Number Theory, Public Key Cryptography, RSA

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr
The Euler Phi Function

- Definition:
 For a positive integer \(n \), if \(0 < a < n \) and \(\gcd(a, n) = 1 \), \(a \) is relatively prime to \(n \).

- Definition:
 Given an integer \(n \), \(\varphi(n) \) is the number of positive integers less than or equal to \(n \) and relatively prime to \(n \).
The Euler Phi Function

- Theorem: Formula for $\varphi(n)$

 Let p be prime, e, m, n be positive integers

 1) $\varphi(p) = p-1$

 2) if $\gcd(m,n)=1$, then $\varphi(mn)=\varphi(m)\varphi(n)$

 3) $\varphi(p^e) = p^e - p^{e-1}$

 4) If $n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$ then

 $$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \ldots \left(1 - \frac{1}{p_k}\right)$$

Information Security
Fermat’s Little Theorem

- Fermat’s Little Theorem

If p is a prime number and a is a natural number that is not a multiple of p, then

$$a^{p-1} \equiv 1 \pmod{p}$$
Euler’s Theorem

• Euler’s Theorem
 Given integer n>1, such that gcd(a,n)=1 then
 \[a^{\varphi(n)} \equiv 1 \pmod{n} \]

• Corollary
 Given integer n>1, such that gcd(a,n)=1 then
 \[a^{\varphi(n)-1} \pmod{n} \text{ is a multiplicative inverse of } a \pmod{n}. \]
Consequence of Euler’s Theorem

- **Principle of Modular Exponentiation**
 Given integer n > 1, x, y, and a positive integers with gcd(a,n)=1. If \(x \equiv y \pmod{\varphi(n)} \), then
 \[a^x \equiv a^y \pmod{n} \]

- **Proof idea:**
 \[a^x = a^{k\varphi(n)+y} = a^y(a^{\varphi(n)})^k \]
 by applying Euler’s theorem we obtain
 \[a^x \equiv a^y \pmod{n} \]
Diffie-Hellman Key Exchange

Diffie-Hellman proposed a cryptographic protocol to exchange keys among two parties in 1976.

- **Public parameters:**
 - p: A large prime
 - g: Base (generator)

- **Secret parameters:**
 - \(\alpha, \beta \in \{0, 1, 2, \ldots, p-2\} \)

Alice computes \((g^\beta)^\alpha \mod p\) and Bob computes \((g^\alpha)^\beta \mod p\) to get the shared key:

\[K = g^{\alpha\beta} \mod p \]
Security of Diffie-Hellman

- **Discrete Logarithm Problem (DLP):**
 - Given $p, g, g^\alpha \mod p$, what is α?
 - easy in \mathbb{Z}, hard in \mathbb{Z}_p

- **Diffie-Hellman Problem (DHP):**
 - Given $p, g, g^\alpha \mod p, g^\beta \mod p$, what is $g^{\alpha\beta} \mod p$?

- DHP is as hard as DLP.
Commutative Encryption

- **Definition:**
 An encryption scheme is commutative if
 \[E_{K_1}[E_{K_2}[M]] = E_{K_2}[E_{K_1}[M]] \]

 Given a commutative encryption scheme, then
 \[D_{K_1}[D_{K_2}[E_{K_1}[E_{K_2}[M]]] = M \]

- **Most symmetric encryption scheme are not commutative such as DES and AES.**
Asymmetric Encryption Functions

- An asymmetric encryption function:
 - Encryption (K) and decryption (K\(^{-1}\)) keys are different.
 - Knowledge of the encryption key is not sufficient for deriving the decryption key efficiently.
 - Hence, the encryption key can be made “public”.

![Diagram of asymmetric encryption process]

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>Encryption</th>
<th>Ciphertext</th>
<th>Decryption</th>
<th>Original Plaintext</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pohlig-Hellman Exponentiation Cipher

- A commutative exponentiation cipher
 - encryption key \((e, p)\), where \(p\) is a prime
 - decryption key \((d, p)\), where \(ed \equiv 1 \pmod{(p-1)}\) or in other words \(d \equiv e^{-1} \pmod{(p-1)}\)
 - to encrypt \(M\), compute \(C = M^e \pmod{p}\)
 - to decrypt \(C\), compute \(M = C^d \pmod{p} = M^{ed} \pmod{p}\)
Public Key Encryption

- Each party has a PAIR \((K, K^{-1})\) of keys:
 - \(K\) is the public key
 - \(K^{-1}\) is the private key

\[D_{K^{-1}}[E_K[M]] = M \]

- The public-key \(K\) may be made publicly available.
- Many can encrypt with the public key, only one can decrypt.
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key.
Solutions with Public Key Cryptography

• Key distribution solution:
 ◦ Alice makes her encryption key K public
 ◦ Everyone can send her an encrypted message: $C = E_K(M)$
 ◦ Only Alice can decrypt it with the private key K^{-1}: $M = D_{K^{-1}}(C)$

• Source Authentication Solution:
 ◦ Only Alice can “sign” a message, using K^{-1}.
 ◦ Anyone can verify the signature, using K.
 ◦ Only if such a function could be found...
RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence
RSA Public Key Crypto System

- Choose large primes p, q
 - Compute $n = pq$ and $\varphi(n) = (q-1)(p-1)$
- Choose e, such that $\gcd(e, \varphi(n)) = 1$.
 - Take e to be a prime
- Compute $d \equiv e^{-1} \mod \varphi(n)$ and $ed \equiv 1 \mod \varphi(n)$
 - Public key: n, e
 - Private key: d
- Encryption: $C = E(M) = M^e \mod n$
- Decryption: $D(C) = C^d \mod n = M$
RSA Encryption

- Encryption: \(C = E(M) = M^e \mod n \),
- Decryption: \(D(C) = C^d \mod n \).
- Why does it work?
 \[
 D(M) = (M^e)^d \mod n = M^{ed} \mod n \\
 = M^{k\varphi(n) + 1} \mod n, \quad (for \ some \ k) \\
 = (M^{\varphi(n)})^k M \mod n \\
 = M
 \]

- **RSA problem:** Given \(n, e, M^e \mod n \), what is \(M \)?
 - Computing \(d \) is equivalent to factoring \(n \).
 - The security is based on difficulty of factoring large integers.
RSA Example

- Let $p = 11$, $q = 7$, then
 - $n = 77$, $\varphi(n) = 60$
- Let $e = 37$, then
 - $d = 13$ ($ed = 481$; $ed \mod 60 = 1$)

- Let $M = 15$, then $C \equiv M^e \mod n$
 - $C \equiv 15^{37} \mod 77 = 71$

- $M \equiv C^d \mod n$
 - $M \equiv 71^{13} \mod 77 = 15$
RSA Implementation

- The security of RSA depends on how large n is, which is often measured in the number of bits for n.
 - Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- p-q should not be small.
 - In general, p, q randomly selected and then tested for primality
 - Many implementations use the Rabin-Miller test, (probabilistic test)