
Automatic Generation of Mobile Malwares
Using Genetic Programming

Emre Aydogan and Sevil Sen

Department of Computer Engineering,
Hacettepe University, Ankara, Turkey

{emreaydogan,ssen}@cs.hacettepe.edu.tr

Abstract. The number of mobile devices has increased dramatically in
the past few years. These smart devices provide many useful functional-
ities accessible from anywhere at anytime, such as reading and writing
e-mails, surfing on the Internet, showing facilities nearby, and the like.
Hence, they become an inevitable part of our daily lives. However the
popularity and adoption of mobile devices also attract virus writers in
order to harm our devices. So, many security companies have already
proposed new solutions in order to protect our mobile devices from such
malicious attempts. However developing methodologies that detect un-
known malwares is a research challenge, especially on devices with limited
resources. This study presents a method that evolves automatically vari-
ants of malwares from the ones in the wild by using genetic programming
(GP). We aim to evaluate the efficacy of current anti-virus products, us-
ing static analysis techniques, in the market. The experimental results
show the weaknesses of the static analysis tools available in the market,
and the need of new detection techniques suitable for mobile devices.

Keywords: mobile malware, static analysis, obfuscation, evolutionary
computation, genetic programming

1 Introduction

Mobile devices have become an inevitable part of our lives. They provide us
many useful functionalities such as reading and writing e-mails, surfing on the
Internet, showing facilities nearby, video conferencing, voice recognition, and the
like. However the popularity and adoption of mobile devices also attract virus
writers in order to harm our devices. According to Kaspersky security report
[1], nearly 145.000 new malicious programs are appeared in 2013 and 98.1% of
these programs target Android platform. Hence, in order to protect our devices
from such threats, researchers and security companies have been working on
developing effective and efficient anti-virus systems recently.

There are some techniques available for malware analysis and detection with
varying strengths and weaknesses. Two common types of malware detection
techniques according to how code is analyzed are static and dynamic analysis.
Since dynamic analysis might not be affordable on some mobile devices due to

2 Emre Aydogan and Sevil Sen

their strong limitations in terms of power consumption, most of the proposed
approaches in the literature rely on static analysis up to date. However, these
tools are known to be vulnerable to some obfuscation techniques and new attacks.
How they are effective against known attacks, variants of known attacks, and
unknown attacks needs investigation. This is the main aim in this study. In
order to be able to assess the security solutions proposed for mobile devices, we
automatically generate new attacks from existing ones.

In this study, we evolve new malwares, variants of known malwares, by us-
ing genetic programming (GP) in order to evaluate the performance of existing
static analysis tools. The aim here is to generate new malwares automatically
that we could strengthen our static analysis tools automatically as well. Because
most of the existing static tools update their signature databases when they
experience new/unknown malwares, automating this process will make our de-
tection systems more robust against attacks. While the proposed approach here
only automates the generation of new/unknown attacks here, the framework is
planned to be extended with developing existing solutions automatically in the
future.

GP has already been applied in some approaches in the literature [2], [3],
[4], [5] in order to evolve new attacks and new malwares. However most of these
approaches are not fully automatic and only proposed for a specific type of at-
tacks. A security expert is generally needed to analyse the code and to extract
parameters that changes in different variants of viruses’ codes, so a representa-
tion of the problem could be constructed for GP. Here, we aim to create a fully
automatic system by employing some obfuscation techniques on source codes
of existing malwares by using GP. The results show that GP could generate
effective attacks which are able to evade from existing eight anti-virus systems
which are among the most successful mobile security solutions [6]. Furthermore,
it is shown that GP shows [7], [8] better performance than solely applying ob-
fuscation techniques as usually proposed in the literature. It is also shown that
the approach could produce more evasive malwares than Zelix Klassmaster [9],
which is a well-known Java bytecode obfuscator.

The rest of the paper is organized as follows: Section 2 summarizes the related
approaches in the literature. In Section 3, we give some background information
such as the details of Android system and the GP. In Section 4, we describe the
proposed method for generating new malwares. The performance of the model
is discussed in Section 5. Finally Section 6 is devoted to concluding remarks and
future works.

2 Related Work

Researchers have been working on suitable security solutions for mobile devices
in the last few years. Many security companies have already brought their mobile
solutions out. Most of these solutions are based on static analysis due to their
suitability to power-constrained mobile devices. Since many mobile anti-virus

Automatic Generation of Mobile Malwares Using Genetic Programming 3

solutions out now, how they are effective against known and unknown malwares
needs investigation.

There are two main studies in order to evaluate commercial anti-virus prod-
ucts against obfuscation techniques on Android platform in the literature. In In
[7], they proposed a system called ADAM that evaluates the effectiveness of anti-
virus systems against malware samples which are generated by employing some
obfuscation techniques automatically while preserving the original malicious
function. Rastogi et. al. In [8] has developed a system called DroidChameleon
that evaluates Android anti-malware products against obfuscation attacks that
are extended form of the attacks in In [7]. They automatically mutate Android
applications by using polymorphic and metamorphic techniques.

Christodorescu and Jha [10] proposed a technique based on a transforma-
tion of a source code for creating test samples for desktop malware detection
systems. Their technique aims to evaluate the resilience of anti-virus systems to
various obfuscation techniques. Morales et. al. [11] evaluate and test how anti-
virus systems protect hand-held devices against known malwares. Their results
indicate that all four anti-virus systems produce high false negative rates. They
also state that high false positive rates are the results of simple signature detec-
tion algorithms employed by the products. Moser et. al. [12] proposed a malware
detectors rely on semantic signatures and employed a model checking for detec-
tion. They showed that static analysis alone is not efficient to detect malware,
it should be complemented with dynamic analysis techniques.

Wu L. et al. [13] proposed a computer virus evolution model. Their work
based on Immune Genetic Algorithm. Noreen et. al. [14] applied genetic opera-
tors to Beagle virus in order to create new variants of it. They also apply this
approach to Silvio virus threatening the ARM-Linux based smart phones and
generate new variants of Silvio viruses using Markov models [15]. In [16], they
proposed a methodology that aims to generate new malwares by changing the
semantic of malwares. They extract abstract representation of an malware, then
use GP to evolve a new malware from this representation.

Ilsun et. al. [17] analyze the obfuscation techniques commonly used by virus
writers. They aim to understand how to use these techniques. Christodorescu
et. al. [18] propose a malware normalizer that reverts obfuscated malwares to
original one by undoing the obfuscations. Their goal is to increase the detection
rate of virus detectors.

Kayacık et. al. [2] use GP to evolve buffer overflow attacks in order to ob-
fuscate the true intent of the attacker. In [3], they also use GP to generate
mimicry buffer overflow attacks with the objective of finding possible vulnera-
bilities before attackers exploit them. Their goal is to generate attacks that seem
like benign, hence they could evade detection. They extend their work in [4] by
increasing the number of detectors (5) and adding delay parameter in order to
build evasion attacks. In [5], they compare two approaches, “white-box” and
“black-box”, while the former uses the internal knowledge of the detectors to
generate evasion attacks, the latter uses only the output of the detectors.

4 Emre Aydogan and Sevil Sen

As far as we know, there are only two approaches proposed for mobile anti-
virus evaluation against new attacks [7], [8]. They clearly present how ineffective
anti-virus systems is against code obfuscation techniques. The target of our study
is also to test existing anti-virus solutions. However we investigate the use of GP
to achieve that. It is shown that automatically evolved malwares could be more
evasive than malwares generated by solely employing obfuscation techniques as
in [7], [8]. GP automatically employs the best evasion strategies by reducing the
size of the search space.

3 Android Platform

Android is an operating system based on the Linux kernel and runs dalvik byte-
code which is a similar form of Java bytecode. There are normally multiple .class
files in a Java application, however an Android application has a single .dex file
consists of all the classes. The java source codes are compiled and packaged into
an .apk file. .apk file is the file format to run on a device or on an emulator
for Android and contains all of the elements like .dex file, manifest file, source
codes, resource files, and the like.

Fig. 1. Code Fragment

.method public A (Landroid/widget/AdapterView;Landroid/view/View;IJ)V
invoke-direct {p0}, Lcom/keepwired/utility/controls/FileChooser;->B()V
invoke-direct {p0}, Lcom/keepwired/utility/controls/FileChooser;->C()V
invoke-virtual {p0, p0, v3}, Lcom/keepwired/utility/controls/FileChooser;->D(Landroid/content/Context;Ljava/lang/

String;)V
.end method

.method private B()V
invoke-direct {v3, p0}, Lcom/keepwired/utility/controls/FileChooser$2;->E(Lcom/keepwired/utility/controls/

FileChooser;)V
.end method

.method private C()V
invoke-direct {v4, p0}, Lcom/keepwired/utility/controls/FileChooser$3;->F(Lcom/keepwired/utility/controls/

FileChooser;)V
invoke-direct {v3, p0}, Lcom/keepwired/utility/controls/FileChooser$4;->G(Lcom/keepwired/utility/controls/

FileChooser;)V
.end method

.method public D(Landroid/content/Context;Ljava/lang/String;)V

.end method

Since we aim to use source codes of existing malwares in order to evaluate
anti-virus products by using GP, we should be able do reverse engineering on
these malwares. Although we could get Java source codes from an Android ap-
plication easily by using some existing tools [19], [20], we cannot convert them
back to the .apk file due to some errors encountered during the transformation
process. These errors could not be resolved automatically. Therefore, we use
.smali codes that are sequences of assembly-like dalvik bytecode instruction sets
[21]. We can access .smali codes by extracting them from .dex file inside the .apk
file. .smali files extracted using apktool [22] and Smali/BakSmali [23]. Then the

Automatic Generation of Mobile Malwares Using Genetic Programming 5

A()

B()

G()

C() D()

E() F()

Fig. 2. CFG for code fragment in Figure 1

converted .smali files could be used to construct an .apk file. A sample smali
class file is shown in Figure 1.

Apk Files Smali FilesApktool

CFG
Converter

CFGsGPApktoolApk Files

Emulator1-8
Malware/Benign

Fig. 3. Simplified Schema of Experiments

4 The Model

The conceptual schema of our experiments is shown in Figure 3. Firstly, we ex-
tract smali codes from malicious application in order to obtain CFGs (Control
Flow Graph). As stated before, we use smali codes instead of Java codes which
enable us to repack the application. After obtaining smali codes, we create CFGs
of each malicious application in order to represent them in GP. GP is an evo-
lutionary computation technique inspired from natural evolution. It has been
one of the most employed evolutionary computation (EC) technique, since it is
introduced by Koza [24]. We use the toolkit ECJ [25] for the GP implementa-
tion in the experiments. In this study, malicious applications, is represented by
control flow graphs (CFG) which are given as inputs to GP.

6 Emre Aydogan and Sevil Sen

As we mentioned, to represent an .apk file in GP, we extract control flow
graph of each functions in the application. Applications considered here do not
consist of recursive functions. An example CFG is shown in Figure 2. Each
CFG corresponds to a tree, each method is represented by nodes, and the edges
indicate the flow between methods. Each program is represented by an individual
in GP and each individuals have different sizes of trees (CFGs) because of the
fact that each .apk file has variable number of functions. In GP, crossover or
mutation operators are applied to these CFGs. Crossover operation exchanges
sub-trees of individuals. To be able to obtain executable programs, only methods
with the same declarations having the same return type, the equal number of
parameters with the same types are allowed to exchange. This allows us to
create new malwares from existing malwares. However since the high value of
crossover rate increase the number of non-executable individuals, the crossover
operation is assigned to a low rate (0.1) in the experiments. And when we use
crossover operator, we have to check whether newly generated programs execute
properly and perform malicious activities. In order to check this, we developed a
dynamic analysis tool [26]. This tool runs applications and extract some features
in runtime from Android apps. The machine learning approaches are applied on
these features in order to decide whether the application is malicious or not. If
the application cannot be executed properly, the dynamic analysis tool does not
return any value in a time interval.

Mutation operator is also applied on sub-trees which are randomly chose. It
uses the five obfuscation techniques. These techniques aim to generate different
variants of the malwares while preserving the original malicious function. To
perform these transformations, respectively, we take .apk file as an input, unpack
smali codes using apktool, apply obfuscation techniques on smali codes, repack
smali codes into .apk file and finally sign it before being installed on the emulator.
Rename Local Identifier (RI) changes one of the local identifiers of a method with
a string generated by a random string. Two-fold Code Reordering (CR2) is based
on reordering the codes of a method in the program. We reorder the codes of a
method by inserting goto statement at the top and bottom parts of the method.
Three-fold Code Reordering (CR3) has the same logic with the two-fold code
reordering. The only difference is to insert 3 goto statement instead of 2 in this
obfuscation strategy. So we change the order of the codes, however, we preserve
the execution sequences of the codes at runtime. In Junk Code Insertion (JK),
three instructions are inserted. Firstly, we add a local variable to the method.
Primitive types such as string, int, double are used to identify the local variable.
Then, PrintStream object is inserted to print out the local variable, defined
one step before. Finally, the code calls the println function of the PrintStream
object. Data Encryption (DE) encrypts all the strings that have been used in the
method. Firstly, the encryption is done by using a randomly generated key. Then
the string is replaced with its encrypted version ciphered with the key. The key
is defined in the method as well. Finally, decrypt function of the SimpleCrypto
class is called. If Crypto package is not already included in the code, it will be
added. In every mutation operation, one obfuscation technique is selected and

Automatic Generation of Mobile Malwares Using Genetic Programming 7

applied to the node namely source codes of the function that selected randomly
by GP. In order to generate more evasive attacks, we set the mutation rate
to a high value, 0.9. The other GP parameters are selected as follows : 10 for
population size, 100 for generation, 7 for tournament selection. The parameters
not mentioned here are the default parameters of the ECJ toolkit.

We also sign each generated programs with a random key not to cause any
errors while trying to install the application on the emulator. We generate ran-
dom key with keytool [27]. To sign the generated programs, we use jarsigner [28]
that is used to signs and verifies Java Archive (.jar) files.

Since the fitness function defines how the individuals solves the problem or
come close to the solution, defining a well-representative fitness function is very
important in any GP application. In our fitness function here, we use the output
of 8 anti-virus systems which are among the most successful mobile security
solutions. The anti-virus systems are selected according to their protection score
given in AV-TEST [6]. Our second criteria to choose the anti-virus systems, we
explore if we could get the output of the anti-virus run on a emulator. Hence
we use the solutions which produce log files. Table 1 lists the anti-virus systems
employed in our experiments. Each anti-virus is executed on different emulators
(official Android emulator) to simulate the execution of evolved malwares and
the response of anti-virus against them. The fitness function takes values between
0 and 1. It is aimed to be minimized and defined as follows :

fitness =
number of antivirus systems detecting the individual

total number of anti-virus systems
(1)

Table 1. Anti-virus products used.

Vendor Product Version

Eset Eset Mobile Security 3.0.882.0-16
GData Gdata Internet Security 25.0.0
Ikarus Ikarus mobile.security 1.7.20
Kaspersky Kaspersky Internet Security 11.1.3.10
Avast Avast Mobile Security 3.0.7550
Trend Micro Trend Micro Mobile Security 5.0.0.1225
BitDefender BitDefender Mobile Security 2.18.119
Norton Norton Mobile Security 3.8.6.1533

5 Results

5.1 DataSet

We use the dataset given in [29]. It is the first malware dataset introduced in the
literature. Many studies have already used this dataset in order to compare their
result with other approaches. The dataset include 1,260 Android malwares in 49
malware families collected within more than a year, between August 2010 and

8 Emre Aydogan and Sevil Sen

October 2011. We randomly select malwares from the dataset and their produced
CFGs are given to the GP algorithm. The only criteria we used to select malwares
is to be detectable by the anti-virus systems. The number of anti-virus systems
detecting malwares is not taken into account. The GP algorithm is run many
times with different inputs. In some runs, GP produces non-executable or non-
compilable individuals due to difficulties faced with while modifying the smali
files. These outputs are not discussed in the results.

5.2 Comparison with One-Level Obfuscation

Table 2. The detection ratio of obfuscated/evolved malwares employing just one ob-
fuscation technique by the 8 anti-virus systems

OR JK DE CR2 CR3 RI MU XO + MU

NickySpy 1ce27fa92a313da39f1e31e97d3ac05a8d6ffe78 8 7 8 7 7 8 5 7

NickySpy 63e642f0d859e096342321c9e03baca7cd1210fa 8 8 8 7 7 8 6 6

Asroot 0c059ad62b9dbccf8943fe4697f2a6b0cb917548 7 7 6 7 7 7 6 6

GPSSMSSpy 0eb4b7737df1b8b52213599e405d71c9be8a68ac 6 5 5 6 6 6 5 5

GPSSMSSpy 4d43d7771e480de34dbf748867152406b91a0de8 6 5 5 6 6 6 5 5

HippoSMS bd7e85f5a0c39a9aeecc05dbc99a9e5c52150ba6 8 7 5 8 7 7 4 7

FakeNetflix 0936b366cbc39a9a60e254a05671088c84bd847e 6 6 4 6 6 6 3 3

DroidKungFu2 8bb6106b7c1160e8812788bbd16b563f5a00080a 7 7 7 7 7 7 6 6

GPSSMSSpy af727f5e23e69bfe2321f5d556c63f741dae8283 6 5 5 6 6 6 4 5

GPSSMSSpy 73c1657ddf52cc82b57c2db80554c59927e7970a 6 5 5 6 6 6 4 5

GPSSMSSpy 94b56252ff610126135c568b1cc7b92405b9e608 6 5 5 6 6 6 4 5

GPSSMSSpy 5900250af412b7147764706847cf1dbc54cd6e0e 6 5 5 6 6 6 4 5

DroidKungFu1 02d2e109d16d160f77a645f44314fedcdbcd6e18 8 8 8 8 8 8 7 7

RogueLemon 08a21de6b70f584ceddbe803ae12d79a33d33b50 6 5 4 6 6 6 4 5

Table 2 demonstrates the results by employing just one obfuscation technique
to malwares. The column MU shows the performance of malwares generated by
GP using only mutation operator and the column MU+XO shows the perfor-
mance of malwares generated by GP using mutation and crossover operators
together. For example, the original version of the malware given in the first row
(OR) is detected by all anti-virus systems. If we apply different obfuscation tech-
niques solely to the malware as many approaches in the literature, it could avoid
being identified from some anti-virus systems. However, if we apply GP to the
malware, it shows the lowest detection rate. However, Table 2 shows that if we
use GP using mutation and crossover operator together, the detection results
increase comparing to GP using only mutation operator due to that crossover
operator is very error prone because of exchanging codes between apps are very
hard to deal with. There are also some results that GP is not able to outper-
form some obfuscation techniques. However it never produces worse results than
them as expected. We obtain more malwares producing the same result with the
output of GP. Since we want to emphasize the best results, we do not list all
malwares evolved in the table.

As shown in Table 2, Rename local identifier transformation (RI) is not
very effective against anti-virus systems. It is only effective against HippoSMS

Automatic Generation of Mobile Malwares Using Genetic Programming 9

malware. Because RI just changes the name of the constant strings with an arbi-
trary string. Two-fold code reordering (CR2) does also only affect the NickySpy
malware and able to evade from only one anti-virus. The best improvement on
results is performed by data encryption (DE). Data Encryption hides the value
of the constant strings so that if attacker wants to send message to premium-rate
service, attack the websites or read secret information from mobile devices, he
could easily hide their intent. The junk code insertion transformation (JK) also
produces good results, even though it only adds a simple function which display
a random value on the screen. Finally three-fold code reordering (CR3) leads to
better results than RI and CR2, but not as good as DE and JK.

5.3 Comparison with Two-Level Obfuscation

Table 3. The detection ratio of obfuscated/evolved malwares employing two obfusca-
tion techniques by the 8 anti-virus systems

JK-DE CR2-DE DE-RI CR3-DE JK-CR3 JK-RI CR2-RI JK-CR2 CR3-RI MU XO + MU ZEL

NickySpy 1ce27fa92a313da39f1e31e97d3ac05a8d6ffe78 7 7 8 7 7 7 7 7 7 5 7 6

NickySpy 63e642f0d859e096342321c9e03baca7cd1210fa 7 7 8 7 8 7 7 8 7 6 6 6

Asroot 0c059ad62b9dbccf8943fe4697f2a6b0cb917548 6 6 6 6 6 7 7 7 6 6 6 6

GPSSMSSpy 0eb4b7737df1b8b52213599e405d71c9be8a68ac 5 5 5 5 5 6 6 6 6 5 5 4

GPSSMSSpy 4d43d7771e480de34dbf748867152406b91a0de8 5 5 5 5 5 5 6 5 5 5 5 4

HippoSMS bd7e85f5a0c39a9aeecc05dbc99a9e5c52150ba6 5 5 5 5 6 7 7 7 6 4 7 5

FakeNetflix 0936b366cbc39a9a60e254a05671088c84bd847e 4 4 4 4 6 6 6 6 6 3 3 5

DroidKungFu2 8bb6106b7c1160e8812788bbd16b563f5a00080a 7 7 7 - - 7 7 7 - 6 6 6

GPSSMSSpy af727f5e23e69bfe2321f5d556c63f741dae8283 5 5 5 5 5 5 6 5 5 4 5 4

GPSSMSSpy 73c1657ddf52cc82b57c2db80554c59927e7970a 5 5 5 5 5 5 6 5 5 4 5 4

GPSSMSSpy 94b56252ff610126135c568b1cc7b92405b9e608 5 5 5 5 5 5 6 6 6 4 5 4

GPSSMSSpy 5900250af412b7147764706847cf1dbc54cd6e0e 5 5 5 5 6 5 6 6 5 4 5 4

DroidKungFu1 02d2e109d16d160f77a645f44314fedcdbcd6e18 8 8 8 - - 8 8 8 - 7 7 8

RogueLemon 08a21de6b70f584ceddbe803ae12d79a33d33b50 4 4 4 - - 6 6 6 - 4 5 4

There are several studies that employing obfuscation techniques to malwares
one by one [7] or two obfuscation techniques together [8]. GP could apply mul-
tiple obfuscation techniques over nodes. Therefore, we compare our GP with
technique that applies two obfuscation techniques together over malwares. The
results can be shown in Table 3. When we apply Two-fold and Three-fold code
reordering together, we fail to produce compiled apps so that we exclude their
results in Table 3. We also apply obfuscation techniques in groups of triple and
four, but due to that obfuscation techniques affect each other, the rate of the
compiled apps has been very low and results not shown in Table 3. Evolutionary
computation can prevent such problems, with respect to its nature ability that
eliminate non-compiled and non-executable malwares. “-” in Table 3 denotes
malwares that can be compiled but cannot be installed on emulators properly.
Table 3 shows that when we apply obfuscation techniques in groups of two, there
is no further improvement comparing to one by one.

We also evaluate the resilience of the anti-virus systems by using a well-
known obfuscator, Zelik KlassMaster [9]. The column ZEL in Table 3 shows
the detection rate of the anti-virus systems against malwares obfuscated by the
obfuscator. The results show that GP (MU) produces comparable results with
the obfuscator. It produces more evasive malwares for 4 applications. Only two

10 Emre Aydogan and Sevil Sen

malwares obfuscated by Zelix KlassMaster [9] produces better results than our
approach. In the future, we aim to compare our approach with more obfuscators
in the literature.

5.4 Evalution of Static Analysis Tools

To sum up, we could say that our approach produces many malwares in one run,
and it generally evolves more evasive attacks than five obfuscation techniques
automatically. It allow us to test the anti-virus systems against unknown attacks
as shown in Table 4. As shown, Avast Mobile Security is the most robust sys-
tem against new attacks. It detects all obfuscated malwares in this study except
one if we apply mutation and crossover operators together. BitDefender only
misses one malware evolved by GP. Kaspersky and TrendMicro are also suc-
cessful enough to be able to detect all obfuscation techniques. But three evolved
malwares achieve to be undetected by Kaspersky and TrendMicro. Although the
detection performance of GData is very low (6/14), it is very effective against
all obfuscation techniques, except one evolved malware by GP. Norton Mobile
Security is the most ineffective solution against evolved malware. Although it
detects 13 malwares out of 14 per obfuscation techniques, we achieve to evolve
8 malwares that could avoid being recognized by Norton using GP (MU) and to
evolve 2 evasive malwares by using GP (MU+XO). Our evolved malwares are
also very effective against Eset. We also manage to escape from Ikarus Mobile
Security. However, DE outperforms our method on one malware.

Table 4. The performance of anti-virus systems against obfuscated and evolved mal-
wares

OR JK DE CR2 CR3 RI MU MU + XO

Eset 8 8 6 8 8 8 4 6

GData 6 6 6 6 6 6 5 5

Ikarus 13 8 6 12 11 13 7 12

Kaspersky 13 12 12 13 13 13 10 10

Avast 14 14 14 14 14 14 14 13

TrendMicro 13 12 11 12 12 12 9 12

BitDefender 14 14 14 14 14 14 13 13

Norton 13 11 11 13 13 13 5 11

Toplam 94 85 80 92 91 93 67 82

There are three main important advantages of using GP to create new, unseen
malwares. Firstly, GP reduces the search space and helps to find the best effec-
tive obfuscation techniques upon malwares rapidly. It eliminates non-compilable
or non-executable solutions naturally. More evasive malwares could be evolved
by increasing the number of obfuscation techniques employed in GP. Secondly,
GP could allow to co-evolve both malwares and anti-malware systems automati-
cally. We aim to automatically improve anti-malware systems in the future. The
last advantage of using GP is bloating. Generally bloating is not desired in GP
applications. However bloating has a positive effect in our method that causes
to generate more complex programs, hence more evasive malwares.

Automatic Generation of Mobile Malwares Using Genetic Programming 11

6 Conclusion

We propose a method that evaluates current anti-virus systems for Android
platform. We apply GP to Android malwares in order to generate the variants
of malwares with the objective of evading from anti-virus systems. We compare
our results with the obfuscation techniques and the Zelix KlassMaster obfuscator
[9]. We employ obfuscation techniques either one by one or in groups of two on
malwares. Our results show that all the anti-virus systems have a weakness
against obfuscation techniques and we can further decrease their detection ratio
against evolved malwares by using GP.

To the best of our knowledge, this is the first work that generates evolved
mobile malwares using GP in mobile platforms. One of the main characteristics
of the proposed system is being fully automatic. In the future, more obfuscation
techniques are planned to be added to the algorithm. Moreover, it is aimed to
be compared with more obfuscators in the literature. We also aim to evolve both
malwares and anti-malwares simultaneously in the future.

Acknowledgement

This study is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK-112E354). We would like to thank TUBITAK for its support.

References

1. Kaspersky Lab., Mobile malware evolution: 3 infection attempts per
user in 2013, http://www.kaspersky.com/about/news/virus/2014/
Mobile-malware-evolution-3-infection-attempts-per-user-in-2013

2. Kayacık, H.G., Heywood, M.I., Zincir-Heywood, A.N.: On Evolving Buffer Overflow
Attacks Using Genetic Programming. In Proc. of the 8th Annual Conference on
Genetic and Evolutionary Computation. pp. 1667–1674. ACM (2006),

3. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I., Burschka, S.: Generating
Mimicry Attacks using Genetic Programming: A Benchmarking Study. In Proc. of
IEEE Symposium on Computational Intelligence in Cyber Security. pp. 136–143
(2009)

4. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Can a good offense be a good
defense? Vulnerability testing of anomaly detectors through an artificial arms race.
Appl. Soft Comput. 11(7), 4366–4383 (2011)

5. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Evolutionary computation as
an artificial attacker: generating evasion attacks for detector vulnerability testing.
Evolutionary Intelligence 4(4), 243–266 (2011),

6. AV-TEST: The independent it-security institute, http://www.av-
test.org/en/home/

7. Zheng, M. and Lee, Patrick P.C. and Lui, John C.S.: ADAM: An Automatic and
Extensible Platform to Stress Test Android Anti-Virus Systems. In Proc. of the
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Lecture Notes in Computer Science, vol. 7591, pp. 82–101. Springer (2013)

12 Emre Aydogan and Sevil Sen

8. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: Evaluating Android Anti-
malware against Transformation Attacks. In Proc. of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security. pp. 329–334. ACM
(2013)

9. Zelix KlassMaster: Java obfuscator - zelix klassmaster, http://www.zelix.com/
10. Christodorescu, M., Jha, S.: Testing Malware Detectors. In Proc. of the 2004 ACM

SIGSOFT International Symposium on Software Testing and Analysis. pp. 34–44.
11. Morales, J., Clarke, P., Deng, Y., Golam Kibria, B.: Testing and evaluating virus

detectors for handheld devices. Journal in Computer Virology 2(2), 135–147 (2006)
12. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.

In Proc. of Computer Security Applications Conference, pp. 421–430 (2007)
13. Wu, L., Zhang, Y.: Research of the Computer Virus Evolution Model Based on

Immune Genetic Algorithm. In Proc. of the 10th IEEE/ACIS International Con-
ference on Computer and Information Science. pp. 9–13. IEEE Computer Society
(2011)

14. Sadia, N., Shafaq, M., Zubair, S.M., Muddassar, F.: Evolvable Malware. In Proc. of
the 11th Annual Conference on Genetic and Evolutionary Computation. pp. 1569–
1576. ACM (2009)

15. Shahzad, F., Saleem, M., Farooq, M.: A Hybrid Framework for Malware Detection
on Smartphones Using ELF Structural & Pcb Runtime Traces. Tech. rep., TR-58
FAST-National University, Pakistan (2012)

16. Sadia, N., Shafaq, M., Zubair, S.M., Muddassar, F.: Using Formal Grammar and
Genetic Operators to Evolve Malware. In Proc. of the 12th International Symposium
on Recent Advances in Intrusion Detection. pp. 374–375. Springer (2009)

17. You, I., Yim, K.: Malware Obfuscation Techniques: A Brief Survey. In Proc. of the
International Conference on Broadband, Wireless Computing, Communication and
Applications. pp. 297–300 (2010)

18. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H., Munchen,
T.U.: Malware Normalization. Tech. rep.,1539, University of Wisconsin (2005)

19. JAD: Java decompiler download mirror, http://varaneckas.com/jad/
20. JEB: The interactive android decompiler, http://www.android-decompiler. com/
21. Android: Bytecode for the dalvik vm, https://source.android.com/

devices/tech/dalvik/dalvik-bytecode.html
22. Apktool: A tool for reverse engineering android apk files, https://code.

google.com/p/android-apktool/
23. Smali: An assembler/disassembler for androids dex format, https://code.

google.com/p/smali/
24. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press (1992)
25. ECJ: A java-based evolutionary computation research system,

http://cs.gmu.edu/ eclab/projects/ecj/
26. Ozkan, H.B., Aydogan, E., Sen, S.: An Ensemble Learning Approach to Mobile

Malware Detection. Tech. rep., Hacettepe University, Department of Computer En-
gineering (2014).

27. Oracle: keytool - key and certificate management tool, http://docs.oracle. com/-
javase/7/docs/technotes/tools/solaris/keytool.html

28. Oracle: jarsigner, http://docs.oracle.com/javase/7/docs/technotes/tools/windows/
jarsigner.html

29. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In Proc. of the 2012 IEEE Symposium on Security and Privacy. pp. 95–109, IEEE
Computer Society (2012)

