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Abstract. Peer-to-peer (P2P) systems have attracted significant inter-
est in recent years. In P2P networks, each peer act as both a server or
a client. This characteristic makes peers vulnerable to a wide variety of
attacks. Having robust trust management is very critical for such open
environments to exclude unreliable peers from the system. This paper in-
vestigates the use of genetic programming to asses the trustworthiness of
peers without a central authority. A trust management model is proposed
in which each peer ranks other peers according to local trust values calcu-
lated automatically based on the past interactions and recommendations.
The experimental results have shown that the model could successfully
identify malicious peers without using a central authority or global trust
values and, improve the system performance.

1 Introduction

In the last decade, with the fast expansion and improvement of peer-to-peer
(P2P) systems, malicious activities have become a major security problem in
P2P systems. Due to openness of P2P systems, unreliable users may occupy
considerable portions of P2P populations. Trust management in such open en-
vironments is an important and difficult research problem. Trust management
models generally aim to exclude unreliable peers from P2P systems. However
maintaining true trust relationships without a priori knowledge is a very hard
problem. It is difficult to distinguish malicious peers from innocent ones with a
certainty in such environments. Thus, most of the proposed trust models in the
literature offer approximate decision guidelines about peers.

Trust management can be accomplished by a central authority, such as eBay.
Participants in eBay can rate each other at the end of auctions and information
about auctions is stored in the central server. However, having a central authority
conflicts with the nature of P2P systems. Thus peers need to organize themselves
to manage and store information about their trust relationships [1–3]. In pure
P2P networks like Gnutella [4], peers flood trust queries to the network in order
to obtain trust information about others. In such a network, all peers store
trust information about neighbors according to the past interactions [2, 5, 6].
Queries enable to collect recommendations about the queried peer and make
a decision about it. Some models use distributed hash tables (DHT) to store



trust information [1, 3, 7]. Each peer stores the trust information about other
peers determined by a DHT algorithm, which enables efficient access to the
information. Thus peers can learn the global trust information about others
without flooding queries to the whole network.

Trust management in P2P systems is a difficult problem due to the lack of
a central authority and uncertain information collected from peers. P2P trust
models should be able to recognize complicated behavioral patterns of malicious
peers and make smart decisions to distinguish malicious peers from benign peers
using this uncertain information. Using machine learning techniques might be
a good choice for such a complex problem. In this paper, we propose a genetic
programming (GP) based trust management model. Our model intends to de-
termine characteristics of malicious and benign peers using the features derived
from peers. Two kinds of information are collected by peers: interactions and rec-
ommendations. Peers store their past interactions with other peers and collect
recommendations about peers from their neighbors. These two types of infor-
mation provide bases for the feature set. A trust model is evolved with these
features by using genetic programming in order to measure trustworthiness of
peers. Peers do not collect information about all other peers. A peer creates a
view with the peers interacted in the past or intended to interact with. Each peer
ranks other peers according to the trust values generated by the model which
is evolved by using genetic programming, and makes download decisions using
these values. Using the generated trust values, malicious peers are excluded from
the system.

The paper is organized as follows. Section 2 discusses the related research.
Section 3 introduces the proposed trust model. Section 4 presents the simula-
tion environment and gives the experimental results. Section 5 summarizes the
conclusion.

2 Related Work

P2P systems offer sharing environments for common resources by improving di-
versity, prevalence and easy accessibility. On the other hand, these characteristics
make them vulnerable to many attacks. P2P systems can be divided into two
groups; structured and unstructured [8]. In the unstructured overlay networks,
queries are flooded in the network, such as in Gnutella [9]. The structured P2P
networks generally utilize DHTs for indexing information on peers selected by
the DHT algorithm. For example, Chord system [10] proposes a decentralized
network with a distributed lookup primitive on a circular Chord ring. Peers on
this ring are charged to store information determined by the Chord’s algorithm.

Most of the prominent trust models use the reputation concept and statisti-
cal models to make decisions on trustworthiness of peers. Reputation generally
relies on peer’s past experiences and recommendations from other peers, such as
in XRep [11] or P2PRep [12]. EigenRep [3] uses transitivity of trust to calculate
trust values. Conner et al. [13] proposed a reputation-based trust management
framework supporting synthesis of trust-related feedback from different entities.



In [14], an effective way of calculating reputation has been presented. The model
considers several features such as number, age, or frequency of transactions, how
frequently a given peer attends a common vendor, and the number of common
vendors between the pairs. It aims to investigate the characteristics of transac-
tions executed by malicious peers.

Detecting malicious peer behaviors with the help of machine learning tech-
niques is another promising approach for generating trust management models.
Weihua Song et al. [15] uses neural networks and derives trust values from het-
erogeneous agents based on recommendations. The agents classify recommenda-
tions as qualified or unqualified for choosing the providers. In [16], support vector
machines are used to reduce the cost of communication with less query and to
improve the success rate. In [17] a generic trust framework is proposed by using
linear discriminant analysis and decision trees. An agent uses its own previous
transactions (with other agents) to build a knowledge base and distinguishes
successful transactions from unsuccessful ones.

There are some applications of evolutionary computation techniques to com-
puter and network security in the literature. One of the mostly employed area
is intrusion detection in which either genetic programming (GP) or genetic al-
gorithm (GA) is mainly used. The first GP application to intrusion detection is
given by Crosbie and Stafford [18]. Since then there are many useful applications
to the field. In [19], Abraham and Grosan compare the genetic programming
technique with other machine learning methods for intrusion detection [19] and
show that genetic programming techniques outperform other techniques and are
lightweight. The grammatical evolution technique is successfully employed for
intrusion detection on wired networks [20] and on ad hoc networks [21]. Sen and
Clark [22] employ multi-objective evolutionary computation (MOEC) techniques
in order to show how energy usage and detection ability can be traded off for
resource-constrained networks. Moreover, they show the significant potential of
evolutionary computation techniques to explore the suitable intrusion detection
architecture by taking into account the objectives of cooperative intrusion de-
tection programs. The MOEC techniques are also used to explore how intrusion
detection system sensors could be best placed on a network in [23].

Even though there are many applications of evolutionary computation tech-
niques to the intrusion detection problem, as far as we know there is only one
application of genetic algorithm in order to detect attackers in P2P domain.
A peer profile based trust model proposed by Selvaraj et al. [24] uses genetic
algorithm. This model combines peer profiling with an anomaly detection tech-
nique. It establishes trust using only local interaction data of the peer. There
is a trusted central authority which manages the peer list to secure peers’ IDs.
Our model have used both interaction data from peer’s own experience and rec-
ommendation data collected from other peers. Additionally, our model does not
depend on a central authority to calculate trust values. This is believed to be a
more suitable approach for P2P systems.



3 The Model

The proposed trust model uses genetic programming to make trusting decisions
on peers. Genetic Programming (GP) is a common evolutionary computation
technique, which is introduced to the machine learning community by Koza [25].
Banzhaf [26] comes up with an assertion that GP could produce more successful
results comparing to other machine learning techniques and programs written
by people.

In GP, functions (operators, program statements etc.) and terminals (fea-
tures, constants etc.) build a GP tree. Each GP tree represents an individual.
Basically, a group of individuals which are the candidate solutions to the prob-
lem are generated by GP in each generation. How well the individuals solve the
problem is evaluated by using a fitness function.

3.1 Feature Sets And Operators

Selecting the right feature set is a difficult problem and a key point to ob-
tain successful results in GP and other machine learning techniques [27]. In our
model, the information collected from past interactions and recommendations of
neighbors form the feature set.

Interaction based features are obtained from the peer’s past experiences with
other peers. These experiences occur directly between two peers who interacted
in the past. Interactions can be any activity specific to the P2P application, such
as file sharing, CPU sharing, and storage sharing. Interaction based features are
listed in Table 1.

Table 1. Interaction Based Features

Feature Symbol

number of interactions f1

number of successful interactions f2

average size of downloaded files f3

average time difference between last two interactions f4

average weight f5

average satisfaction f6

Satisfaction and weight parameters are calculated as in [28]. Successful in-
teractions are the interactions that the file download is finished successfully.
Satisfaction parameter is calculated based on average bandwidth, agreed band-
width before the interaction, online, and offline period values of the uploader:

Satisfaction =

{
(AveBw
AgrBw + OnP

OnP+OffP )/2 if AveBw < AgrBw,

(1 + OnP
OnP+OffP )/2 otherwise

(1)



Weight parameter is calculated based on file size, number of uploaders of the
dowloaded file, number of uploaders of the maximum uploaded file:

Weight =

{
( size

100MB + #Uploaders
Uploadermax

)/2 if size < 100MB,

(1 + #Uploaders
Uploadermax

)/2 otherwise
(2)

The second set of features is recommendation based features. When a peer
wants to interact with another peer, it asks its own neighbors about their experi-
ences. The neighbors who have information about the peer requested send their
recommendations. These experiences about another peer are called recommen-
dations. A recommendation contains the following information: average number
of successful interactions, average satisfaction of interactions, average weight of
interactions, and calculated trust value of the queried peer. The recommendation
based features are listed in Table 2:

Table 2. Recommendation Based Features

Feature Symbol

number of recommendations f7

average of neighbours’ average number of successful interactions f8

average of neighbours’ average satisfaction values f9

average of neighbours’ average weight values f10

average of trust values f11

In our genetic model, we use simple operators to generate a formula for trust
calculation. The operators used in our model are addition, subtraction, division,
multiplication, inverse, log, square root, and square.

3.2 Fitness Function

The fitness function is one of the important factors affecting the performance of
evolutionary computation techniques. The fitness function determines how well
a program is able to solve the problem [25, 29]. In the evolved trust model, a
fitness function based on the reduction in the number of attacks is used. In other
words, if Rtrust denotes the number of attacks with our trust model and RnoTrust

denotes the number of attacks without any trust model, then our fitness function
is;

fitness = Rtrust/RnoTrust. (3)

If the generated individuals can mitigate the number of attacks, the value
of fitness function decreases and the success of the model increases. Thus, the
fitness function is aimed to be minimized in our genetic model. At the end of
the evolution, the most successful individual is selected as the solution.



4 Experiments And Analysis

The experiment environment consists of two integrated modules. First one is
a file sharing simulation program implemented in Java language to asses the
evolved trust model in P2P environments against malicious attacks. The second
one is the ECJ 21 toolkit [30] for the GP implementation. It is integrated with the
simulation program to train the trust model. In the experiments, the population
and generation sizes are chosen as 100 and 300 respectively. The other parameters
are equal to the default parameters of the ECJ toolkit.

4.1 Simulation Module

The simulation module is adapted from the program used in [28]. Each simulation
takes 50.000 cycles, where each cycle represents 10 minutes of network activity.
There are 1000 peers in each simulation. Basically, peers interact with each
other for sharing a file and build a reputation according to their behaviors. At
the beginning of the simulation, peers are strangers to each other. When a peer
uploads a file to another peer, it becomes a neighbor of the peer. A neighbor is
preferred over a stranger if they are equally trustworthy.

Peers build an interaction history while downloading and uploading files.
If a peer intends to download a file, it gets the list of file providers. Then, it
calculates the trust values of these file providers using its own interaction history
and recommendations from its neighbors. Trust values are calculated based on
the formula generated by the genetic programming module using the features
and the fitness function explained in Section 3. If a peer has neighbors in the
file provider list, it prefers the one with the highest trust value. Otherwise, it
downloads the file from the stranger who has the highest trust value. At the
end of a download process, if the file provider uploads a virus infected or an
inauthentic file, it is marked as a malicious peer and is never interacted again.

4.2 GP Module

The GP module works in an integrated manner with the simulation module. It
trains our trust model against various attacker types and tries to find the best
individual in order to evaluate trust values of peers. In the training process, GP
creates individuals by using the features and the operators given in Section 3.1.
Each individual runs the file sharing simulation from start to finish. Reduction
in the number of attacks represents the success of an individual. When the best
individual is found, it is tested on various attacker models on the simulation
module. The general steps of the GP Module are listed in Algorithm 1.

4.3 The Problem

Generally, a P2P network consists of good peers and malicious peers (attacker).
A good peer always gives fair recommendations and uploads authentic files.



Algorithm 1 How Gp Module Works
initialize population
while current generation <= maximum generation do

for all individuals in the current generation do
execute simulation
evaluate the fitness function

end for
apply genetic operators (selection, crossover, reproduction, mutation, etc.) to the individuals
create new population

end while

However, a malicious peer may upload inauthentic files or give unfair recom-
mendations to harm the system. Reducing the number of inauthentic/infected
file uploads and unfair recommendations is the aim of a trust management model.

In our simulation, malicious peers are considered to behave in two different
ways: naive and hypocritical. If malicious peers perform unaccompanied attacks
and do not aware of other malicious peers, they are called individual attackers.
Individual attackers can behave as described below:

– Naive: The attacker always uploads virus infected/inauthentic files and gives
unfair recommendations to others [31].

– Hypocritical: The attacker perform attacks by uploading inauthentic files or
giving unfair recommendations with x% probability. Otherwise, it acts like
a good peer [3, 5].

If a group of peers know each other and attack to other peers as a team,
they are called collaborators. Collaborators always upload authentic files to each
other. If a good peer requests a recommendation from a collaborator about
another collaborator, the collaborator might give high recommendations unfairly
in order to improve the queried collaborator’s trust value. The types of attack
carried out by collaborators are be described as follows:

– Naive: Collaborators always upload virus infected/inauthentic files to good
peers and gives unfair recommendations to good peers.

– Hypocritical: Collaborators perform attacks by uploading inauthentic files to
good peers or giving unfair recommendations with x% probability. Other-
wise, it acts like a good peer.

4.4 Experiments

In the experiments, the model is trained for all types of individual attackers
firstly. Training is done with a network setup in which 10% of the peers is
malicious. The best results of 10 runs is chosen for each attack type. Then,
the trained model is tested with 10%, 30% and 50% malicious peers ratio in
the networks. During the experiments, the attack probability of hypocritical
attackers is chosen as 20% in all interactions. If a peer uploads a virus infected
or inauthentic file, it is counted as a file-based attack. Initially, the simulation is
executed without the trust model for each network setting in order to figure out



the number of attacks when a trust model does not exist. Then the simulations
are run with the evolved trust model. Success of the trust model is assessed by
the number of attacks prevented with the model.

Table 3. Success ratio of the trust model against individual attackers for the file-based
attacks

10% 30% 50%

Naive 83.8 78.9 73.6

Hypocritical 71.8 57.7 47.1

Table 3 shows the success ratio of the evolved trust model against individual
attackers according to varying malicious peer populations in the network. The
model has a notable success against individual naive attackers. Since identifying
a naive attacker is easy after the first interaction, a high percentage of these
attacks can be prevented. Our model has a good success ratio for individual
hypocritical attackers, which is 71.8% in a network in which 10% of the peers is
malicious. In the network in which 50% of the peers is malicious, the trust model
could prevent nearly half of the attacks as shown in Table 3. In such extremely
malicious networks, this is a good success ratio for hypocritical attackers.

Convergence speed of the trust model is important to identify attacks in a
reasonable time. Figure 1 shows the decrement in the number of attacks by naive
and hypocritical individual attackers when the evolved trust model is used.
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Fig. 1. File-based attacks over time in a network consisting of 10% individual attackers

Unfair recommendations given by malicious peers are considered as recommendation-
based attacks. The evolved trust model has also good performance on recommendation-
based attacks. Figure 2 shows the decrement in the recommendation-based at-
tacks over time. In the model, if a peer intends to collect recommendations about
another peer, it firstly requests recommendations from its trustworthy neighbors.
Therefore, unfair recommendation rate is mitigated over time as peers gain more
neighbors. However, unfair recommendations do not drop as quickly as file-based



attacks since determining an unfair recommendation is not easy as determining
an infected/inauthentic file.
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Fig. 2. Recommendation-based attacks over time in a network consisting of 10% indi-
vidual attackers

The second step of the experiments is done with collaborative attackers.
Like individual attackers, at first the model is trained against the collaborators,
and then tested on various malicious network setups. Collaborators attack to
other peers as a team and give fair recommendations to each other. The attack
probability of hypocritical attackers is chosen as 20% in all interactions in the
experiments. The team size of collaborators is set to 50 peers.

Table 4. Success ratio of the trust model against collaborators for the file-based attacks

10% 30% 50%

Naive 79.3 75.1 71.9

Hypocritical 61.7 46.3 39.5

Table 4 shows the success ratio of the trust model against collaborators in
networks consisting of varying malicious peer population. Naive collaborators
are identified by good peers after the first interaction. Hence they can not dis-
seminate high recommendations about each other and can not take advantage
of collaboration. The success ratio of preventing attacks in naive collaborators is
79.3% in a network in which 10% of the peers is malicious and, this performance
drops to only 71.9% even the ratio of malicious peers is increased to 50%. How-
ever, hypocritical collaborators are more effective than naive ones. Detection of
hypocritical collaborators is more difficult since they perform attacks intermit-
tently. A hypocritical collaborator can disseminate high recommendations about
its team mates before being identified by good peers. Since the collaborators help
each other in order to evade detection, their identifications become very difficult.
However, the trust model could still prevent 61.7% of file-based attacks carried
out by hypocritical collaborators in a network in which 10% of peers is malicious.



Figure 3 shows the number of file-based attacks over time in a network consist-
ing of 10% collaborators. The model decreases the number of effective attacks
carried out by naive and hypocritical collaborators dramatically.
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Fig. 3. File-based attacks over time in a network consisting of 10% collaborators

Recommendation-based attacks carried out by collaborators are presented in
Figure 4. High recommendations given by collaborators unfairly are also counted
as recommendation-based attacks. Collaboration increases the number of mis-
leading recommendations slightly. However, the trust model still mitigates the
number of recommendation-based attacks. It also prevents misleading recom-
mendations to increase over time.
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Fig. 4. Recommendation-based attacks over time in a network consisting of 10% col-
laborators

5 Conclusion

This paper proposes a trust model evolved by using genetic programming. Trust
values of peers are calculated by a formula generated by this model. Malicious
and benign peers are distinguished from each other based on these trust values.
The experimental results show that the model could distinguish different types
of attacks from benign behavior of good peers successfully. Naive and hypocriti-
cal attacker models are studied with individual and collaborative behaviors. The



model is trained against these types of attacks and evaluated on various network
setups containing different ratio of malicious peers. Naive attackers are identi-
fied easily in both individual and collaborator scenarios. Hypocritical attackers
are more difficult to deal with and more successful when they collaborate. The
evolved trust model has decreased the number of file-based attacks in all scenar-
ios with promising success ratios. Recommendation-based attacks are mitigated
but not decreased as much as file-based attacks due to the difficulty of rec-
ognizing misleading recommendations. The evolved model showed that genetic
programming could be employed to build a trust model in peer-to-peer networks.
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