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Abstract—In this paper, we describe a novel technique to
optimize longest common subsequence (LCS) algorithm for one-
to-many matching problem on GPUs by transforming the com-
putation into bit-wise operations and a post-processing step.
The former can be highly optimized and achieves more than a
trillion operations (cell updates) per second (CUPS)—a first for
LCS algorithms. The latter is more efficiently done on CPUs,
in a fraction of the bit-wise computation time. The bit-wise
step promises to be a foundational step and a fundamentally
new approach to developing algorithms for increasingly popular
heterogeneous environments that could dramatically increase the
applicability of hybrid CPU-GPU environments.

Keywords—Longest Common Subsequence, semi-regular algo-
rithms, GPU, CUDA

I. INTRODUCTION
GPUs tradeoff complex hardware-based support for in-

struction level parallelism for a large number of simpler
processing cores. This has a far reaching impact on application
programs. Data-parallel programs with regular control flow and
memory-access patterns are able to utilize the GPU hardware
effectively, while programs that have thread-dependent control
flow or irregular memory access patterns are unable to exploit
the performance potential of GPUs. This latter category is
often referred to as irregular applications, as against the former
category of regular applications.

In this paper we show that it is possible to redesign
algorithms that traditionally result in irregular applications1

to fully exploit the GPU architecture. We do this by using the
novel insight that certain irregular algorithms have regular
cores that are well-suited for GPUs. Thus, by appropriately
expressing the algorithms in terms of the regular cores that run
on GPU and the remaining code that runs on the CPU, an ap-
plication is able to leverage the best of both architectures. This
approach maps well to the increasingly popular heterogeneous
(hybrid) design of high performance computers [1], [2]. More-
over, evidence suggests that related algorithms share common
regular cores, which justifies investment of time and energy
in optimizing these cores. These algorithms fall between the
traditional regular algorithms and highly irregular algorithms
that exhibit the so-called amorphous data parallelism [3]. We
call these algorithms semi-regular algorithms.

A classic problem that turns out to be semi-regular is that
of finding the longest common subsequence (LCS) between
two given strings. A subsequence of a string of symbols is
derived from the original string by deleting some elements

1We call these irregular algorithms.

without changing their order [4]. For example, the sequence
{b,c,e} is a subsequence of {a,b,c,d,e}. Unlike a substring, a
subsequence need not be contiguous in the original string.

Variants of the LCS problem are widely encountered in
several fields. The sequence alignment problem in bioinformat-
ics is the problem of finding similarities between nucleic acid
sequences over the alphabet {A, T,C,G}, where each letter is
the initial letter of one of the four types of nucleic acids [4].
In voice and image analysis LCS is used for a variety of tasks
such as improving speech recognition [5], evaluating machine
translation [6], and image retrieval through structural content
similarity [7]. In social networks LCS is used for matching
event and friend suggestions [8]. In computer security virus
signature matching uses LCS [9]. In data mining, LCS is
used for identifying patterns of interest in long sequences of
input [10] and database query optimization [11].

In this paper, we present a detailed study of a specific
variant of this important problem of LCS matching, called
one-to-many LCS matching, or MLCS. We present a novel
technique for optimizing MLCS on GPUs by leveraging its
semi-regular structure. We identify a regular core of MLCS
that consists of highly regular data-parallel bit-vector oper-
ations, which is combined with a relatively irregular post-
processing step more efficiently performed on the CPUs. These
operations combine techniques from Allison and Dix [12] and
Crochemore et al. [13]. We make several improvements to
achieve more than a trillion cell updates per second (Tera
CUPS) on three NVIDIA M2090 Fermi GPUs, which is the
first time this level of performance has been achieved in LCS
algorithms to the best of our knowledge. We demonstrate that
this performance is sustainable for MLCS on a continuous
stream of sequences since the post-processing step on the CPU
takes only a fraction of the core step on the GPU. We also
evaluate our technique on four different GPU devices with
varying NVIDIA CUDA compute capabilities.

II. LONGEST COMMON SUBSEQUENCE
The LCS problem for an arbitrary number of input se-

quences is NP-hard [14]. However, for a constant number of se-
quences, the problem can be solved in polynomial time. There
are two main scenarios in which LCS can be applied, one-to-
one matching and one-to-many matching. In the former, only
two input sequences are compared and there is one LCS result.
In the latter, often referred to as MLCS, there is one query
sequence and a set of sequences, called subject sequences, to
which the query sequence is compared. A straightforward way
to solve MLCS is to perform one-to-one LCS for each subject



sequence. One of the most popular polynomial time solutions
to one-to-one LCS problem is using dynamic programming.

A. Dynamic Programming Approach
The dynamic programming approach for LCS is based on

the observation that the LCS of two strings Xn of Ym, of
lengths n and m, respectively, can be expressed as:

LCS(Xn, Ym) =


LCS(Xn−1, Ym−1) +X(n)

if X(n) = Y (m),
max(LCS(Xn, Ym−1), LCS(Xn−1, Ym))

if X(n) 6= Y (m)
(1)

where Xn−1 represents the substring consisting of the first
n−1 symbols of X and X(n) is the nth symbol of X (and
similarly for Y ).

The solution involves filling a score matrix, H , through a
scoring mechanism given in Equation 2, based on Equation 1.
The best score is the length of the LCS and the actual subse-
quence can be found by tracking it back through the matrix. Let
m and n be the lengths of two strings to be compared. In order
to determine the length of the longest common subsequence
in A = (a1, a2, .., an) and B = (b1, b2, .., bm) we define
H(i, j), the length of the longest common subsequence in
(a1, a2, ..., ai) and (b1, b2, .., bj), where 0 ≤ j ≤ m and
0 ≤ i ≤ n, as follows.

H(i, j) =


0 if i = 0 or j = 0,
H(i− 1, j − 1) + 1 if ai = bj ,
max(H(i, j − 1), H(i− 1, j)) otherwise

(2)
The construction of the LCS dynamic programming solu-

tion has its foundations in the similarity distance measurements
of two strings. One of the early works on this problem, by
Levenshtein [15], gives the formula to find the minimum
number of single-character edits (insertions and/or deletions)
required to transform one sequence into the other. This is
often called Levenshtein distance. An example for building
a score matrix from the dynamic programming solution is
given in Fig. 1. Following Levenshtein’s work, a number of

A T C G A G T
T 0 1 1 1 1 1 1
A 1 1 1 1 2 2 2
T 1 2 2 2 2 2 3
G 1 2 2 3 3 3 3
C 1 2 3 3 3 3 3
A 1 2 3 3 4 4 4
T 1 2 3 3 4 4 5

Fig. 1. Dynamic programming solution example. Matrix is built for sequences
{ATCGAGT} and {TATGCAT} and the length of the longest common
subsequence can be obtained from the right bottom corner.

efficient algorithms have been designed. The term edit distance
is often used to refer to an extended form of Levenshtein
distance that also includes costs for insertion, deletion, and
substitution operations [16]. Needleman and Wunsch (NW)
proposed an algorithm that performs a global alignment on two
sequences [17]. Smith and Waterman (SW) gave the algorithm
for local sequence alignment [18].

B. GPU Architectural Considerations
GPUs have several appealing features that make them good

candidates for LCS computation. In this study we focus on
NVIDIA GPGPUs. NVIDIA GPUs are usually described in
the context of a parallel programming model from NVIDIA
based on C and C++, called the Compute Unified Device
Architecture, or CUDA. The CUDA programming model con-
sists of a host program running on the CPU that initiates
the computation and one or more kernels that run on the
GPU. Each kernel executes over a set of parallel threads that
are divided by the CUDA compiler into thread blocks and
grids of thread blocks. CUDA threads within one thread block
may synchronize using barriers and shared memory. CUDA
programming model also has a notion of compute capability
to summarize the features supported by specific hardware.

NVIDIA GPU hardware is organized as a collection of
Streaming Multiprocessors, or SMs, each of which consists
of multiple cores. The number of cores depends on the
architecture generation and the number of SMs depends on the
specific hardware device. For example, the Fermi architecture
cards have 32 cores per SM for compute capability 2.0
devices. In Kepler cards, this number is 192. Devices with
these architectures have up to 16 SMs [19]. This results in a
potentially large number of concurrent threads. One or more
CUDA blocks may be mapped onto each SM.

Scheduling this massively threaded architecture is one
of the most critical components of CUDA architecture. The
threads are created, managed, scheduled, and executed in
groups of 32, called warps. Each thread block is partitioned
into warps by a warp scheduler and then scheduled for execu-
tion. This style of parallelism is often called SIMT (Single
Instruction Multiple Thread), where each thread in a warp
executes the same instruction at a given time, but different
warps might diverge. Control flow divergence within a single
warp is handled by selectively disabling certain threads in
the warp, causing performance degradation. Avoiding control
flow divergence within warps turns out to be critical for
performance.

Another key component in CUDA programming model
that requires special attention is memory. GPUs provide very
high memory bandwidth through several memory types: global
memory, constant memory, texture memory, shared memory,
and registers. Global memory resides off-chip and provides
a large space of memory. Constant and texture memories are
accessed through special caches. Shared memory is specialized
hardware on chip that provides very fast access time and can
satisfy multiple requests at the same time if the requests do
not cause memory bank conflicts. Global memory has a special
hardware optimization called coalescing that triggers only with
regular memory access patterns.

Finally, data transfer latencies can be hidden by leverag-
ing asynchronous kernel execution provided by CUDA API.
Depending on the asynchronous engine count of the device,
overlapping memory copies of different streams is allowed.
Additionally, multiple kernels can be executed at the same
time. Asynchronous kernel invocations also allow CPUs to
continue working without waiting for kernels to finish, unless
an explicit data transfer of the results is requested.

C. Dynamic Programming on GPUs
The construction of the scoring matrix creates three-way

dependencies as shown in Fig. 2, where each cell depends



on its left, upper, and upper-left neighbors. This dependency
prevents parallelization along the rows or columns. A possible
solution is to compute all the cells on an anti-diagonal in
parallel as illustrated in Fig. 3. However, this suffers from
two problems: (a) the parallelism is limited in the beginning
and the end of computing the matrix; and (b) memory access
patterns are not amenable to hardware coalescing.

Hi-1, j-1

Hi, j

Hi-1, j

Hi, j-1

Fig. 2. The dependency in LCS
Dynamic Programming solution
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iteration i
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Fig. 3. The anti-diagonal(wave-
front) parallelization of LCS Dy-
namic Programming solution

Another issue in using dynamic programming approach for
LCS on GPUs is memory allocation. Equation 2 requires space
proportional to the product of the sequence lengths. One way
to reduce the memory requirement is by keeping only the outer
boundaries of each submatrix being processed in memory.
However, the boundaries need to be recomputed when doing
the back-tracking for building the LCS.

As discussed in Section V, prior attempts to parallelize
the traditional dynamic programming LCS algorithm on GPUs
suffer from both poor distribution of workload and sub-optimal
utilization of GPU resources. Currently proposed paralleliza-
tion approaches to construct the score matrix are limited by the
three-way dependencies. These approaches invariably serialize
the construction of the actual subsequence and perform all the
computation on the GPU, thus failing to leverage the CPU for
tasks more efficiently done on CPUs.

III. TOWARD TERA-CUPS ON GPUS
We have developed an approach that eschews dynamic

programming in favor of highly data-parallel operations. The
asymptotic complexity of our approach remains unchanged
compared to the dynamic programming algorithm, but the
changed formulation of the algorithm exposes the regular core
within the algorithm that can be effectively parallelized on
GPUs.

Several observations lead us to our approach, which is
optimized for MLCS. We observe that we require matching
information of every single element in the sequences. This
motivates the computation of a binary matrix that summarizes
the matching result of each symbol in the subject sequence
with each symbol in the query sequence. Fig. 4 shows such a
binary matrix for two example sequences. The computation of
such a matrix is highly data parallel and potentially mapped
efficiently to GPU threads with homogeneous workload distri-
bution and no control-flow divergence.

A second observation is that each entry in the binary matrix
can be stored as a single bit, leading to a natural packing of
the matrix entries. This clearly reduces the space requirement.
But, more importantly, packing the matrix elements in this way

A T C G A G T
T 0 1 0 0 0 0 1
A 1 0 0 0 1 0 0
T 0 1 0 0 0 0 1
G 0 0 0 1 0 1 0
C 0 0 1 0 0 0 0
A 1 0 0 0 1 0 0
T 0 1 0 0 0 0 1

Fig. 4. Binary match matrix.

enables us to use bit operations on words to perform vectorized
matching operations on word-length segments of the matrix.
This leads to another level of parallelism within the program.

Another observation is that the matches can be precom-
puted for each symbol in the alphabet for a given query
sequence. Then, the matrix can be constructed by simply
looking up the pre-computed match for each symbol in the
subject sequence. For small alphabets, such as the four-
symbol alphabet commonly used for sequence alignment in
bioinformatics, this results in good temporal locality of the
precomputed data that can be cached. An example in Fig. 5
shows this precomputed data for the sample query string
“ATCGAGT.”

T-String 0 1 0 0 0 0 1

A-String 1 0 0 0 1 0 0

C-String 0 0 1 0 0 0 0

G-String 0 0 0 1 0 1 0

A T C G A G T

Fig. 5. Precomputed matching data for the query string “ATCGAGT.”

A bit-matrix obtained in this manner does not lead itself
directly to LCS. However, certain row operations on it can be
used to compute a derived matrix that provides a quick readout
of the length of the LCS. In many problems, such as those for
detecting virus signatures or patterns in social networks, the
actual subsequence is often of less interest than the boolean
outcome of whether or not a match of certain length was found,
or simply the length of the longest match. In cases where
the actual LCS is needed, as in bioinformatics applications, a
traditional LCS algorithm implemented on CPUs is adequate
to compute the actual subsequence in the small fraction of
cases where the matches are sufficiently long to be of interest.
Section III-C discusses this in greater detail.

It turns out that the binary match matrix need not be
constructed explicitly in order to build the derived matrix.
Moreover, we need only the final row of the derived matrix to
compute the lengths of the LCS. Usually, in MLCS, we are
interested in a certain number of top matches. As a result, this
serves as a filter to eliminate the subject sequences that fail to
produce sufficiently long matching subsequences.

A. Bit-vector approach
In 1986, Allison and Dix proposed solving the LCS

problem using bit representation [12]. They also identified
the optimization of using precomputed strings, calling them
alphabet-strings. The computation produces only the final row
of the derive matrix and proceeds by computing one row at a
time, starting from the top. The number of 1’s in the final row
is the length of the LCS.



In order to arrive at an efficient way to compute the rows,
they first observe that the length of the matched sequence
changes by at most one symbol from one row to the next
in the original H matrix defined in Equation 2. Thus:

H(i−1,j−1) ≤ H(i,j−1) (3)
H(i−1,j) ≤ H(i,j) (4)

|H(i,j)−H(i−1,j−1)| ≤ 1 (5)

A key aspect of Allison and Dix’s work is the identification
of k-dominant matches. In order to define k-dominant, we need
to first define the rank of a match. We can define a partial order
on the matches. A match that occurs in position (i, j) precedes
a match at (i′, j′) if i < i′ and j < j′. A set of matches where
each pair consists of matches that can be ordered is called a
chain. The rank of a match (i, j) is the length of the longest
chain of matches terminating at (i, j), i.e., with (i, j) being
the greatest match according to the partial order defined above.
The match at i,j is k-dominant if it has rank k and for any
other pair [i′, j′] of rank k, either i′ > i and j′ ≤ j or i′ ≤ i
and j′ > j [13], [20].

The LCS of two strings can be no longer than the maximum
rank of the dominant match, therefore once the k-dominant
matches are computed, the LCS problem is solved. Fig. 6
shows an example of the relation between the k-dominant
matches and the solution to LCS problem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A A A G T G A C C T A G C C C G

1 T

2 C

3 C

4 A

5 G

6 A

7 T

8 G

match point
k-dominant match

LCS member & k-dominant match

anti-chain
LCS chain

Fig. 6. LCS for x = ”TCCAGATG” and y=”AAAGTGACCTAGCCCG”
and k-dominant matches and the matrix generated by Crochemore’s algorithm
(Courtesy of Crochemore et al.).

Allison and Dix gave the following equation to calculate
the length of the LCS where Row0 starts with all zeros and
M is the precomputed alphabet-string.

X = Row i−1 OR Mi

Row i = X AND ((X − (Row i−1 << 1)) XOR X)
(6)

In each iteration, the equation follows the projection of
the anti-chains and marks all the anti-chain corners in a row.
The final number of bit-changes compared to the initial row
(number of 1’s in the last row) gives the length of the LCS.
Crochemore et al. [13] improved the above expression to
reduce the number of bit operations from 6 to 4 by starting
with Row0 set to all ones and using precomputed alphabet-
strings (Mi) and their inverses (M ′i ), as follows.

Rowi = (Rowi−1 + (Rowi−1 AND Mi))

OR (Rowi−1 AND M ′i) (7)

B. Parallelizing and Optimizing on GPUs
After identifying binary matrix match computation as the

core of LCS that is most amenable to optimizing for GPUs, we
next describe our design decisions and various optimizations
that we performed on this core. Recall that we do not need
to store the entire matrix, only the last row that gives us the
length of the LCS. The last row of the matrix is arrived at by
iteratively computing each row of the matrix using Equation 7,
starting with the first, and requires keeping only two rows’
worth of data in memory. We have implemented both Allison
and Dix’s and Crochemore et al.’s solutions. Crochemore at
al.’s algorithm uses fewer bit operations, which could be
expected to lead to a slightly better performance than Allison
and Dix’s.

a) Intra- vs Inter-task Parallelism: There are two main
opportunities for parallelizing the bit-vector computation, run-
ning multiple subject sequence matches concurrently (called
inter-task parallelism) and using multiple threads to perform
bit-vector computations as outlined above (called intra-task
parallelism). Prior work has reported obtaining better perfor-
mance with the latter [21], [22], [23] for sequence lengths
greater than 4K, which is what we use for this study. Section IV
justifies the choice of 4K sequence size.

One subject sequence is assigned to each CUDA thread
within a CUDA block. In addition, multiple CUDA blocks are
concurrently launched on different streaming multiprocessors.
Since each subject sequence is processed independently, there
is no communication between these tasks.

b) Memory Spaces: One observation from Equations 6
and 7 is that precomputed alphabet-strings are read-only.
This makes it possible for alphabet-strings to be placed in
cache-able read-only memory. Constant memory is an obvious
choice, since the alphabet-strings are small enough to fit within
it. Another observation is that alphabet-strings values are used
by every thread in the GPU device and loading these values
into fast memory, such as shared memory, can also provide
benefits. To understand the trade-offs between constant and
shared memories we have implemented both versions for each
algorithm.

c) Hiding Data-copying Latencies: CUDA enables
overlapping data copy and kernel execution to hide data-
copying latencies. In order to hide data-copying latencies
with asynchronous execution we need to use multiple streams
of data copying and computational kernels. We divide the
computation into multiple smaller pieces and push them to
GPU asynchronously using CUDA streams. Additionally, by
splitting data copying and computational kernels into smaller
chunks we allow the GPU to execute multiple kernels concur-
rently. We allocate host memory with page-locked option using
the CUDA cudaMallocHost API call. This design choice
is necessary for asynchronous concurrent execution. Addition-
ally, the range of memory allocated with this function call is
tracked by GPU driver, enabling higher bandwidth for reads
and writes and automatically accelerating data movement [19].

d) Leveraging Multiple GPUs: Multi-GPU nodes are
increasingly common on clusters. In this work, we also in-
vestigate the effects on performance when multiple GPUs are



TABLE I. BENCHMARK TESTBEDS

System GPU Number
of Cores

Device
Memory

CUDA
Capability

CUDA
Version CPU

Host
Memory OS

FutureGrid C2075 x 2 448 5375 MB 2.0 5.0 X5660 192 GB Red Hat 6.3
Keeneland M2090 x 3 512 5375 MB 2.0 4.2 X5660 24 GB CentOS 6.3

GTX 680 x 2 1536 2048 MB 3.0 5.0 AMD PII X6 16 GB Debian 4.4
GTX 480 480 1535 MB 2.0 4.2 AMD PII X6 16 GB Debian 4.4

used. To maximize the benefit from multiple GPUs, we create
separate CPU threads to handle the different GPUs. Each
thread is assigned 1/n of the sequences, where n is the number
of GPUs.

e) Streaming Sequences: For very large problems, GPU
memory could become a limiting factor. The current maximum
memory on a single NVIDIA GPU is about 6 GB. We
implemented MLCS in a way that allows sequences to be
streamed continuously with repeated kernel launches, which
run concurrently with CPU post-processing steps. This estab-
lishes a pipeline that can effectively and completely hide data-
copying as well as CPU post-processing latencies.

C. Post Processing
The GPU step returns a list of all the lengths for each sub-

ject sequence. Post processing is needed to find the top N LCS
lengths, where N is a user-specified parameter, and optionally
calculating the actual LCS in those cases. Identifying the top
N LCS lengths is a relatively short amount of work that is
easily done on the CPU.

If the actual subsequences are required then those can
also be found using the traditional dynamic programming
algorithm, with the score matrix of Equation 2. Note that N is
usually much smaller than the number of subject sequences, so
this needs to be done for a small fraction of all the sequences
that are matched. Moreover, it can be parallelized by using
multiple CPU threads, each computing a sequence, as long
as N > 1. Alternatively, the bit-vector method could also
be adapted for CPUs. We have implemented both versions to
evaluate their relative performance.

IV. PERFORMANCE EVALUATION
A. Testbed configurations

To evaluate our implementations, we utilized four different
resources. Delta GPU cluster is part of FutureGrid—a multi-
institutional project supported by the National Science Foun-
dation, involving Indiana University [24]. A second testbed
that we used was the Keeneland cluster at Georgia Institute of
Technology [25]. Additional workstations in our lab, consisting
of GTX 690 (dual 680) and GeForce GTX 480 cards provided
the final two test platforms (Table I).

We used synthetic data for the query and subject sequences.
In our experiments each sequence is 4K symbols long, moti-
vated by the commonly used sequence length in different appli-
cations. For example, many benchmark sequence databases for
bioinformatics (Ensembl Dog Proteins, NCBI RefSeqHuman
Proteins, TAIR Arabidopsis Proteins, UniProtDB/Swiss-Prot,
etc.) 4K size threshold covers more than 99% of the se-
quences [21], [23]. In GPU-based data compression, past work
shows highest performance on 4K chunk size [26]. Collections
of string sequences in many applications can reach very
large numbers. UniProtDB/Swiss-Prot database includes more
than 500,000 subject sequences [21]. Virus signatures number

in hundreds of thousands and are growing constantly [27].
Therefore, we tested our implementation with three different
subject sequence sizes: 50,000, 188,000 and 720,000.

B. Results
The unit we use to report our results is cell updates per

second (CUPS), which is widely used to evaluate performance
of LCS algorithms. A cell represents one grid item in the
score matrix built in the dynamic-programming approach. In
general, total number of cell updates is obtained from the
lengths of the sequences being compared. In a one-to-many
LCS case, it is the product of the length of the reference
sequence and the total lengths of all other sequences. On
contemporary machines millions (mega) or billions (giga)
of updates per second are common and are abbreviated as
MCUPS and GCUPS, respectively. Equation 8 formulates the
relation, where R denotes the length of the reference sequence,
T denotes the total length of all sequences, and S denotes the
time it takes to perform the computation, in seconds.

CUPS =
R×T
S

(8)

We benchmarked the performance of the bit-vector ap-
proach on Crochemore et al.’s algorithm using constant mem-
ory for the precomputed alphabet-strings. The tests involve
sequences of 4K symbols with the alphabet size four. We use
varying number of block sizes and thread counts such that
their product is alway equal to a fixed number, which is the
number of sequences being matched. The number of threads
ranges from 128 to 1024 and the number of blocks ranges
from 1470 to 184, respectively, for 188K sequences. Different
block / thread number configurations lead to varying device
occupancy.
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Fig. 7. CUDA Occupancy Calculator (Courtesy of NVIDIA).

CUDA Occupancy Calculator [28] can be used to estimate
occupancy of a kernel using the compute capability of the
device, number of threads per block, register usage per thread
in a block, and the amount of the shared memory used per
block. Fig. 7 shows estimated warp occupancy on GTX 480 for
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Fig. 8. Combined results for each device and four different implementations.

varying number of threads per block. After increasing initially
the occupancy drops to the lowest point at 672 threads and
reaches the highest at 384 threads per block. The register usage
for this implementation of Crochemore et al.’s algorithm using
constant memory is 26 per thread on GTX 480. The register
usage information can be obtained by compiling all CUDA
input files (.cu files) to device-only (.cubin files) and
passing verbose option, or using the visual profiler. This results
in an estimated 44% occupancy for 672 threads and 75%
for the 384 threads. In practice, there is excellent correlation
between estimated occupancy and observed performance for a
given configuration.

The best occupancy for a given kernel varies across dif-
ferent GPU cards, based on the card’s compute capability and
register usage. Fig. 8 shows occupancy calculations for the
four devices we studied for three different implementations
of Crochemore et al.’s algorithm and one implementation of
Allison and Dix’s algorithm.

As indicated before, we implemented versions that kept
the alphabet strings in constant memory (”constant croc.”) and
shared memory (”shared croc.”). Across all configurations and
devices keeping the alphabet strings in shared memory resulted
in a gain of 24 CUPS on an average, compared to constant
memory.

In order to hide data copying latencies we overlap kernel
exceution with memory copies. To achieve that we divide the
computation into smaller pieces and use CUDA streams to
spawn GPU kernels and initiate data transfers concurrently.
This lets us establish pipelines that overlap kernel executions
with data transfers for the subsequent kernels. Additionally,
concurrent kernel execution is also possible through multiple
asynchronous streams. This approach acheives best perfor-
mance with 16 concurrent CUDA streams, resulting in an
average improvement of 22 CUPS over the shared-memory
version without such an overlap.

NVIDIA’s viusal profiler2 provides a visual feedback of
several performance metrics. In our tests, the profiler reported
94.5% of kernel/memory copy hiding (all memory copies
except the first stream CPU-to-GPU and last stream GPU-
to-CPU memory copies) and fully concurrent execution of
kernels.

One concern in using shared memory for alphabet-strings
is the potential for memory bank conflicts, leading to reduced
performance. Since we exploit inter-task parallelism, each
thread operates on a different sequence and follows a different

2For more information https://developer.nvidia.com/nvidia-visual-profiler

data access pattern. This nondeterministic behavior of access
patterns makes it practically impossible to eliminate bank con-
flicts. Crochemore et al.’s algorithm uses both alphabet-strings
and their inverses (Equation 7). On the other hand, Allison
and Dix’s algorithm only uses alphabet-strings (Equation 6),
leading to fewer shared-memory accesses and, potentially,
fewer conflicts. The trade-off is a higher number of bit opera-
tions in Allison-Dix algorithm. Using NVIDIA’s profiler tool
we observed around 70M (70,601,250) shared-memory bank
conflicts for Crochemore et al.’s algorithm compared to about
52M (52,327,407) for Allison and Dix’s. Even with increased
number of bit operations this large difference in bank conflicts
results in Allison-Dix achieving a higher performance, with an
average difference of 4.4 CUPS.

In Fig. 8 the two algorithms with overlapped computations
and data transfers are represented by labels “shared croc. over-
lap” and “shared alli. overlap.” Each set of plots in the figure
shows four different implementations. In each implementation,
different points show different threads/blocks configurations.
The sawtooth shaped graphs in each case is a consequence of
varying occupancy and closely follows the occupancy pattern
in Fig. 7.

Fig. 9 shows GCUPS achieved by the shared-memory
version of Allison-Dix algorithm for different numbers of
sequences. Three different sets are used; a small set of 50K
sequences, a set of 188K sequences for a full-capacity single
kernel call, and a large set of 720K sequences requiring multi-
ple kernel calls. For each data set, different configurations are
applied. The two larger data sets achieve similar performance,
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indicating that the kernel is able to sustain high performance
across multiple invocations.

We also tested the algorithm with different alphabet sizes.
Fig. 10 shows the performance results for alphabet sizes 4, 8,
12, 16, 20, and 26. The results show that for the three GPU
devices (GTX 480, Tesla C2075, and M2090), an increase in
the alphabet size from 4 to 26 characters results in at most
1.9% performance loss. On the GTX 690(680x2), the performs
suffers by up to 22%. A possible cause could be an increase
in bank conflicts due to bigger shared memory footprint for
larger alphabets. GTX 690 stands out by its compute capability
(3.0 against 2.0 of all others). The profiler indicates 50% more
bank conflicts per GPU on GTX 690 for 26-character alphabet,
compared to the other cards. The much larger number of bank
conflicts explains the higher performance penalty on GTX 690
for bigger alphabets.
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Fig. 10. Comparison of different alphabet sizes.

C. Post-Processing steps on CPU
After the length of LCS is calculated for every sequence,

the actual LCS is obtained for the top N of them, N is ad-
justable by user. This stage is left to CPU for post-processing.
POSIX threads are used to parallelize this stage. In our tests,
we see 0.01 to 0.015 second latency per actual sequence
calculated, not depending on the GPU version. This latency
per actual LCS calculated is only 0.016% of GPU computation
time for the largest sequence set and 0.23% of the GPU
computation time for the smallest sequence set. Additionally,
in the multiple runs scenario each run’s post-processing step
can be overlapped with, and be completely hidden by, the next
run’s GPU work, except the last one.

D. CPU implementation comparison
We also compare our results with CPU implementation.

For that purpose, we parallelize the Allison and Dix’s imple-
mentation using POSIX threads, and use the gcc optimization
flag -03. Fig. 11 shows the GCUPS results for three data
sets on four different setups. We achieve 8.3X speedup in
the best case and 5.7X speedup on average, compared to
the parallel CPU implementation. Further, we compared the
dynamic programming solution with the bit-vector approach
on CPU. We compared serial versions of both these algorithms
to identify the benefits of vectorized bit operations on CPUs.
For the same configurations the bit-vector version consistently
performs about 48X better than the dynamic programming
version. However, we emphasize that the bit-vector version
does not compute the actual LCS.

GTX 480 C2075 GTX 6 M2090      
AMD PII X6 Intel X5660 AMD PII X6 Intel X5660

CPU 720K 102.8 140.9 101.9 174.3

CPU 188K 102.9 141.0 102.0 174.4

CPU 50K 102.9 117.3 102.1 174.0

GPU 720K 466.2 581.5 842.3 1006.9

GPU 188K 465.6 582.5 841.8 1011.2

GPU 50K 460.5 575.8 832.9 994.4
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Fig. 11. Parallel bit-vector LCS (only length), CPU vs GPU.

E. Related work comparison
We listed several related papers in Section V. The reported

performance results are either in GCUPS or seconds. For
instance, one of the early works by Manavski and Valle reports
3.5 GCUPS performance using Smith-Waterman MLCS. A
highly referenced paper, CUDASW++ 2.0 by Liu et al.,
reports 17 to 30 GCUPS performance on single and double
GPUs, respectively, using Smith-Waterman algorithm with
both anti-diagonal parallelization (less than 1% of the time)
and inter-task approach. Hains et al. improve CUDASW++ and
reach approximately 25-30 GCUPS on a single GPU. Khajeh-
Saeed et al. investigate the Smith-Waterman algorithm for
two large sequences rather than one-to-many alignment, and
scaling through hundreds of GPUs. They achieve 1.04 GCUPS
per GPU. Kawanami et al. use the Allison bit-vector ap-
proach on one-to-one LCS calculation achieving approximately
3 GCUPS. For those studies that did not report GCUPS we
derived approximate GCUPS from the given time and speedup
numbers. Compared to these efforts, we achieve one to two
orders of magnitude better. However, we hesitate to give direct
performance comparisons due to the differences in algorithms
and LCS approaches.

F. Analysis
There are several key insights resulting from our exper-

iments beyond TeraCUPS performance. One of these is the
effect of occupancy on performance. The occupancy of GPU
depends mainly on the number of threads used per block and
the register usage per thread in a block. In our implementations
we used two algorithms, two memory choices, and four
different devices. Depending on the four parameters (compute
capability of the device, number of threads used per block,
register usage per thread in a block, and shared memory in
bytes per block), each version has a different configuration
that runs better. CUDA Occupancy Calculator gives occupancy
of GPU with given configurations. Register signatures for all
versions and devices used in this paper are given in Table II.
The occupancy information which can be statically computed,
gives users the ability to predict performance and tune it
manually or automatically for a specific configuration.

Another key observation is the identification of highly
regular data-parallel approach for the semi-regular MLCS
structure. Using bit-vector operations in GPUs provides a bet-



TABLE II. REGISTER SIGNATURES FOR DIFFERENT VERSIONS

Constant
Croch.

Shared
Croch.

Shared
Croch.

Overlap

Shared
Allison
Overlap

GTX 480 26 23 23 19
C2075 24 24 24 18
GTX 680 24 25 25 19
M2090 26 23 23 19

ter utilization of the device and leads to a better performance
as the results indicate above. The core of the MLCS algorithm
has commonalities with other widely used applications such as
substring matching and compression. To the best of our knowl-
edge, bit-vector approach on GPUs has not been investigated
for those problems.

Finally, scalability of the bit-vector approach is proven
through large data set tests. Although, there is extra overhead
in handling the multiple runs, the achieved performance is
sustained (Fig. 9). This shows that our work is easily scaled
to very large data sets.

V. RELATED WORK
The longest common subsequence (LCS) problem has

grabbed the attention of many researchers because of its wide
applicability in a variety of applications. In this section we
summarize related work only for bit-vector approach to LCS
and GPU-based parallelization efforts.

A. Bit-wise LCS
Solving the LCS problem using bit representation was

initially proposed by Allison and Dix [12]. Their approach
uses bit operations on bit-vector strings to find the length of
the LCS, improving the time complexity by the length of the
word. Packing bits into words and using bit operations gave
the algorithm word-size parallelism.

Myers [29] gives a practical method for edit distances in
the same running time as [12] with the addition of extracting
the actual longest common subsequence string, rather than
just the length. Crochemore et al. also propose a similar
approach but using fewer bit operations than [12] and [29], thus
achieving an improved running time [13]. Hyyro applies bit-
vector approach to Levenshtein distance with an improvement
to Myers algorithm [30].

B. GPU related work LCS
One of the early GPU adaptations of LCS for subsequence

matching is by Manavski and Valle [31]. They give a solution
for one to many sequence alignment problem on GPUs by
using dynamic programming solution in which one thread is
allocated for the alignment of the two sequences.

Kloetzli et al. give a cache-coherent algorithm in linear-
space using a two-level algorithm on the GPUs [32]. The
work build on the algorithm by Chowdhury [33] for linear
space LCS algorithm. The memoization step saves only the
outer boundaries of the matrix to satisfy the linear space
requirement, which can be used later in the reconstruction
step. Anti-diagonals are parallelized for computation on GPU,
an approach introduced in LCS calculation by Edmiston et
al. [34].

Liu et al. give a one-to-many sequence alignment approach
over a database of query sequences in CUDASW++ implemen-
tation [21], [22]. The given implementation uses parallelism

either within or across tasks on GPUs, depending on the
sequence size. For sequence sizes smaller than the threshold
(which is 3072 according to the experimental results), they em-
ploy inter-task parallelism in which one thread is responsible
for finding the matching information of two sequences. For
bigger sizes, intra-task parallelism is used in which a block
of threads calculates the longest matching length by using the
anti-diagonal approach.

Hains et al. improve the intra-task kernel of CUDASW++
by global memory access improvements, tiling in the anti-
diagonal process, extensive register usage and with more
flexible threshold selection [23].

Yang et al. investigate the data dependency reduction
for the Smith-Waterman algorithm [35]. A higher degree of
parallelism is proposed to break the row / column dependency
by visiting the previous row / column data for each time.
This approach results in better thread utilization than the anti-
diagonal approach.

Khajeh-Saeed et al. investigate the single large Smith-
Waterman problem rather than one-to-many alignment prob-
lem [36]. The work proposes to memoize additional values to
reduce dependency and gives a row / column parallel approach
similar to Yang’s work [35]. It also gives a multi-GPU solution
assuming prior knowledge of the upper bound for the length
of the alignment.

One recent work that uses both bit-wise operations and
GPUs is by Kawanami et al. who give a GPU implementation
of the Crochemore’s solution to improve Hirschberg’s CPU
LCS algorithm [37]. They compare their results with Kloetzli
but only investigate one-to-one LCS [38].

VI. CONCLUSION AND FUTURE WORK
We have presented a novel approach to augment the one-

to-many LCS (MLCS) problem on GPUs. The technique
elaborates bit-vector operations that exploit the word-size
parallelism. Inter-task parallelism is adapted, relying on the
independent computation of each one-to-one LCS comparison.
We studied two algorithms, by Allison-Dix and Crochemore et
al., on GPUs. We then provided the analysis and design steps of
GPU-specific optimizations. We used CPU for post-processing
to take advantage of the heterogeneous environment. Using
the multi-GPU approach, we are able to achieve TeraCUPS
performance for length calculation of MLCS problem—a first
for LCS algorithms.

Compared to the best known parallel CPU implementa-
tions, we achieved up to 8.3x better performance. Our algo-
rithm also shows a sustainable performance with very large
data sets. By utilizing both CPU and GPU, we were able to
hide data transfer latencies in a heterogeneous environment.
By providing design insights and tools specific to NVIDIA
GPUs, our work provides a reference for future developments.

One possible future direction to investigate is using bit-
vector approach to solve other probleme related to LCS on
GPUs, such as Needleman-Wunsch [17] and Smith-Waterman.
Hirschberg algorithm [37] is a possible candidate to compute
the actual LCS. Another possible direction is to explore
problems common to certain string-matching algorithms. For
example, substring matching is at the core of the dictionary-
based lossless compression and the LCS problem shares certain
features with it. A common solution to substring matching
based on bit-vector operations could potentially also benefit
these related problems.
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