Hash Functions, Message Authentication Codes

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr
Security Services

- Confidentiality: Symmetric encryption solves
- Integrity
- Authentication
- Non-repudiation
- Access control
- Availability
Integrity in Networking

- Sender computes a CRC for the message
- Sender appends the CRC code to the message and sends them to the receiver
- The receiver computes the CRC of the message.
 - If the CRC appended to the message is equal to the computed one, the message is unchanged with a high probability.
 - If the CRCs do not match, the message is changed during the transmission.
CRC Checksum in Networking

Sender

M
CRC
Chk Sum

Receiver

M
Chk Sum
INTERNET

M
Chk Sum
CRC
Chk Sum’

= ?
Cryptographic Hash Functions

- Maps an arbitrary length input to a fixed-size output.
 - If \(m \) is message, \(H \) is the hash function, \(H(m) \) is the output of hash function, also called message digest.

- Desirable features:
 - **One-way**: There should be no easy way to guess \(m \) from \(H(m) \)
 - **Pseudorandom**: If \(m \) and \(m' \) are two close values, \(H(m) \) and \(H(m') \) should not be close each other.
 - **Collision resistant**: It should be hard to find two inputs that hash to the same output
 - It should be hard to find two inputs \(a \) and \(b \) such that \(H(a) = H(b) \)
Example Operation of Hash Functions

Input

- Fox
- The red fox jumps over the blue dog
- The red fox jumps over the blue dog
- The red fox jumps over the blue dog

Digest

- DFCD 3454 BB5A 788A 751A 696C 24D9 7009 CA99 2D17
- 0086 46BB FB7D CBE2 823C ACC7 6CD1 90B1 EE6E 3ABC
- 8FD8 7558 7851 4F32 D1C6 76B1 79A9 0DA4 AEFE 4819
- FCD3 7FDB 5AF2 C6FF 915F D401 C0A9 7D9A 46AF FB45
- 8ACA D682 D588 4C75 4BF4 1799 7D88 BCF8 92B9 6A6C
Birthday Paradox

- Birthday Problem ("paradox"): When \sqrt{N} or more are chosen randomly from a domain of N, there is a significant chance of collision.
- Probability of n persons having different birthdays:

$$p(n) = 1 \times \left(1 - \frac{1}{365}\right) \times \left(1 - \frac{2}{365}\right) \times \ldots \times \left(1 - \frac{n-1}{365}\right)$$
Birthday Paradox
Collision Resistance

- If a hash function produces N bits of output, an attacker should not easily find a collision by performing less than (on average) $2^{N/2}$ hash operations.
 - If there is an easier method than this brute force attack, it is typically considered a flaw in the hash function
 - Therefore, hash output size ≥ 128 bits is desirable.

- But why “collision resistance”?
 - A chosen plaintext attack: Trudy is Alice’s secretary. Generates two opposite messages.
Internals of a Hash Function

- A fixed-size “compression function”.
 - Each iteration mixes an input block with the previous output.

- Design:
 - Lots of operations (rotations, \oplus, \land, \lor, $+$, ...) fast in s/w.
 - More of them are added if a weakness is found.
Some Popular Hash Algorithms

- **MD5** (Rivest)
 - 128-bit output
 - Most popular

- **SHA-1** (NIST-NSA)
 - US gov’t standard
 - 160-bit output

- **RIPEMD-160**
 - Euro. RIPE project.
 - 160-bit output

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Speed (MByte/s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>205</td>
</tr>
<tr>
<td>SHA-1</td>
<td>72</td>
</tr>
<tr>
<td>RIPEMD-160</td>
<td>51</td>
</tr>
</tbody>
</table>

Crypto++ 5.1 benchmarks, 2.1 GHz P4
Message Authentication Codes (MAC)

- A simple message integrity checking method:
 - Compute $H(m)$ and send $(m, H(m))$
 - The receiver computes $H(m)$ and compares with the received $H(m)$ value.

- What happens if an attacker changes both m and $H(m)$ value and sends $(m', H(m'))$ to receiver?

- A secret key system can be used to generate a cryptographic checksum known as a message authentication code (MAC).
 - It is also referred as MIC (Message Integrity Code).
MACs

- Let $\text{MAC}_K(m)$ be a message authentication code for m produced by using K.
- An attacker shouldn’t be able to generate a valid $(m, \text{MAC}_K(m))$, even after seeing many valid message-MAC pairs.
- It aims to protect against undetected modifications on messages, not the contents.
 - Sender of a message m computes $\text{MAC}_K(m)$ and appends it to the message
 - Verification: The receiver also computes $\text{MAC}_K(m)$ & compares to the received value.
MACs from Hash Functions

- **prefix**: $\text{MAC}_K(m) = H(K \ || \ m)$
 - not secure; extension attack.

- **suffix**: $\text{MAC}_K(m) = H(m \ || \ K)$
 - mostly ok; problematic if H is not collision resistant.

- **send half of the digest**

- **envelope**: $\text{MAC}_K(m) = H(K_1 \ || \ m \ || \ K_2)$

- **HMAC**: $\text{MAC}_K(m) = H(K_2 \ || \ H(K_1 \ || \ m))$
 - provably secure; popular in Internet standards.