Number Theory, Public Key Cryptography, RSA
Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr

The Euler Phi Function

- Definition:
 For a positive integer \(n \), if \(0 < a < n \) and \(\gcd(a, n) = 1 \), \(a \) is relatively prime to \(n \).

- Definition:
 Given an integer \(n \), \(\varphi(n) \) is the number of positive integers less than or equal to \(n \) and relatively prime to \(n \).

The Euler Phi Function (cont.)

- Theorem: Formula for \(\varphi(n) \)
 - Let \(p \) be prime, \(e, m, n \) be positive integers
 1) \(\varphi(p) = p - 1 \)
 2) if \(\gcd(m, n) = 1 \), then \(\varphi(mn) = \varphi(m) \varphi(n) \)
 3) \(\varphi(p^e) = p^e - p^{e-1} \)
 4) If \(n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k} \) then
 \[\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \ldots \left(1 - \frac{1}{p_k}\right) \]

Fermat’s Little Theorem

- Fermat’s Little Theorem
 - If \(p \) is a prime number and \(a \) is a natural number that is not a multiple of \(p \), then
 \[a^{p-1} = 1 \pmod{p} \]
Euler's Theorem

- Euler's Theorem
 Given integer n>1, such that gcd(a,n)=1 then
 \[a^{\varphi(n)} \equiv 1 \pmod{n} \]
- Corollary
 Given integer n>1, such that gcd(a,n)=1 then
 \[a^{\varphi(n)-1} \pmod{n} \]
 is a multiplicative inverse of a mod n.

Consequence of Euler's Theorem

- Principle of Modular Exponentiation
 Given integer n>1, x, y, and a positive integers with gcd(a,n)=1. If x\equiv y (mod \varphi(n)), then
 \[a^x = a^y (mod \ n) \]
- Proof idea:
 \[a^x \equiv a^{(x+y) \varphi(n)} \equiv a^y (a^{\varphi(n)})^k \]
 by applying Euler's theorem we obtain
 \[a^x = a^y (mod \ n) \]

Diffie-Hellman Key Exchange

- Diffie-Hellman proposed a cryptographic protocol to exchange keys among two parties in 1976.
 - Public parameters:
 - p: A large prime
 - g: Base (generator)
 - Secret parameters:
 - \(\alpha, \beta \in \{0, 1, 2, \ldots, p-2\} \)
 - Alice computes \(g^\alpha \pmod{p} \)
 - Bob computes \(g^\beta \pmod{p} \)
 - \(g^{\alpha\beta} \pmod{p} \)
 - Alice computes \(g^\beta \pmod{p} \)
 - Bob computes \(g^\alpha \pmod{p} \)
 - Key \(K = g^{\alpha\beta} \pmod{p} \)

Security of Diffie-Hellman

- Discrete Logarithm Problem (DLP):
 - Given p, g, \(g^x \pmod{p} \), what is x?
 - easy in Z, hard in \(Z_p \)
- Diffie-Hellman Problem (DHP):
 - Given p, g, \(g^x \pmod{p} \), \(g^y \pmod{p} \), what is \(g^{\alpha\beta} \pmod{p} \)?
 - DHP is as hard as DLP.
Commutative Encryption

- Definition:
 An encryption scheme is commutative if
 \[E_{K_1}(E_{K_2}[M]) = E_{K_2}(E_{K_1}[M]) \]

 Given a commutative encryption scheme, then
 \[D_{K_1}(D_{K_2}[E_{K_1}[M]]) = M \]

- Most symmetric encryption scheme are not commutative such as DES and AES.

Asymmetric Encryption Functions

- An asymmetric encryption function:
 - Encryption (K) and decryption (K^-1) keys are different.
 - Knowledge of the encryption key is not sufficient for deriving the decryption key efficiently.
 - Hence, the encryption key can be made “public”.

Pohlig-Hellman Exponentiation Cipher

- A commutative exponentiation cipher
 - encryption key (e, p), where p is a prime
 - decryption key (d, p), where ed ≡ 1 (mod (p-1)) or in other words d = e^-1 (mod (p-1))
 - to encrypt M, compute \(C = M^e \mod p \)
 - to decrypt C, compute \(M = C^d \mod p = M^{ed} \mod p \)

Public Key Encryption

- Each party has a PAIR (K, K^-1) of keys:
 - K is the public key
 - K^-1 is the private key

\[\text{D}_K^{-1}[E_K[M]] = M \]

- The public-key K may be made publicly available.
- Many can encrypt with the public key, only one can decrypt.
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key.
Solutions with Public Key Cryptography

- Key distribution solution:
 - Alice makes her encryption key K public
 - Everyone can send her an encrypted message:
 \[C = E_k(M) \]
 - Only Alice can decrypt it with the private key K⁻¹:
 \[M = D_k^{-1}(C) \]

- Source Authentication Solution:
 - Only Alice can “sign” a message, using K⁻¹.
 - Anyone can verify the signature, using K.
 - Only if such a function could be found...

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Security relies on the difficulty of factoring large composite numbers
 - Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

- Choose large primes p, q
 - Compute \(n = pq \) and \(\varphi(n) = (q-1)(p-1) \)
- Choose e, such that \(\gcd(e, \varphi(n)) = 1 \).
 - Take e to be a prime
 - Compute \(d = e^{-1} \mod \varphi(n) \) ed = 1 \(\mod \varphi(n) \)
 - Public key: n, e
 - Private key: d
- Encryption: \(C = E(M) = M^e \mod n \)
 - Decryption: \(D(C) = C^d \mod n = M \)

RSA Encryption

- Encryption: \(C = E(M) = M^e \mod n \)
- Decryption: \(D(C) = C^d \mod n \)
- Why does it work?
 \[D(M) = (M^e)^d \mod n = M^{ed} \mod n \]
 \[= M^{k\varphi(n)+1} \mod n, \quad (for \ some \ k) \]
 \[= (M^{\varphi(n)})^k \cdot M \mod n \]
 \[= M \]

- RSA problem: Given n, e, \(M^e \mod n \), what is M?
 - Computing d is equivalent to factoring n.
 - The security is based on difficulty of factoring large integers.
Let $e = 37$, then
- $n = 77, \varphi(n) = 60$
- $d = 13$ (since $ed \mod 60 = 1$)

Let $M = 15$, then $C \equiv M^e \mod n$

- $C \equiv 15^{37} \mod 77 = 71$
- $M \equiv C^d \mod n$

$M \equiv 71^{13} \mod 77 = 15$

RSA Implementation

- The security of RSA depends on how large n is, which is often measured in the number of bits for n.
 - Current recommendation is 1024 bits for n.
 - p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
 - $p-q$ should not be small.
 - In general, p,q randomly selected and then tested for primality
 - Many implementations use the Rabin-Miller test (probabilistic test)