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In this paper, we present an algorithm and provide design improvements needed to port the serial
Lempel-Ziv-Storer-Szymanski (LZSS), lossless data compression algorithm, to a parallelized version
suitable for general purpose graphic processor units (GPGPU), specifically for NVIDIA’s CUDA Framework.
The two main stages of the algorithm, substring matching and encoding, are studied in detail to fit into the
GPU architecture. We conducted detailed analysis of our performance results and compared them to serial
and parallel CPU implementations of LZSS algorithm. We also benchmarked our algorithm in comparison
with well known, widely used programs: GZIP and ZLIB. We achieved up to 34 x better throughput than
the serial CPU implementation of LZSS algorithm and up to 2.21x better than the parallelized version.
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1. Introduction

Lossless data compression can be used to reduce storage re-
quirements as well as improve data communication performance
by reducing the amount of data that needs to be transferred over
an I/O channel. These improvements in storage and communi-
cation come at the cost of increased processing requirements in
compressing and decompressing the data. Lossless compression
algorithms are computationally intensive, and thus while they
may reduce the volume of data, they may not improve overall
I/O performance. However, with a growing number of applications
working with huge amounts of data, the problem of scaling data
movement has gained critical importance, and compression at the
producers and consumers of the data may be the only viable op-
tion. In this paper, we present an investigation of using GPU cards
designed for general purpose computing (GPGPUs) to accomplish
fast data compression and decompression, freeing the CPU to per-
form the main computation.

Several compelling reasons make GPGPUs attractive for per-
forming data compression. First, GPGPUs are asynchronous co-
processors, able to run user tasks concurrently with the CPU,
enabling latencies of compression tasks to be hidden through care-
ful pipelining. Second, large memory bandwidth with direct mem-
ory access (DMA) makes it possible to transfer large amounts of
data between the CPU main memory and the GPU memory. Third,
direct channels between multiple GPGPUs and between GPGPUs
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and 1/O devices on emerging systems provide a potential to im-
prove I/O performance further by offloading I/O communication to
the coprocessors. Finally, emergence of supercomputing architec-
tures based on hybrid CPU-GPU nodes has increased the availabil-
ity of GPGPUs, making an effort to leverage them worthwhile.

Unfortunately, lossless compression is not inherently parallel,
creating a challenge in porting the compression algorithms to
GPGPUs that achieve high performance primarily through large-
scale fine-grained data parallelism. In this paper we present a
pipelined parallel lossless compression algorithm that can attain
rates suitable for data compression on the fly. We achieve high
performance by creating a software pipeline between CPU and GPU
and by tuning the algorithm for the hardware idiosyncrasies of
current GPGPUs, including their non-traditional memory hierarchy
and hardware coalescing of regular vectorized reads from memory.

One of the most popular lossless data compression algorithms
is Lempel-Ziv-Storer-Szymanski (LZSS), which belongs to the LZ
family of algorithms. The core idea in the LZ family of compres-
sors is in finding redundant strings and replacing them with refer-
ences to previously visited copies. LZSS is a variation of LZ77 that
uses fewer bits to indicate encoding [1,2]. We chose the LZSS com-
pression algorithm for its one-pass characteristic, as unlike several
other compression multi-pass algorithms [3,4] a single pass allows
stream processing. Our algorithm is based on the preliminary work
published earlier on LZSS, called CULZSS [5].

We make the following contributions:

1. Identification of several optimizations to improve the perfor-
mance of LZSS on GPGPUs.

2. A software-pipelined version of LZSS, suitable for leveraging
GPGPUs for data compression in a streaming data scenario.
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3. Making the GPU-enabled LZSS tunable by exposing a selectable
trade-off between compression rate and compression ratio.

4. Afine-grained overlapping version to fully exploit the GPU and
CPU hardware resources.

5. Performance evaluation of the algorithm, compared to CPU-
based parallel and sequential implementations of LZSS
algorithm, as well as with GZIP and ZLIB—two well known com-
pressors that use LZ-based algorithms.

6. CPU-based Huffman coding extension to the GPU software-
pipeline for compression ratio improvement.

We begin with an overview of prior and related research work.

2. Related work

Lossless data compression is a broad field that has been investi-
gated by many research communities. There is a large body of work
on compression algorithms and their applications. In this section
we only focus on GPU-based efforts on lossless compression.

Balevic investigated run-length encoding (RLE) on GPUs [6].
They got improved performance on GPU, although, compared
only to a serial version of RLE on the CPU. Our goal has been
to achieve better performance in our GPU implementation than
multi-threaded compression running on a modern multi-core CPU.

Some previous efforts have proposed GPU-based lossless
compression targeting specific types of data. Fang et al. proposed
RLE-based compression for compressing databases, leveraging
certain redundancy elimination techniques, on GPUs [7]. O'Neil
et al. introduced an algorithm specifically for compressing double-
precision floating point data, called GFC [8]. Our algorithm works
on raw bytes and we present evaluation results on data from a
variety of sources.

Cloud et al. studied Huffman encoding on GPUs [9], and while
Patel et al. presented the steps needed to port the BZIP2 algo-
rithm to GPUs, they achieved no performance improvement even
over the serial CPU implementation [10]. In general, compression
algorithms relying on statistical modeling, such as Huffman cod-
ing, seem to be harder to optimize for GPU architectures than
dictionary-based approaches, such as LZSS. In LZSS, compression
proceeds in chunks that are independent, unless the chunks reside
in the same buffer. This allows the chunks to be distributed and
compressed concurrently. Moreover, LZSS does not require multi-
ple passes over the data, which is the case for statistical encoding,
making LZSS a good candidate for building a streaming compressor.

The work in this paper builds on CULZSS, by Ozsoy and Swany,
which is a parallel LZSS algorithm for GPUs, using CUDA [5]. We
substantially improve the basic CULZSS algorithm by reducing
control-flow divergence, making better use of the CUDA memory
hierarchy, and overlapping CPU and GPU execution. We explore
several versions that fit different possible scenarios. Finally, we
transformed the algorithm to work in a software pipeline across
the CPU and the GPU, enabling it to operate on a stream of data.

3. Background

3.1. LZSS algorithm

The original LZSS algorithm has two main stages that are visited
repeatedly for every character in the file until the file is completely
encoded.

The first stage finds the matching information for a given string.
It works by searching the previously encoded data, called sliding
history buffer. Initially there is no history and the buffer is filled
with predetermined data. The character at the current position
and the subsequent uncoded characters are also put into another
buffer, called uncoded lookahead buffer. For each character in the

sliding history uncoded lookahead

| ellbc?bd? dellbcdd... || alabcde...
l 1 match
2 match 4 match search for substrings
starting from the first character
3 match 2 match

Fig. 1. An example of the matching stage.
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Fig. 2. An illustration of eliminating the redundant data.

file, the searching process looks for the longest substring in the
sliding history buffer that matches the uncoded lookahead buffer,
starting with that character.

Fig. 1 shows an example string and how this stage finds
matches. In the example, an uncoded lookahead buffer has
character ‘a’ at the beginning and search looks into the sliding
history buffer for substrings starting with ‘a’. The first match is the
first character of sliding history and the following ‘bc’ characters
also match with uncoded lookahead. We call the three-character
match a 3-matching. The algorithm proceeds along the buffer to
find all matches and keeps track of the longest one. In the example,
the longest one is a 4-matching.

The second stage stores the encoding information. The match
needs to be long enough to amortize the cost of encoding;
otherwise, the character is written as it is.

To parallelize these stages, two versions have been proposed in
CULZSS by Ozsoy and Swany [5]. The first stage is parallelized by
dividing the file into chunks and distributing them to CUDA thread
blocks. In each block, the thread reads one character of the uncoded
lookahead buffer at a time and looks for matching substrings
that start with that character. After these stages, the generated
data consists of each character’s matching information. However,
there is redundant information that needs to be eliminated. Fig. 2
illustrates the elimination step. Our previous work describes the
strategy in greater detail [5]. We discuss some of the details
relevant to this paper in Section 4.

3.2. Related GPU architecture

GPU architectures have been widely studied and described
in several published documents [11-14]. Here, we only discuss
the key GPU capabilities and characteristics that influenced our
approach.

One of the main important architectural components that needs
special attention in CUDA programming is memory. CUDA exposes
five memory types: global, constant, texture, shared memory and
registers. Global memory is relatively large, but slow. Texture and
constant memories are cached by the hardware and are read-only.
These three memory types are accessible by all threads. Shared
memory is relatively fast, but only accessible by the threads in the
same block. The limited size of shared memory as well as thread-
private registers makes it necessary to pay special attention to their
usage [12].

Another critical component is thread scheduling. In the CUDA
architecture, threads are scheduled and executed in groups of
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32, called warps. The thread blocks are partitioned into warps
and then scheduled for execution by a warp scheduler. The SIMD
architecture requires that each thread in a warp executes the
same instruction at a given time. A thread-dependent control-flow
divergence, such as one caused by a data-dependent conditional
branch, causes certain threads in a warp to be temporarily disabled.
When the threads exit the branch, the paths merge and the threads
resume on the same execution path [12]. Understanding this
behavior is critical in optimizing code on GPUs.

The CUDA framework supports asynchronous concurrent
execution between CPU and GPU. This provides the opportunity
to overlap computation on the CPU and GPU, letting the GPU be
treated as a coprocessor on which portions of computational work
may be offloaded. It also supports asynchronous execution inside
the GPU for memory copies and kernels. The necessary properties
in the GPU that are needed to have concurrent execution are
asyncEngineCount and concurrentKernels. Concurrency is managed
through CUDA streams. The sequence of commands that execute in
order forms a CUDA stream for the same data. On the other hand,
different CUDA streams may follow different execution orders with
respect to one another [12]. The use of the word “stream” was
appeared in two different concepts throughout the paper. One
usage is in the concept of continuously upcoming, flowing data. The
other is in the CUDA framework where streams are used to manage
concurrent execution. We refer to the former as “streaming data”,
and to the latter as “CUDA stream” to avoid the confusion in
different sections.

These properties can be queried through the CUDA API. For
devices that have a value greater than zero for asyncEngineCount
can overlap data transfer and kernel execution. The number of
engines can be one or more depending on the product line.
Asynchronous engine count of one shows that the device can
only do overlapped data transfer and kernel execution, where two
engines show the ability to concurrent data transfers to and from
GPU as well. The concurrentKernels feature shows the ability to run
multiple kernels at the same time.

The given properties of the device and the order of asyn-
chronous commands determine the possible amount of execution
overlap. CUDA Framework defines implicit synchronization rules
when two different CUDA streams are able to run concurrently.
The CUDA programming guide lists a number of operations that
prevent two commands from different CUDA streams from run-
ning concurrently if any of them is called in between. The listed
operations are page-locked host memory allocation, device mem-
ory allocation, a device memory set, a memory copy between two
addresses to the same device memory, any CUDA command to the
default CUDA stream, or a switch between the L1/shared memory
configurations [12].

The CUDA development environment also includes a CUDA
profiler. We used the CUDA profiler to get feedback for memory-
access efficiency and per-function performance metrics, which we
discuss in Section 6.

4. Optimizing GPU performance

This section describes our improvements to Ozsoy and Swany’s
CULZSS algorithm [5], driven by optimizations for memory
hierarchy and eliminating control-flow divergence.

4.1. Algorithmic improvements

As discussed in Section 3.2, a warp of threads executes in lock-
step; therefore, the execution is most efficient when all threads of
a warp agree on their execution path [12]. Divergent control flow
in the threads of a warp in CULZSS reduces the efficiency of its
execution. This occurs mainly in the matching phase of CULZSS.

If there is a match in the first character, then CULZSS reads
the subsequent characters from the uncoded lookahead buffer in
a loop until it reaches a non-matching character. After the process
finishes, the encoded information is recorded. Algorithm 1 outlines
the steps. However, this approach results in divergent paths in the
execution of individual CUDA threads, since if one thread has a
match, it needs to continue executing the loop to find the maximal
match. The threads that do not continue are disabled by the
hardware until the looping threads converge back by eventually
exiting the loop. In the worst case, only one thread might be in the
matching loop for every run and all other threads might be idle,
resulting in significant performance loss.

Algorithm 1 Matching - CULZSS

while i < buffer_length do
if history[i + tid] == lookahead|j + tid] then
while MATCH do
j =j+ 1//Check for more matches
end while
Update MAX matching
end if
j=0,i=1i4 1//Reset matching information
end while
Store matching information

We eliminate the divergence in control flow by using a strategy
that we call state-based matching. Each thread can be in either a
matching or a non-matching state. If there is a match for the given
character and the thread is not in matching state, it enters the
matching state and records the location of the matched character. If
the thread is already in the matching state, it increments the length
of the match. If the given character is not a match and the thread
is not in the matching state, the thread continues the search. If a
thread is in matching state and hits a non-matching character it
indicates the end of the match. The thread records the length and
location information, if the just-concluded match is longer than the
earlier longest match. Algorithm 2 outlines these steps.

This design eliminates the inner loop when there is a match
and greatly reduces control-flow divergence. The shared-memory
access is improved for each thread by accessing only one character
per step. It also improves data access times since it reads a block of
data once, which is then consumed by all threads.

Algorithm 2 Matching - Optimized
while i < buffer_length do
if history[i + tid] == lookahead|j + tid] then
j =j+ 1//Increment match length
else
Update MAX matching
j = 0//Exit matching state
end if
i=i+1
end while
Store matching information

4.2. Architecture-oriented optimizations

Memory choice. We utilize texture memory in order to leverage
hardware caching. This results in significant performance improve-
ment. Unfortunately, the maximum width for a 1D texture refer-
ence bound to linear memory is limited; usually much smaller than
total GPU global memory available—for the GPU cards that we used
(Compute Capability 2.0), it is up to 227 bytes (128 MB) [12]. This
limits its use to relatively small data sizes. However, Section 5 de-
scribes how software pipelining can get around this limitation.
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Data structure choice. Compression rate (throughput) and compres-
sion ratio (amount of compression) are two opposing goals in most
compression algorithms. A network that needs to keep up with a
fast communication channel may use an algorithm optimized for
high compression rate, at the cost of lower compression ratio. In
another scenario, a dedicated backup engine may have space con-
straints, but could tolerate longer execution times and would opt
for a better compression ratio.

We have designed our algorithm to make these tradeoffs
available to users. In order to achieve higher compression ratio, we
expand the search space, which in return increases the chance of
finding a longer match. This is implemented by increasing the size
of the history buffer. Our implementation provides three versions
with history buffer sizes of 512, 256, and 128 bytes.

The other direction of the tradeoff is increasing compression
rate by potentially giving up some compression ratio. The straight-
forward approach of decreasing the search space by decreasing the
history buffer size turns out to be inadequate. If the buffer size is
too small the compression algorithm fails to achieve any significant
compression because there is a limited chance of finding enough
matches to amortize the cost of encoding. We found that we
needed a history buffer at least 128 bytes long in order to achieve
compression. Standard techniques to improve search time, such as
sorting and hashing, are not useful on GPUs due to prohibitively
high cost of dynamic allocation in CUDA. These techniques did not
result in any performance improvement in our experiments.

We observe that a match only counts as a match if there are
enough characters to amortize the cost of the encoding. In our
case, the minimum count is two bytes. Thus, a single character
match is inconsequential. Nevertheless, the algorithm searches for
matches on single characters. Instead, if we search on two bytes
(short int type instead of a char type) we expect the search
time to be reduced by half. However, we lose some opportunities
for matches that start with the second character of the two-byte
groups. For example, if the history buffer is {abcdabdeac} and the
lookup buffer is {abdeadde}, the algorithm searching on substrings
of two characters sees the history buffer to be {ab, cd, ab, de, ac}
and the lookup buffer to be {ab, de, ad, de}. A thread could find the
match for {abde} in two lookups, instead of four. The next thread
would start the search from the next substring {de}, not the next
character {b} after {a}. The problem with this approach is that the
best match is not four characters long, but five: {abdea}. The search
performed on two characters at a time fails to catch this longest
match.

This can be prevented by having substrings starting with each
character, e.g., {ab, bc, cd, da, ab, bd, de, ea, ac}. This change can
be applied to either one or both of the history and the lookahead
buffers. We evaluated three additional versions of our algorithm
that differ based on which buffers are changed: both buffers
changed (128_2), one buffer changed (128_1) and none changed
(128_0).

5. Pipelined parallel LZSS

We have extended our optimized parallel LZSS algorithm to
work in a software pipeline across the CPU and GPU. This section
describes the extension that leads to a fully pipelined LZSS suitable
for compressing streaming data.

5.1. Computation overlap

In the CULZSS algorithm, a portion of the work remains that
must be handled by CPU after the GPU kernel executes on a given
piece of data. This provides the opportunity to overlap GPU and
CPU computation to better utilize the existing hardware in the
system. The problem, however, is that the CPU computation is

Execution Time

Original >
E GPU Process .Post GPU Process
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'GPU1 [GPU2 [GPU3

Saved Time

fcput fepuz [epus

Fig. 3. Overlapping GPU and CPU computation.

GPU Handling Thread
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Post GPU Thread
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Fig. 4. GPU processing pipeline for streaming data flows.

dependent on the GPU-generated data. In the GPU, the encoding
information for the data needs to be identified and afterwards the
data can be compressed with that information on the CPU. Our
approach changes this limitation to an opportunity by dividing the
data into chunks and processing them in a pipelined fashion. After
the GPU finishes processing a chunk the post-CPU computation for
that chunk is overlapped with the GPU computation on the next
chunk, as illustrated in Fig. 3. The analysis of the multiple kernel
invocation overhead is given in Section 6.

5.2. The GPU processing pipeline

In order to fully utilize the cores on multi-core CPUs we
use thread-level parallelism for the CPU portion of the pipeline.
The first idea is dividing the data into equal portions and
assigning a thread for each portion. This data-parallel approach
requires each CPU thread to access the GPU. Even though multiple
concurrent CPU threads may access the GPU on the newer
CUDA compute-capable devices [12], it can result in significant
performance degradation [ 15]. Additionally, this approach requires
a synchronization step to serialize the GPU access by multiple
threads, with a consequent negative performance impact.

An alternative approach is assigning different tasks to CPU
threads, instead of using all threads for each CPU task, effectively
using a task-parallel strategy instead of a data-parallel approach.
One thread is dedicated to handle communication with the GPU
(GPU handler), another for post-GPU work (Post-GPU) that needs
to be done on CPU, and a third for dispatching the compressed
data to its destination (Final Process). A thread pool is used to
reduce overheads. Fig. 4 illustrates this design, which establishes
a processing pipeline capable of compressing data arriving in a
stream.

The pipeline can be refined based on available CPU cores. For
example, we can add another thread to receive uncompressed data.
We can also dedicate multiple threads to perform a single task, thus
using a mixed data- and task-parallel approach, if needed. In our
performance evaluations we use multiple data-parallel threads to
perform the post-GPU task.

5.3. Fine grained overlapping

The asynchronous calls on GPU can help to hide the kernel and
memory copy latencies. It can also lead to concurrent executions
of CPU-GPU workloads and also two GPU workloads that belong to
two different steps of the streaming pipeline. In the streaming data
scenario, each chunk of data is being processed by GPU and later
moved to CPU processing while next chunk will be loaded to GPU
for processing. In a fully asynchronous approach, we can combine
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the overlapping of the different chunk processing, the concurrent
execution of the GPU memcopy calls for different chunks, and
processing the same chunk in smaller pieces to overlap multiple
kernel runs.

5.4. Multiple GPUs

Multiple GPUs on the same machine are supported by NVIDIA
through the Scalable Link Interface (SLI) technology.! Multi-GPU
nodes are increasingly common on supercomputers. Our algorithm
lends itself easily to such configurations. The pipeline described
above can be easily scaled to communicate with multiple GPUs.
Our evaluation of the algorithm with two GPU cards showed nearly
linear performance improvement, as Section 6 discusses.

6. Performance evaluation
6.1. Testbed configurations

To evaluate how well our implementations work, we used both
the “Delta” GPU cluster in FutureGrid [16,17] and standalone ma-
chines in our lab. Each Delta cluster node has two Tesla C2075
cards and two Intel X5660 processors (6 physical, 12 logical cores)
at 2.8 GHz, 192 GB of memory, running Red Hat RHEL 6.2. The
Tesla C2075 has 448 cores at a GPU clock speed of 1.15 GHz with
a 5375 MBytes of global memory. They are running CUDA ver-
sion 4.1.

The other machines consist of a GeForce GTX 480 card with
CUDA version 4.1 installed on each machine with one AMD
Phenom Il X6 1100T processor (6 cores) running at 3.3 GHz. These
machines are used to test the implementation on the GTX card,
which has 480 GPU cores (slightly more than the Tesla C2075)
and a faster clock speed (1.4 GHz), but smaller global memory
(1535 MBytes).

6.2. Parallel implementations on CPU

Our serial CPU implementation of LZSS was mainly adapted
from Dippersteins work [18]. We implemented a parallel CPU
version of the LZSS algorithm using POSIX threads for comparison.
We note that the algorithm does not necessarily have to be better
on the GPU for it to be useful in a streaming situation. As long
as it delivers adequate throughput to sustain the pipeline, it frees
up the CPU for other tasks, enabling the GPGPU to be used as a
COprocessor.

Along with serial GZIP and ZLIB, we also used a parallel imple-
mentation of GZIP, called PIGZ, in our evaluation [19].

1 For more information www.geforce.com/hardware/technology/sli.

6.3. Datasets

In our evaluation we used five datasets with different character-
istics. The first is a collection of C source files. The second is maps
of the state of Delaware. The third set is an English dictionary. The
fourth is a tar file of the Linux 2.6.39 kernel. The fifth is a data dump
from the Iperf network performance tool, used to test streaming.

6.4. Results and analysis

6.4.1. Algorithm improvements

The results for matching function improvement and texture
memory usage are shown in Fig. 5. The improved matching
function gave an 8.86% average increase in the throughput. With
the use of the texture memory, the increase in the throughput
becomes 15.67%. When we look at the specific buffer sizes and
buffer counts, fewer large buffers lead to better throughput. The
main reason for the better performance with larger buffers is that
they give the GPU more data to consume and more opportunity to
make use of the many-threaded architecture.

One interesting result is that the running time differences for
different datasets in CULZSS [5] are eliminated by the use of state-
based matching. Since the number of comparisons is fixed with our
matching algorithm, the datasets with similar compression ratios
give similar throughputs. The improvements show an average of
5.63x better performance compared to CULZSS with the same
datasets and buffer configurations.

Fig. 6 shows the results of our search space and data structure
choice to favor either the speed or the compression ratio. The figure
consists both the FutureGrid Tesla experiments and our lab setup
using GTX 480.

The upper left group of bars are single GTX 480 results, the
upper right group of bars are double GPU projected results for GTX
480. The below group of bars show the FutureGrid Tesla results
for single and double GPUs, respectively. The leftmost version
uses a search buffer size of 512 bytes, which provides the highest
compression. From left to right, the buffer size decreases to 128
bytes to favor faster compression. In each group, the rightmost
three versions (128_2, 128_1, 128_0) use 128-byte buffers and
two-byte search steps, as described in Section 4.2.

For the more compressible datasets (Map and Iperf), the GTX
480 results show 3507 Mbps average throughput on double
GPU and 1753 Mbps on single GPU with a compression ratio
(compressed/uncompressed) of 0.43. With the best compression
ratio of 0.26, the throughput goes down to 505 and 252 Mbps for
double and single GPU, respectively. The other datasets (C files,
Dictionary and Linux tarball) result in a throughput of 1950 Mbps
with 0.81 average compression ratio on double GPUs. With the best
compression ratio of 0.51, the throughput goes down to 498 Mbps.

The Tesla C2075 gives a throughput of 2488 Mbps for double
GPU and 1249 Mbps for single GPU on the fastest option over the
more compressible datasets. The best compression ratio version
gives 334 and 172 Mbps for double and single GPU, respectively,
with the same ratio as GTX 480.

Fig. 7 shows the results for the computation overlap approach.
For all the datasets, 16 overlapped version is the most beneficial
configuration. After a pipeline depth of 32, run time for each
chunk becomes too short to hide the overhead of multiple kernel
invocations. After that point, overhead dominates which lead to
decrease in performance.

Fig. 8 shows the percentage increase in the throughput and ratio
of all the versions, fixing the buffer size 512 bytes version as the
base case. It is clear that the percentage increase in the throughput
is significantly faster than the increase in the ratio.

For both cards, the 128_2 version has reduced performance
with the same compression ratio as the 128 buffer version. The
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reason is that the one-step increment two-byte substring fix, as
described in Section 4.2, is done on both buffers in that version.
That fix generates the same number of searches as the original 128
bytes buffer search version. The additional cost of generating two-
byte substrings for each character leads to a loss in performance,
while the number of searches stays the same.

6.4.2. Fine grained overlapping

In Section 3.2, we described the implicit synchronization rules
and the overlapping behavior of CUDA framework under different
command order scenarios. We tested GPU overlapping side of our
code with two different order of commands. The pseudocode for
each case is given at Algorithms 3 and 4. In Algorithm 3, which
is one loop case, all the commands for a chunk are called before
any of the next chunks’ commands. CUDA streams are used to
manage the concurrency between commands, assigned a unique
id for each data chunk. In Algorithm 4, the nested loop case, the
memory copies from CPU to GPU for all chunks are called before
any kernel executions. The same way, all the kernel calls are made
before executing any memory copy back from GPU.

Algorithm 3 Loop formation-One loop case

for each chunk c; do
asyncMemcpy-CPU-to-GPU(c;)
kernel(c;)
asyncMemcpy-GPU-to-CPU(c;)
end for

The combination of the fine-grained overlapping on GPU kernel
executions and pipelined approach for streaming data has taken
the implementation into extreme overhead hiding and boost
performance. The granularity of the overlapping individual GPU
kernel executions and memory copies shown to be most beneficial
at a level of 16 overlapping as experimented in Section 5.1. The
results of the given combination for buf 128 version are shown at
Fig. 9. The fine-grained overlapping is applied to buf 256 and buf
512 versions as well to improve the compression rate. On GTX 480
cards, the performance gain is by 6.78% on average for one loop
case, and by 10.9% on average for processing the chunks by pieces
as shown for nested loop case. The throughput values increased to
905 Mbps for first case and to 938 Mbps for latter case from the

Algorithm 4 Loop formation-Nested loop case

for each chunk ¢; do
for each smaller chunk ¢; in ¢; do
asyncMemcpy-CPU-to-GPU(cj)
end for
for each smaller chunk ¢; in ¢; do
kernel(c;;)
end for
for each smaller chunk ¢; in ¢; do
asyncMemcpy-GPU-to-CPU(cj)
end for
end for
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Fig. 7. Overlapped computation results.

previous synchronous version result of 850 Mbps. The Tesla C2075
has an increase of 42.9% on average on both cases. The throughput
is increased to 750 Mbps from 516 Mbps.

The GTX 480 performance gain for the one loop case (Algo-
rithm 3) comes solely from using the page-locked memory. It is
because the GTX 480 series has only one concurrent copy engine
which allows overlapping of the kernel execution and memory
copy but does not allow concurrent data transfers between dif-
ferent CUDA streams. Each CUDA stream consists of three events:
CPU-to-GPU memory copy, GPU kernel execution, and GPU-to-CPU
memory copy back. In this case, the kernel execution of stream;_
can be overlapped with the memory copy from CPU to GPU is-
sued to stream;, since they are independent. However that mem-
ory copy is issued after the memory copy from GPU to CPU is issued
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to stream;_1. So there is a memory copy in between that violates
the implicit synchronization rules [12]. For that reason, it can only
start once the memory copy from GPU to CPU issued to stream;_1
has completed. This results in the code given in Algorithm 3 being
totally serialized on the GPU side, although the commands are all
asynchronous.

The revised code at Algorithm 4 starts all the CPU to GPU mem-
ory copy calls before kernel calls, so kernel calls for stream; can be
overlapped with the memory copy from CPU to GPU for stream;
since there is not a memory copy that violates the synchronization
rules by being in the middle to any of the two CUDA streams. This
gives an extra 4% boost to the GTX 480 performance results. Tesla
C2075 cards, on the other side, has two concurrent copy engines
which allows both concurrent data transfers and overlapping of the
kernel execution and memory copy. Because of this capability the
two cases in Algorithm 3 and 4 can both benefit from the over-
lapping. Therefore, for the Tesla C2075, both cases show a similar
performance (Fig. 9). Having two concurrent copy and execution
engines is also the main reason that Tesla C2075 benefits signifi-
cantly more (45%) than the GTX 480 performance gain achieved by
using the fine grained overlapping.

6.4.3. CUDA profiler

We mentioned the limiting factors of shared memory in the GPU
architecture section. To verify that our program does not encounter
any shared memory conflicts, we used the CUDA Visual pro-
filer. Under memory throughput analysis tab, “l1_shared_bank_
conflict” column reports the shared memory conflicts. The
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profiling of our program gives a zero value for that column, which
shows there is no conflict. The profiler reports several metrics and
is a good source for performance tuning feedback.

6.4.4. Decompression

The decompression results for each dataset are given in Fig. 10.
The decompression algorithm is the same for all versions and
adapted directly from the decompression algorithm by Ozsoy and
Swany [5]. In a compress-send-decompress scenario, if the de-
compression rate is not lower than the compression rate, the
throughput of the whole compression process will not be bounded
by decompression step. The results show that our decompres-
sion algorithm runs at an average of 1880 Mbps for single GPU,
and 3700 Mbps for double GPU on GTX 480. On the Tesla C2075,
the single GPU throughput reaches an average of 1290 Mbps and
2522 Mbps for double GPU. These numbers are enough to sustain
the compression rates given earlier. Additionally, the decompres-
sion results are very similar for different datasets, which shows
that the running time of the decompression algorithm is not di-
rectly related to the data type or ratio.

6.4.5. Comparison with parallel CPU version

Fig. 11 shows the comparison between serial CPU, parallel CPU,
and CUDA implementations. The serial CPU version of the LZSS
algorithm runs at an average throughput of 49.09 Mbps over all
datasets with a faster compression option (buffer 128 bytes) and
22.46 Mbps throughput with a better compression ratio (buffer
512 bytes).

The parallelized version achieves the best performance at 24
threads, which is equivalent to the number of underlying CPU cores
(a single Xeon 5660 has 6 physical / 12 logical cores). The context
switching overhead dominates the performance at higher thread
counts. In the best case, parallel CPU LZSS can achieve an average
throughput of 769.62 Mbps at faster compression and 351.92 Mbps
at higher compression. Comparing the ratios between the CPU and
CUDA implementations shows that CUDA versions face a 2%-5%
loss. The reason for that is the chunk distribution among CUDA
thread blocks requires each block to generate its own history buffer
and filling the history buffer for each block causes compression
loss. Comparing the throughput shows our double GPU CUDA
implementation can go up to 1703.21 Mbps throughput at faster



A. Ozsoy et al. / Future Generation Computer Systems 30 (2014) 170-178 177

Table 1

GZIP and ZLIB results.
Throughput C files Tarball Dict Iperf Map
ZLIB 39.02 70.77 3791 30.95 31.99
GZIP serial 227.15 222.46 221.02 209.62 173.79
GZIP(12) 1190.70 1146.70 1199.06 1228.85 1145.41
GZIP(24) 1296.20 1383.78 1376.34 1131.49 1349.14
CUDA-buf512 263.52 267.43 263.52 272.76 265.81
CUDA-128_0 972.70 984.33 969.17 1679.94 1827.84
CUDA2-512 511.66 529.50 516.98 537.32 510.47
CUDA2-128_0 1888.60 1948.98 1901.31 3309.48 3510.33
Ratio
ZLIB 0.19 0.21 0.35 0.17 0.14
GZIP 0.19 0.21 0.19 0.17 0.15
CUDA-buf512 0.51 0.51 0.51 0.25 0.28
CUDA-128_0 0.79 0.82 0.82 0.46 0.41

compression and 521.19 Mbps at higher compression, achieving
between 34x to 24 x faster time than the serial implementation
and 2.21x to 1.48x faster than the parallel version.

6.4.6. Comparison with GZIP and ZLIB

GZIP and ZLIB are well known compressors [20,21]. Both ap-
plications use the DEFLATE algorithm, which is a combination of
LZ77 and Huffman coding algorithms. The results are given at Ta-
ble 1. The table also shows the results for the parallelized version
of GZIP, called PIGZ, along with the double GPU CUDA versions
(named with CUDA2 prefix).

The closest compression ratio for which we can compare our
CUDA implementation to other two compression programs is for
the 512-byte buffer version, in which our algorithm achieves
the highest compression. Comparing that version to serial GZIP
and ZLIB, our code gives 1.26x and 6.33x better throughput,
respectively. However, the parallel version of GZIP, PIGZ, can reach
an average throughput of 1307 Mbps on two CPUs (24 threads).
In comparison, the double-GPU version with higher compression
ratio of our algorithm only achieves 521.19 Mbps throughput on
average, making it 2.5x slower than PIGZ. On the other hand,
opting for faster compression in our algorithm can result in 2x
better performance than PIGZan option that does not exist in PIGZ.

Our results show that ZLIB and GZIP can compress any dataset
with a better ratio than the LZSS algorithm. This is because both of
the algorithms use the LZ77 algorithm along with Huffman coding,
which leads to a better compression ratio.

To give a chance to our CUDA code to improve the compression
ratio by using statistical approaches like those being used in the
ZLIB and GZIP, we also integrated Huffman coding in our CUDA
software pipeline. The detail of the Huffman coding is out of scope
for this paper. The detailed examination of the algorithm and
a possible CUDA ported version are good candidates for future
work. Briefly, however, Huffman coding is a statistical approach to
the lossless data compression problem. The compression is done
by assigning variable length codes to symbols and giving shorter
codes to those that appear more frequently in the given data chunk,
making those symbols require less space to store.

The integrated Huffman coding step comes at the end of
processing, after GPU compression. The implementation is adapted
from Dipperstein’s work [22] and it runs only on the CPU. The
overhead of this step can be hidden in the pipeline as long as it
is not the slowest step. The results for a Huffman integrated 512-
byte version are shown in Fig. 12. After applying Huffman coding,
the compression ratio dropped by 11.16% on average. The Huffman
coding is another step in the pipeline and because of the running
time of the Huffman coding is not the slowest step in the pipeline,
the throughput is not affected.

We extended the Huffman support for the 256-byte and the
128-byte versions as well. The 256-byte version shows on average
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a 14.60% decrease in the compression ratio. The decrease in the
ratio is the result of a larger LZ compressed file that is passed to
the Huffman step compared to 512-byte version. Since the 256-
byte version produces faster but less compressed data than 512
version, the Huffman coding get a better chance to compress on
a bigger input. The throughput is still managed to be kept the
same compared to non-Huffman version. The 128-byte version
had a 17.20% decrease in the ratio; a bigger decrease compared to
the 512 and 256-byte versions for the same reason we explained
before — namely having a bigger chunk to compress with Huffman
coding. However, the hidden cost of having Huffman coding in the
streaming data pipeline stops in this version and the throughput
decreases 7.7%. The reason of throughput decrease in 128-byte
version is that Huffman coding cannot keep up with the GPU
work. The GPU work which is the slowest step in the previous
versions now is faster than the Huffman coding running time, and
the throughput is determined by the Huffman coding which is the
slowest step in this version. Because of the loss of performance in
the compression rate for the faster versions, we stopped extending
the Huffman coding for the further 128-byte versions which are
faster. The three extended version comparisons are given at Fig. 13.

7. Conclusion and future work

We have presented a pipelined parallel LZSS compression
algorithm for GPUs which is directed toward compressing streams
of large data. Building on our earlier CULZSS algorithm, these
GPU optimizations result in a 46.65% performance improvement.
We then extended the algorithm by pipelining it, which showed
encouraging performance in our experimental evaluation. This
pipeline has six different levels, from fastest compression to
high compression, which can meet varying requirements. Finally,
compared to the serial and parallel CPU implementations of LZSS
algorithm, our version performs better while maintaining a similar
compression ratio.
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Our experiments demonstrate that with the GTX 480 cards
we can achieve better performance in all metrics compared with
the Tesla C2075 cards because of the larger number of cores and
higher core clocks of the GTX 480. One advantage that Tesla C2075
has over GTX 480 is its bigger memory capacity. However, our
algorithm and benchmarks do not benefit from this additional
availability of memory. The hardware prices are also notably
different. At the time of writing, the Tesla C2075 is priced at $ 2099
and GTX 480 at $ 200-$ 250.2 The discussion of the Tesla-specific
features and comparison of different NVIDIA product lines are not
within the scope of this paper; however, our benchmark results
provide an interesting comparison of price-to-performance ratio
of these two cards for lossless compression.

The Huffman coding extension gives a better ratio than pure
LZSS. The adopted extension only involves the CPU usage and in
faster and more data generated cases, the Huffman step can be the
bottleneck among the other pipeline steps. To be able to provide
full benefit on all different versions proposed in this paper, the
parallelization of the code needs to be carefully visited on both
the CPU and GPU sides. This is a future direction to investigate.
Also, we invested less effort in studying decompression since it
was not a limiting factor. However, with further improvements to
compression stage, decompression might become the bottleneck
and may need further study. Finally, we note that the matching
stage of the algorithm is the most time-consuming part. For that
reason, we believe that further improvements to that stage are
likely to result in greatest overall benefit.

The algorithm and improvements to LZSS lossless compression
on GPUs discussed in this paper are promising. Compared to serial
CPU implementation, we achieved up to 34x better throughput
and up to 2.21x better than the parallelized version. Our algorithm
also compares favorably to the well known LZ-based compressors:
GZIP and ZLIB. The results demonstrate that GPU-based LZSS
lossless compression is effective and ready to leverage GPGPUs as
compression coprocessors in streaming data scenarios.

Acknowledgments

This paper was developed with support from the National Sci-
ence Foundation (NSF) under Grant No. 0910812 to Indiana Uni-
versity for “FutureGrid: An Experimental, HighPerformance Grid
Testbed”. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

References

[1] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory 23 (3) (1977) 337-343.
http://dx.doi.org/10.1109/TIT.1977.10557 14.

[2] J.A. Storer, T.G. Szymanski, Data compression via textual substitution, J. ACM
29(1982)928-951.

[3] M. Burrows, D. Wheeler, A block sorting lossless data compression algorithm,
Tech. Rep. SRC-RR-124, Digital Equipment Corporation, 1994.

[4] D. Huffman, A method for the construction of minimum-redundancy codes,
Proceedings of the IRE 40 (9) (1952) 1098-1101.

[5] A. Ozsoy, M. Swany, CULZSS: LZSS Lossless Data Compression on CUDA,
in: Workshop on Parallel Programming on Accelerator Clusters, 2011,
pp. 403-411.

[6] A. Balevic, Parallel variable-length encoding on GPGPUs, in: Proceedings of
the 2009 International Conference on Parallel Processing, Euro-Par'09, 2010,
pp. 26-35.

2 Al prices are from Amazon.com, June 2012.

[7] W. Fang, B. He, Q. Luo, Database compression on graphics processors, Proc.
VLDB Endow. 3 (1-2) (2010) 670-680.

[8] M.A.O'Neil, M. Burtscher, Floating-Point data compression at 75 Gb/s on a GPU,
in: 4th Workshop on General Purpose Processing on GPUs, 2011.

[9] R.L. Cloud, M.L. Curry, HLL. Ward, A. Skjellum, P. Bangalore, Accelerating
lossless data compression with GPUs, CoRR abs/1107.1525.

[10] R.A. Patel, Y. Zhang, J. Mak, A. Davidson, ].D. Owens, Parallel lossless data
compression on the GPU, in: Proceedings of Innovative Parallel Computing,
2012.

[11] D.B. Kirk, W.-m.W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach, first ed., Morgan Kaufmann Pub. Inc., San Francisco, CA,
USA, 2010.

[12] NVIDIA, CUDA C Programming Guide, 2012.

[13] D. Kirk, NVIDIA CUDA software and GPU Parallel Computing Architecture, in:
Proceedings of the 6th international symposium on Memory management,
2007, pp. 103-104.

[14] S. Ryoo, CI. Rodrigues, S.S. Baghsorkhi, S.S. Stone, D.B. Kirk, W.-m.W.
Hwu, Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA, in: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2008,
pp. 73-82.

[15] S. Han, K. Jang, K. Park, S. Moon, PacketShader: a GPU-accelerated software
router, SIGCOMM Comput. Commun. Rev. 40 (4) (2010) 195-206.

[16] FutureGrid, Delta User Manual, Retrieved June 14, 2012 from
https://portal.futuregrid.org/manual/delta.

[17] G. Von Laszewski, G.C. Fox, AJ. Younge, A. Kulshrestha, G.G. Pike, W.
Smith, J. Vockler, RJ. Figueiredo, ]. Fortes, K. Keahey, Design of the
futuregrid experiment management framework, in: 2010 Gateway Computing
Environments Workshop GCE, 2010, pp. 1-10.

[18] LZSS (LZ77) Discussion and Implementation, Retrieved April 14, 2011 from
http://michael.dipperstein.com/lzss/index.html.

[19] Pigz, Retrieved June 20, 2012 from http://zlib.net/pigz/.

[20] Gzip, Retrieved June 20, 2012 from http://www.gzip.org/.

[21] ZLIB, Retrieved June 20, 2012 from http://www.zlib.net/.

[22] Huffman Code Discussion and Implementation, Retrieved September 14, 2012
from http://michael.dipperstein.com/huffman/.

Adnan Ozsoy is a Ph.D. candidate at the School of Infor-
matics and Computing of Indiana University — Bloom-
ington. He received his B.Sc. in Computer Science from
Virginia Polytechnic Institute and State University in 2005,
and his M.Sc. in Computer Science degree from University
of Texas at Austin in 2007. His research interests include
parallel programming, high performance computing with
- ’ GPUs, and application parallelism problems.

Martin Swany is an Associate Professor of Computer Sci-
ence in the School of Informatics and Computing and Di-
rector of the Indiana Center for Network Translational
Research and Education (InCNTRE) at Indiana University.
He is a 2004 recipient of the US Department of Energy
Early Career Principal Investigator award. His research in-
terests include high-performance parallel and distributed
computing and networking.

Arun Chauhan is an Assistant Professor of Computer Sci-
ence in the School of Informatics and Computing at Indiana
" University. His research interests are in compilers, parallel
computing, heterogeneous computing, and high-level pro-
gramming languages. Prior to joining Indiana University,
- he wasaPh.D. student at Rice University, where he worked
with late Prof Ken Kennedy on compiling MATLAB using
an approach called “telescoping languages”. Arun Chauhan
holds a Masters in Computer Science & Engineering and a
Bachelors in Electrical Engineering, both from the Indian
Institute of Technology, New Delhi.


http://dx.doi.org/doi:10.1109/TIT.1977.1055714
http://refhub.elsevier.com/S0167-739X(13)00136-2/sbref2
http://refhub.elsevier.com/S0167-739X(13)00136-2/sbref4
http://refhub.elsevier.com/S0167-739X(13)00136-2/sbref7
http://refhub.elsevier.com/S0167-739X(13)00136-2/sbref11
http://refhub.elsevier.com/S0167-739X(13)00136-2/sbref15
https://portal.futuregrid.org/manual/delta
http://michael.dipperstein.com/lzss/index.html
http://zlib.net/pigz/
http://www.gzip.org/
http://www.zlib.net/
http://michael.dipperstein.com/huffman/

	Optimizing LZSS compression on GPGPUs
	Introduction
	Related work
	Background
	LZSS algorithm
	Related GPU architecture

	Optimizing GPU performance
	Algorithmic improvements
	Architecture-oriented optimizations

	Pipelined parallel LZSS
	Computation overlap
	The GPU processing pipeline
	Fine grained overlapping
	Multiple GPUs

	Performance evaluation
	Testbed configurations
	Parallel implementations on CPU
	Datasets
	Results and analysis
	Algorithm improvements
	Fine grained overlapping
	CUDA profiler
	Decompression
	Comparison with parallel CPU version
	Comparison with GZIP and ZLIB


	Conclusion and future work
	Acknowledgments
	References


