

Authentication Systems

Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr

Information Securit

Entity Authentication

- Non-cryptographic
 - · Address-based (E-mail, IP, etc.)
 - Passwords
 - Biometrics
- Cryptographic
 - Symmetric key
 - Public key

I-6-----

Entity Authentication

 Entity authentication (identification): the process whereby one party is assured of the identity of a second party involved in a protocol.

• Entities can be people, processes, etc.

• Authentication can be done in many ways $\ensuremath{\mathfrak{G}}$

https://youtu.be/II6Ci-fkFtA

Information Securi

Requirements of Authentication Protocols

- Requirements of identification protocols
 - of or honest prover A and verifier B, A is able to convince B
 - on other party can convince B
 - o in particular, B cannot convince C that it is A
- Authentication can be based on
- What you know? (password schemes)
- What you have? (keys, smart cards, etc.)
- What you are? (fingerprints, retinal scans, etc.)
- Kinds of attackers
- passive and replay
- · active, man in the middle
- the verifier

Information Security

1

Properties of Authentication Protocols

- Reciprocity of identification (one-way or mutual)
- Computational efficiency (encryption, signing)
- Communication efficiency (communication rounds, messages)
- Involvement of a third party
- Nature of trust in the third party
- Storage of secrets

Information Security

Initial Password Distribution

- Initial off-line authentication
- Passwords can be chosen on site by users
- An initial password can be issued by the system administrator.
- Pre-expired passwords
 - Must be changed at the first login

Information Security

Authentication Using Fixed Passwords • Client authenticates to a server using a password. • Passwords must be kept in encrypted password files or as digests Requests a protected resource Requests username:password Sends username:password Returns requested resource

Attacks on Passwords

- Attacks:
 - · Careless users writing down passwords
 - Stealing password files
 - Eavesdropping
 - · On-line password guessing
 - Off-line guessing attacks
 - · Dictionary attacks
 - Exhaustive search

Information Securi

Eavesdropping

- Watching the screen
- Watching the keyboard
- Login Trojan horses
 - Different appearance
 - Interrupt command for login
- Keyboard sniffers
 - · Good system administration
- Network sniffers
- · Cryptographic protection
- One-time passwords

Information Security

Off-line Password Guessing

- Stealing & using password files
- Passwords should not be stored in clear. Typically, they're hashed and stored.
- Attacks:
 - Exhaustive search
 - Dictionary attacks
- Defenses:
 - Don't allow short/guessable passwords
 - Don't make password files readable
 - Salting: Mix a random number to each hash

I-6-----

On-line Password Guessing

- Careless choices (first names, initials, etc.); poor initial passwords
- · Defenses: After wrong guesses,
 - Lock the account
 - Not desirable, can be used for DoS
 - Slow down
 - Alert users about unsuccessful login attempts
 - Don't allow short or guessable passwords

Information Securit

10

Unix crypt Algorithm

- Used to store Unix passwords
- UNIX password information stored is in /etc/passwd :
 - Iterated DES encryption of 0 (64 bits), using the first 8 characters of the password as key
 - 12 bit random salt taken from the system clock time at the password creation
- · Strengthen passwords by "salting".
 - Why use the salt?: To alter the expansion function E of DES, to defend against attacks on DES using off-the-shelf hardware that can crack DES

Information Security

One-Time Passwords

- Some systems use a different password for each login operations.
 - A used password expires and then a new password is created for the next login.
 - Example:
 SMS messages sent to cell phone during online banking logins
- Generally, one-time passwords are created using crptograhic algorithms
 - Sometimes a secure device is used for creating one-time passwords

Information Security

1.2

Challenge-Response Protocols

- Goal: one entity authenticates to other entity by proving the knowledge of a secret, not by revealing the secret
- Time-variant parameters used to prevent replay attacks, provide uniqueness and timeliness: nonce (number used only once)
- Three types of challenges:
 - Random numbers
 - Sequences
 - Timestamp

formation Security

15

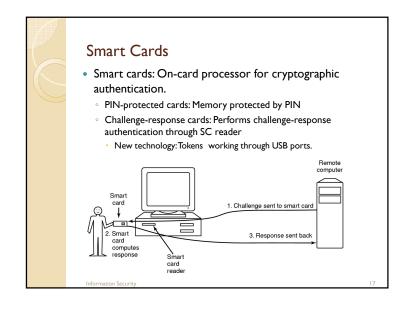
Lamport's One-Time Password

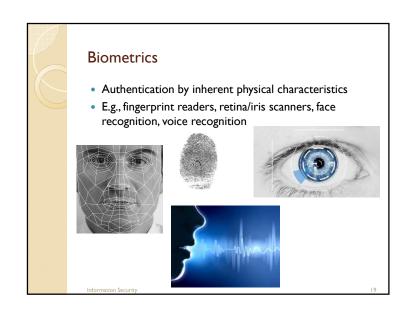
- Stronger authentication that password-based
- One-time setup:
 - A selects a value w, a hash function H(), and an integer t, computes w₀ = H^t(w) and sends w₀ to B
 - ∘ B stores w₀
- Protocol: to identify to B for the ith time, $1 \le i \le t$
- A sends to B: A, i, $w_i = H^{t-i}(w)$
- B checks $i = i_A$, $H(w_i) = w_{i-1}$
- if both holds, $i_A = i_A + 1$

Information Securit

14

Authentication Tokens


- Keys (physical)
- ATM, credit cards, smart cards
- USB Tokens



Information Security

USB Tokens Challenge Response Tokens May use public key certificates Cryptographic calculator Generally used for one-time password protocols Current time encrypted Displayed to user Entered to terminal

Problems with Biometrics

- Expensive
 - Generally the recognition devices are expensive or hard to deploy
- Not fault tolerant
 - · Face, voice recognition is still not stable enough
- Not possible to change in case of theft
 - If stealed, it is not possible to change a user's biometric info unlike passwords, tokens.
 - Such as steal of fingerprints on the surface of scanner devices and replication of the fingerprint using latex material
- Can be replayed in remote authentication
 - If biometric info is stealed, it can be used by attackers

Information Security

_