Spatial Transformer Networks

Max Jaderberg
Andrew Zisserman
Karen Simonyan
Koray Kavukcuoglu

Okay ARIK
Contents

• Introduction to Spatial Transformers
• Related Works
• Spatial Transformers Structure
• Spatial Transformer Networks
• Experiments
• Conclusion
Introduction

• CNNs have lack of ability to be spatial invariance in a computationally and parameter efficient manner.
• Max-pooling layers in CNNs satisfy this property where the receptive fields are fixed and local.
• Spatial transformer module is a dynamic mechanism that can actively spatially transform an image or a feature map.
Introduction

• Transformation is performed on the entire feature map (non-locally) and can include scaling, cropping, rotations, as well as non-rigid deformations.

• This allows networks to not only select regions that are most relevant (attention), but also to transform those regions.
Introduction

• Spatial transformers can be trained with standard back-propagation, allowing for end-to-end training of the models they are injected in.

• Spatial transformers can be incorporated into CNNs to benefit multifarious tasks:
 ▪ *image classification*
 ▪ *co-localisation*
 ▪ *spatial attention*
Related Works

• Hinton (1981) looked at assigning canonical frames of reference to object parts, where 2D affine transformations were modeled to create a generative model composed of transformed parts.
Related Works

- Lenc and Vedaldi studied **invariance and equivariance** of CNN representations to input **image transformations** by estimating the linear relationships.

- Gregor et al. use a **differentiable attention mechanism** by utilising Gaussian kernels in a generative model. **This paper generalizes differentiable attention to any spatial transformation.**
Spatial Transformer

• **Spatial transformer** is a differentiable module which applies a spatial transformation to a feature map and produces a single output feature map.

• For multi-channel inputs, the same warping is applied to each channel.
Spatial Transformer

• The spatial transformer mechanism is split into three parts:
Spatial Transformer

- **Localisation network** takes the input feature map, and through a number of hidden layers outputs parameters of spatial transformation.
Spatial Transformer

- **Grid generator** creates a **sampling grid** by using predicted transformation parameters.
Spatial Transformer

- **Sampler** takes feature map and the sampling grid as inputs, and produces the output map sampled from the input at the grid points.
Spatial Transformer

• **Localisation network** takes the input feature map and outputs parameter θ for the transformation.

• Size of θ can vary depending on the transformation type that is parameterised.
Spatial Transformer

• **Grid Generator:** *Identity transformation*

Output pixels are defined to lie on a regular grid.
Spatial Transformer

• **Grid Generator:** *Affine Transform*

Output pixels are defined to lie on a regular grid.

Sampling Grid
Spatial Transformer

- **Grid Generator:** *Affine Transform*

\[
\begin{pmatrix}
 x_i^s \\
 y_i^s
\end{pmatrix}
= \mathcal{T}_\theta(G_i) = A_\theta
\begin{pmatrix}
 x_i^t \\
 y_i^t \\
 1
\end{pmatrix}
= \begin{bmatrix}
 \theta_{11} & \theta_{12} & \theta_{13} \\
 \theta_{21} & \theta_{22} & \theta_{23}
\end{bmatrix}
\begin{pmatrix}
 x_i^t \\
 y_i^t \\
 1
\end{pmatrix}
\]
Spatial Transformer

• Differentiable Image Sampling

Any sampling kernel

\[
V_i^c = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^c k(x_i^s - m; \Phi_x) k(y_i^s - n; \Phi_y)
\]

- target value
- source value
- sampling grid coordinate (not integer necessarily)
Spatial Transformer

• Differentiable Image Sampling

Integer sampling

\[V_i^c = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^c \delta([x^s_i + 0.5] - m)\delta([y^s_i + 0.5] - n) \]

- target value
- source value
- sampling grid coordinate (not integer necessarily)
Spatial Transformer

- Differentiable Image Sampling

Bilinear sampling

\[V_i^c = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|) \]

- Target value
- Source value
- Sampling grid coordinate (not integer necessarily)
Spatial Transformer

- Differentiable Image Sampling

To allow backpropagation of the loss through this sampling mechanism, gradients with respect to U and G can be defined as:

\[
\frac{\partial V^c_i}{\partial U^c_{nm}} = \sum_n \sum_m \max(0, 1 - |x^s_i - m|) \max(0, 1 - |y^s_i - n|)
\]

\[
\frac{\partial V^c_i}{\partial x^s_i} = \sum_n \sum_m U^c_{nm} \max(0, 1 - |y^s_i - n|) \begin{cases}
0 & \text{if } |m - x^s_i| \geq 1 \\
1 & \text{if } m \geq x^s_i \\
-1 & \text{if } m < x^s_i
\end{cases}
\]
Spatial Transformer Networks

• Placing spatial transformers within a CNN allows the network to learn how to actively transform the feature maps to help minimise the overall cost function of the network during training.

• The knowledge of how to transform each training sample is compressed and cached in the weights of the localisation network.
Spatial Transformer Networks

• For some tasks, it may also be useful to feed the output of the localisation network θ, forward to the rest of the network, as it explicitly encodes the transformation, and hence the **pose of a region or object**.

• It is possible to use spatial transformers to downsample or oversample a feature map.
Spatial Transformer Networks

• It is possible to have **multiple spatial transformers** in a CNN.

• Multiple spatial transformers **in parallel** can be useful if there are **multiple objects or parts** of interest in a feature map that should be focussed on individually.
Experiments

• Distorted versions of the MNIST handwriting dataset for classification
• A challenging real-world dataset, Street View House Numbers for number recognition
• CUB-200-2011 birds dataset for fine-grained classification by using multiple parallel spatial transformers
Experiments

• MNIST data that has been distorted in various ways: rotation (R), rotation, scale and translation (RTS), projective transformation (P), and elastic warping (E).

• Baseline fully-connected (FCN) and convolutional (CNN) neural networks are trained, as well as networks with spatial transformers acting on the input before the classification network (ST-FCN and ST-CNN).
Experiments

- The spatial transformer networks all use different transformation functions: an affine (Aff), projective (Proj), and a 16-point thin plate spline transformations (TPS)
Experiments

- **Affine Transform** (error %)

![Bar Chart](chart.png)

Okay ARIK
Experiments

• **Projective Transform** (error %)

![Bar chart showing projective transform error percentages for different categories: R, RTS, P, and E. The chart compares CNN and ST-CNN models.](chart.png)
Experiments

- **Thin Plate Spline** (error %)

![Bar chart showing error percentages for Thin Plate Spline]
Experiments

- **Street View House Numbers (SVHN)**
- This dataset contains around 200k real world images of house numbers, with the task to recognise the sequence of numbers in each image
Experiments

- Data is preprocessed by taking 64×64 crops and more loosely 128×128 crops around each digit sequence.
Experiments

- Comparative results (error %)

<table>
<thead>
<tr>
<th></th>
<th>Maxout CNN</th>
<th>Ours</th>
<th>DRAM</th>
<th>ST-CNN Single</th>
<th>ST-CNN Multi</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>4</td>
<td>4</td>
<td>3.9</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td>5.6</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Okay ARIK
Experiments

• Fine-Grained Classification
• CUB-200-2011 birds dataset contains 6k training images and 5.8k test images, covering 200 species of birds.
• The birds appear at a range of scales and orientations, are not tightly cropped.
• Only image class labels are used for training.
Experiments

• Baseline CNN model is an Inception architecture with batch normalisation pretrained on ImageNet and fine-tuned on CUB.
• It achieved the state-of-the-art accuracy of 82.3% (previous best result is 81.0%).
• Then, spatial transformer network, ST-CNN, which contains 2 or 4 parallel spatial transformers are trained.
Experiments

• The transformation predicted by 2×ST-CNN (top row) and 4×ST-CNN (bottom row)
Experiments

• One of the transformers learns to detect heads, while the other detects the body.
Experiments

- The accuracy on CUB (%)
Conclusion

• We introduced a new self-contained module for neural networks.
• We see gains in accuracy using spatial transformers resulting in state-of-the-art performance.
• Regressed transformation parameters from the spatial transformer are available as an output and could be used for subsequent tasks.