Real-Time Communication Security: SSL, IPSEC

Ahmet Burak Can
Hacettepe University
abc@hacettepe.edu.tr
The Internet

A packet-switched network:
- Data to be transmitted is divided into “packets”
- Each packet is forwarded by “routers” towards the destination
TCP/IP Reference Model

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer (HTTP, FTP, SMTP, etc.)</td>
<td>- delivery of packets to the destination</td>
</tr>
<tr>
<td>Transport Layer (TCP, UDP)</td>
<td>- reliability of the communication</td>
</tr>
<tr>
<td></td>
<td>◦ ordering the packets</td>
</tr>
<tr>
<td></td>
<td>◦ error detection & recovery</td>
</tr>
<tr>
<td></td>
<td>◦ congestion control</td>
</tr>
<tr>
<td>Network Layer (IP)</td>
<td></td>
</tr>
<tr>
<td>Data Link Layer (PPP, Ethernet, etc.)</td>
<td></td>
</tr>
<tr>
<td>Physical Layer</td>
<td></td>
</tr>
</tbody>
</table>

- **IP**: delivery of packets to the destination
- **TCP**: reliability of the communication
 - ordering the packets
 - error detection & recovery
 - congestion control
- **UDP**: basic transport protocol
Securing TCP/IP Communications

Layer 4 (SSL/TLS)
Layer 3 (IPsec)

Layer 3:
- can secure all IP communication transparent to applications
- must be built into the OS

Layer 4:
- doesn’t require OS modification; deployment easy
Different Security Models in TCP/IP

(a) Network Level

<table>
<thead>
<tr>
<th>HTTP</th>
<th>FTP</th>
<th>SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP/IPSec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Transport Level

<table>
<thead>
<tr>
<th>HTTP</th>
<th>FTP</th>
<th>SMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SSL or TLS</td>
</tr>
<tr>
<td>TCP</td>
<td></td>
<td>TCP</td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Application Level

<table>
<thead>
<tr>
<th>S/MIME</th>
<th>PGP</th>
<th>SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos</td>
<td>SMTP</td>
<td>HTTP</td>
</tr>
<tr>
<td>UDP</td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Real-Time Protocol Security Issues

- Interactive session security (unlike e-mail)
- Layer 4 (SSL)
 - Implemented on top of layer 4, between TCP & application
 - Doesn’t require any modifications to OS (deployment made easy!)
- Layer 3 (IPsec)
 - Implemented between IP & TCP
 - Each IP packet authenticated separately
 - Built in the OS
 - Can secure all IP communication
 - Host-to-host application is common. Process-to-process also possible
Perfect Forward Secrecy

- PFS: Compromise of long-term secrets doesn’t compromise session keys
- Example: Diffie-Hellman with RSA authentication
- Non-PFS examples:
 - Kerberos
 - Session key transport with RSA encryption
- By-product: Escrow foliage
 Conversations can’t be decrypted by authorities holding copies of long-term private keys
A non-PFS Protocol Example

I’m Alice

F(K_{AB}, R_1)

F(K_{AB}, R_2)

Bob

Encrypted communication with E_{(K_{AB}+1)}(R_1 + R_2)
A PFS Protocol Example: Diffie-Hellman with RSA signature

\[\text{["Alice", } g^a \mod p]\text{Alice} \]
\[\text{["Bob", } g^b \mod p]\text{Bob} \]
\[H(g^{ab} \mod p) \]
\[H(1, g^{ab} \mod p) \]
SSL/TLS

- **SSLv2**
 - Released in 1995 with Netscape 1.1
 - Key generation algorithm kept secret
 - Reverse engineered & broken by Wagner & Goldberg

- **SSLv3**
 - Fixed and improved, released in 1996
 - Public design process

- **PCT**: Microsoft’s version of SSL

- **TLS**: IETF’s version
SSL Architecture

- Record Protocol: Message encryption/authentication
- Handshake Protocol: Identity authentication & key exchange
- Alert Protocol: Error notification (cryptographic or otherwise)
- Change Cipher Spec. Protocol: Activate the pending crypto suite
Handshake Protocol

- Negotiate Cipher-Suite Algorithms
 - Symmetric cipher to use
 - Key exchange method
 - Message digest function
- Establish the shared master secret
- Optionally authenticate server and/or client
Basic SSL/TLS Handshake Protocol

Alice

hello, crypto offered, R_A

certificate, crypto selected, R_B

{S}_{Bob}, \{keyed hash of messages\}

$(K = f(S, R_A, R_B))$

{keyed hash of messages}

session keys derived from K

Bob
Key Computation

- “pre-master key”: S
- “master key”: $K = f(S, R_A, R_B)$
- For each connection, 6 keys are generated from K and the nonces. (3 keys for each direction: encryption, authentication/integrity, IV)
Session and Connection

- **Session:**
 - association between a client and a server;
 - created by the Handshake Protocol;
 - defines secure cryptographic parameters that can be shared by multiple connections.

- **Connection:**
 - end-to-end reliable secure communication;
 - every connection is associated with a session.
SSL Session Establishment

- Client authentication: Bob can optionally send “certificate request” in message 2.
- Session vs. Connection: “Sessions” are relatively long-lived. Multiple “connections” (TCP) can be supported under the same SSL session. (designed for HTTP 1.0)
- To start a connection, Alice can send an existing session ID.
- If Bob doesn’t remember the session ID Alice sent, he responds with a different value.
Negotiating Crypto Suites

- Crypto suite: A complete package specifying the crypto to be used. (encryption algorithm, key length, integrity algorithm, etc.)
 - ~30 predefined standard cipher suites.
 - **Confidentiality**: Achieved by encryption using DES, 3DES, RC2, RC4, IDEA.
 - **Integrity**: Achieved by computing a MAC and send it with the message; MD5, SHA1.
 - **Key exchange**: relies on public key encryption.

- Selection:
 - v2: Alice proposes a set of suites; Bob returns a subset of them; Alice selects one. (which doesn’t make much sense)
 - v3: Alice proposes a set of suites; Bob selects one.
SSL Record Protocol

- Provides confidentiality and message integrity using shared keys established by the Handshake Protocol
IPsec

- Cryptographic protection of the IP traffic, transparent to the user
- Main components:
 - Internet Key Exchange (IKE): IPsec key exchange protocol
 - Authentication Header (AH): Authentication of the IP packet
 - Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet
Uses of IPsec

• Can be used to provide user-, host-, or network-level protection (the granularity)

• Protocol modes:
 ◦ Transport mode: Host applies IPsec to transport layer packet
 ◦ Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)

• Typical uses:
 ◦ Remote access to network (host-to-gateway)
 ◦ Virtual private networks (gateway-to-gateway)
Security Association & Policy

- **Security Policy Database**
 - Specifies what kind of protection should be applied to packets (according to source-destination address, port numbers, UserID, data sensitivity level, etc.)

- **Security Association (SA)**
 - An IPsec-protected connection (one-way)
 - Specifies the encryption/auth. algorithm, key, etc.
 - Identified by
 - security parameter index (SPI)
 - destination IP address
 - protocol identifier (AH or ESP)
 - SAs are stored in SA databases
 - AH information (auth. algorithm, key, key lifetime, etc.)
 - ESP information (auth./encryption algorithm, key, key lifetime, etc.)
 - Lifetime of the SA
IPsec Packet Processing

Outbound packets:
- The proper SA is chosen from the security policy database
- From the SA database, the SPI and SA parameters are retrieved
- The IPsec protection is performed; packet passed to IP

Inbound packets:
- By the SPI, the SA is found
- IPsec auth./decryption is performed
- Packet passed to upper layer protocol
History of IKE

- Early contenders:
 - Photuris: Authenticated DH with cookies & identity hiding
 - SKIP: Authenticated DH with long-term exponents

- ISAKMP:
 - A protocol specifying only payload formats & exchanges (i.e., an empty protocol)
 - Adopted by the IPsec working group

- Oakley: Modified Photuris; can work with ISAKMP

- IKE: A particular Oakley-ISAKMP combination
Authentication Header (AH)

- IPSEC service to protect packet integrity
 - It can used in either transport or tunnel mode
- Auth. Algorithms
 - HMAC (with MD5, SHA1, etc.)
 - CBC-MAC (3DES, RC5, AES, etc.)
- Typically, the initialization vector (IV) is included in the payload (data)
- Authentication covers immutable fields of IP header as well as the payload.
AH with IPv4

IPSec Authentication Header (AH): IP protocol number 51

Before applying AH

IPSec Transport Mode: After applying AH

IPSec Tunnel Mode: After applying AH
Encapsulating Security Payload (ESP)

- IPSEC service to protect packet integrity and confidentiality
 - It can used in either transport or tunnel mode
- Encryption: Usually a block cipher in CBC mode
- The initialization vector (IV) is included in the payload
ESP with IPv4