-time dynamic model of the parameter 
update rule prescribed by the EBP technique can be 
written as in (5). 
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The above model is composed of the sampling time 
denoted by Ts, the gradient based non-scaled 
parameter change denoted by Nφ and a scaling factor 
denoted by ηφ , for the selection of which, a detailed 
analysis is presented in the subsequent discussion. 
Using Euler’s first order approximation for the 
derivative term, one obtains the following relation, 
which validates the constructed model in (5). 
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By comparing (4) and (6), the equivalency between 
the continuous and discrete forms of the update 
dynamics is thus clarified. The synthesis of the 
parameter stabilizing component is based on the 
integration of the system in (5) with VSS 
methodology. In the design of variable structure 
controllers, one method that can be followed is the 
reaching law approach (Gao, et al., 1993). For the 
use of this theory in the stabilization of the training 
dynamics, define the switching function as in (7) and 
its dynamics as in (8). 
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where, Qφ and Kφ are the gains, and ε is the width of 
the boundary layer. In the derivations presented 
below, a key point is the fact that the system 
described by (5) is driven both by the learning rate ηφ 
and by the backpropagated error value Νφ . Now it is 
demonstrated that some special selection of this 
quantity leads to a rule that minimizes the magnitude 
of parametric displacement. With the quantity 
defined in (9), equating (8) and (5) and solving for 
∆φ yields the relation in (10). The values of the ηφ 
imposed by (10) might be seen as the desired values 
at the first glance. However, this selection cancels 
out the backpropagated error value Nφ from (5), 
consequently the update dynamics exactly behaves as 
that defined by the adopted switching function (8), 
which does not necessarily minimize the cost in (2). 
Therefore the further analysis explores the 
restrictions on ηφ as well as the construction of the 
mixed training criterion. 
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Now there is a model described by (5), and an 
equality to be enforced and formulated by (10). If 
one chooses a positive definite Lyapunov function as 
given in (11), the time derivative of this function 
must be negative definite for stability of parameter 
change (∆φ) dynamics. Clearly the stability in the 
parameter change space implies the convergence in 
system parameters. 
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If (5) and (10) are substituted into (12), the constraint 
stated in (13) is obtained for stability in the 
Lyapunov sense. 
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Since Aφ and ∆φ have the same signs, the roots of the 
expression in (13) clearly have opposite signs. The 
expression on the left-hand side assumes negative 
values between the roots. Therefore, in order to 
satisfy the inequality in (13), the learning rate must 
satisfy the constraint given in (14). In order to 
preserve the compatibility between the traditional 
gradient based approaches and the proposed 
approach, the interval of learning rate is restricted to 
positive values as described below. An appropriate 
selection of ηφ could be as in (15). 
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By substituting the learning rate formulated in (15) 
into the equality given in (10), the stabilizing 
component ∆φVSS of the parameter change formula is 
obtained as; 
 

{ } ( ) φφφφβφ ANAVSS +∆=∆ sgn , min  (16) 
 

where, ∆φ on the right hand side is the final update 
value yet to be obtained. The law introduced in (16) 
minimizes the cost of stability, which is the 
Lyapunov function defined by (11). The question 
now reduces to the following; can this law minimize 
the cost defined by (2)? The answer is obviously not, 
because the stabilizing component in (16) is derived 
from the displacement of the parameter vector 
denoted by ∆φ, whereas the minimization of (2) is 
achieved when φ tends to φ* regardless of what the 
displacement is. In order to minimize (2), the 
parameter change anticipated by EBP technique, 
which is given in (17), should somehow be integrated 
into the final form of parameter update mechanism. 
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where, ζφ is the learning rate. It is reasonable to 
expect that under certain constraints, a combination 
of the laws formulated in (16) and (17) in a weighted 
average will meet the objectives of both the 
parametric stabilization and the cost minimization, 
which means the fulfillment of the design 
specifications. The parameter update rule will then be 
as in (18). 
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The parameter update formula given by (18) carries 
mixed displacement value containing both the 
parametric convergence, which is introduced by VSS 
part, and the cost minimization, which is due to the 
EBP technique. The balancing in this mixture is left 
to the designer by an appropriate selection of α1 and 
α2. 
 
Lastly, the constraints for the global stability of the 
proposed training strategy are given. For this 
purpose, a Lyapunov function given in (19) is 
defined. In (19), γφ is a positive constant. The time 
derivative of the Lyapunov function is as given in 
(20). 
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In order to ensure the negativeness of the right hand 
side of (20), following three conditions must be 
satisfied. 
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The details of the stability proof can be found in Efe 
et al. (2000). 
 

4. TRAINING OF ARTIFICIAL NEURAL 
NETWORKS 

 
In this section, application of the devised scheme to 
feedforward neural networks is presented. It is a 
well-known fact that the structure can effectively be 
used for identification and control purposes (Efe et 
al., 2000; Efe et al., 1999; Efe and Kaynak, 1999). In 
the conventional EBP technique, propagating the 
output error back through a feedforward neural 
network minimizes the cost function given in (2). 
The delta values for the neurons belonging to the 
output layer and the hidden layers are evaluated as 
given by (24) and (25) respectively. 
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Having evaluated the delta values during the 
backward pass, the gradient based weight update rule 
described by (26) is applied for each training pair. 
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The VSS part of the proposed approach estimates the 
following update value for parametric stability. 
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The two update laws are then combined as a 
weighted average as before. 
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5. PLANT MODEL 

 
In the simulations the dynamic model of a three 
degrees of freedom anthropoid robotic manipulator, 
which is illustrated in Fig. 1, is used as the test bed. 
Since the dynamics of such a mechatronic system is 
modeled by highly nonlinear and coupled differential 
equations, precise output tracking becomes a difficult 
objective. Therefore the methodology adopted must 
have the capability of coping with the stated 
difficulties. 
 
The general form of the dynamics of a robotic 
manipulator is described by (29) where 
Μ(q), C( qq, ), g(q) and u stand for the state varying 
inertia matrix, vector of coriolis and centrifugal 
terms, gravitational forces and applied torque inputs 
respectively. The nominal values of the plant 
parameters are given in Table 1 in standard units. 
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Table 1. Manipulator parameters 
 

Link 1 length 0.50 l1 
Link 2 length 0.40 l2 
Link 3 length 0.40 l3 
Link 1 mass 4.00 m1 
Link 2 mass 3.00 m2 
Link 3 mass 3.00 m3 
Distance link 1 CG-joint 1 0.20 lc1 
Distance link 2 CG-joint 2 0.20 lc2 
Cylindrical link radius 0.05 R 
ith cylindrical link 
inertial parameter 

E1=m1R2/2, 
Ei=mili2/12 Ei 

ith cylindrical link 
inertial parameter Ai=miR2/2 Ai 

ith cylindrical link 
inertial parameter 

Ii=mili
2/12 

for i=2,3 II 

Link 1 torque limits ±50.00 τsat 1 
Link 2 torque limits ±40.00 τsat 2 
Link 3 torque limits ±20.00 τsat 3 

 

If the angular positions and angular velocities are 
described as the state variables of the system, six 
coupled and first order differential equations can 
define the model. In (30) through (33), the nonzero 
entries of the state varying inertia matrix are 
described. The nonzero Cristoffel symbols are given 
in (34) through (37). The details of the plant model 
are presented by Stadler (1995). 
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Coriolis, centrifugal terms and gravity terms are 
formulated as follows, where G represents the gravity 
constant. 
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6. SIMULATION RESULTS 

 
In the simulations, the plant introduced in the Sec. 5 
is controlled by the neural network structure 
considered in Sec. 4. The architecture of the control 
system is an ordinary feedback loop, in which the 
neural controller has one hidden layer being 
comprised of neurons having hyperbolic tangent type 
neuronal activation functions. The output layer 
neurons have linear activation functions. 
 
During the simulations, all weights and biases of the 
neural network have been adjusted. The initial values 
of the parameters of the neural network have been set 
such that the initial control surfaces for all three links 
approximately resemble to that of a Proportional plus 
Derivative (PD) controller having the following 
parameter set. 
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The reference angular position and velocity profiles 
used in all simulations are depicted in Fig. 2. The 
simulations are started with initial rest conditions. 
 
Apart from the dynamic complexity of the system 
under control, a considerable difficulty to be 
alleviated by the algorithm discussed is the existence 
of the observation noise. It is assumed that the 
encoders provide noisy measurements to the 
controller. The noise sequence is Gaussian 
distributed and has the same statistical properties for 
all six state variables, namely, each sequence has 
zero mean and variance equal to 33e-4. It is expected 
that the stabilizing forces created on the adjustable 
design parameters will lead to the elimination of the 
adverse effects of the observation noise. Thus the 
results obtained will enable the designer to make a 
fair comparison between the pure EBP technique and 
the proposed combination especially in the sense of 
rejecting the high frequency components exciting the 
training dynamics. 
 
In the training of the controller structure discussed in 
the paper, the squared sum of parametric changes is 
defined to be the cost of stability, which runs over all 
adjustable weights and biases of the neurocontroller. 
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For the use of the proposed algorithm, α1 is set to 2 
while α2 is equal to unity. The state tracking errors 
are depicted in Fig. 3. It is evident from the figure 
that the proposed combination results in precise state 
tracking under the existence of environmental and 
structural difficulties stated above. With the same 
initial conditions, if α1 is set to zero, which disables 
the VSS part of the algorithm, a divergent behavior is 
observed in the state tracking errors, which are 
depicted in Fig. 4. 
 
The behavior of the total parametric cost described 
by (41) is depicted in Fig. 5. The left subplot of Fig. 
5 indicates that the cost in (41) reaches to very small 
values during the early phases of the simulation. This 
is due to the parameter stabilizing property of the 
approach discussed. It must be stressed what the EBP 
method can achieve at best is the marginal stability in 
the parameter change space. This characteristic of the 
standard technique makes it highly sensitive to the 
environmental disturbances. In the simulations 
discussed, the existence of noise makes this aspect of 
EBP technique more visible. Clearly, the presence of 
observation noise and the requirements of the 
problem in hand stimulate the unstable internal 
dynamics of EBP method. This is apparent from the 

right subplot of Fig. 5 that the average magnitude is 
increasing in time. 
 
The simulation settings are tabulated in Table 2, in 
which it is apparent that the constraints stated in (22) 
and (23) are satisfied. 
 

Table 2. Simulation parameters 
 

Ts 1.0 msec. 
β 0.1 
α1,2 See text 
Q 0.1 
K 0.1 
ε 1.0 
#Input Neurons 6 
#Hidden Neurons 12 
#Output Neurons 3 

 
7. CONCLUSIONS 

 
One of the major problems in applications of 

gradient based training strategies is the lack of 
stabilizing forces to prevent the adjustable 
parameters to grow unboundedly. This aspect of 
training without safety conditions constitutes a 
barrier between the theoretical developments and 
industrial applications, whose prime concern is 
stability and robustness. The application examples 
utilizing the gradient information in training have 
therefore used the architectures of artificial neural 
networks, which are typically trained off-line with a 
priori data. In this paper, a method for creating 
stabilizing forces on the training dynamics is 
proposed. The results stipulate that the proposed 
approach fulfills the task to be accomplished much 
better that that can be observed with ordinary EBP 
technique. The comparison strongly recommends the 
use of the algorithm for the applications requiring on-
line tuning of the parameters, stability in the 
parameter change space and insensitivity to 
environmental disturbances. 
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Fig. 1. Physical structure of the plant 
 

 
 
Fig. 2. The reference angular position and velocity 

profiles 

 
 
Fig. 3. State tracking errors observed with the 

proposed technique  
 

 
 

Fig. 4. State tracking errors observed with pure EBP 
technique 

 

 
 
Fig. 5. Time behavior of the parametric cost 


