Course Introduction

BBM 101 - Introduction to Programming I

Hacettepe University Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Welcome to BBM 101

- This course teaches core programming concepts with an emphasis on data manipulation tasks from science, engineering, and business
- Goal by the end of the semester: Given a data source and a problem description, you can independently write a complete, useful program to solve the problem

Course Staff

• Lecturers:

- Asst. Prof. Dr. Fuat Akal
- Asst. Prof. Dr. Aykut Erdem
- Asst. Prof. Dr. Erkut Erdem
- Assoc. Prof. Dr. Vahid Garousi

Course Staff

- TAs (teaching assistants):
 - Burçak Asal
 - Feyza Nur Çubukçuoğlu
 - Levent Karacan
 - Selim Yılmaz

Do not hesitate to ask TAs for help!

Learning Objectives

- Computational problem-solving
 - Writing a program will become your "go-to" solution for data analysis tasks.
- Basic Python proficiency
 - Including experience with relevant libraries for data manipulation, scientific computing, and visualization.
- Experience working with real datasets
 - astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 - You will see that these are easy to process with a program, and that doing so yields insight.

What This Course is <u>not</u>

- A "skills course" in Python
 - ...though you will become proficient in the basics of the Python programming language
 - ...and you will gain experience with some important Python libraries
- A data analysis / "data science" / data visualization course
 - There will be very little statistics knowledge assumed or taught
- A "project" course
 - the assignments are "real," but are intended to teach specific programming concepts
- A "software engineering" course
 - Programming is the starting point of computer science and software engineering

-- Roger Barga, Microsoft Research

"The greatest minds of my generation are trying to figure out how to make people click on ads"

-- Jeff Hammerbacher, co-founder, Cloudera

All of Science is Reducing to Computational Data Manipulation

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis)

New model: "Download the world" (Data acquisition supports many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Example: Assessing Treatment Efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	G		<u> </u>		0	0_{7in}	code of clinic	98405	98445
5	3			follow up		5	5	code of cliffic	98405	98332
6	0	(wit	:hin 16 w	reeks afte	er	0	0	0	08/05	98 405
7	2	; tre	atment (enrollmer	nt.	2	2	Zip code (of patient	3402
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0	Question: Does the distance between the							98405	98404
11	0								98405	98402
12	1	patient's home and clinic influence the number							98405	98405
13	1	of follow ups, and therefore treatment efficacy?							98404	98404
14	2	O_{j}	TOW UP	<i>-</i>	uncicy			cjjicacy:	98499	98498
15	0	0	0	0	0	0	0	0	98499	98445
16	1	2	4	5	7	7	7	7	98499	98405
17	1	1	1	2	2	2	2	2	98499	98498

Python Program to Assess Treatment Efficacy

```
# This program reads an Excel spreadsheet whose penultimate
# and antepenultimate columns are zip codes.
# It adds a new last column for the distance between those zip
# codes, and outputs in CSV (comma-separated values) format.
# Call the program with two numeric values: the first and last
# row to include.
# The output contains the column headers and those rows.
# Libraries to use
import random
import sys
                # library for working with Excel spreadsheets
import xlrd
import time
from gdapi import GoogleDirections
# No key needed if few gueries
gd = GoogleDirections('dummy-Google-key')
wb = xlrd.open workbook('mhip zip eScience 121611a.xls')
sheet = wb.sheet by index(0)
# User input: first row to process, first row not to process
first row = max(int(sys.argv[1]), 2)
row limit = min(int(sys.argv[2]+1), sheet.nrows)
def comma separated(lst):
 return ",".join([str(s) for s in lst])
```

```
headers = sheet.row values(0) + ["distance"]
print comma separated(headers)
for rownum in range(first row,row limit):
  row = sheet.row values(rownum)
  (zip1, zip2) = row[-3:-1]
  if zip1 and zip2:
    # Clean the data
    zip1 = str(int(zip1))
    zip2 = str(int(zip2))
    row[-3:-1] = [zip1, zip2]
    # Compute the distance via Google Maps
      distance = gd.query(zip1,zip2).distance
    except:
      print >> sys.stderr, "Error computing distance:", zip1, zip2
      distance = ""
   # Print the row with the distance
   print comma separated(row + [distance])
   # Avoid too many Google queries in rapid succession
   time.sleep(random.random()+0.5)
```

23 lines of executable code!

Course Logistics

- Website: http://web.cs.hacettepe.edu.tr/~bbm101/
- See the website for all administrative details
- Read the handouts and required texts, before the lecture
- Take notes!
- Follow the course in Piazza
 https://piazza.com/hacettepe.edu.tr/
 fall2015/bbm101

Academic Integrity

- Honest work is required of a scientist or engineer.
- Collaboration policy on the course web. Read it!
 - Discussion is permitted.
 - Carrying materials from discussion is not permitted.
 - Everything you turn in must be your own work.
 - Cite your sources, explain any unconventional action.
 - You may not view others' work.
 - If you have a question, ask.
- We trust you completely.
- But we have no sympathy for trust violations nor should you!

How to Succeed

- No prerequisites
- Non-predictors for success:
 - Past programming experience
 - Enthusiasm for games or computers
- Programming and data analysis are challenging
- Every one of you can succeed
 - There is no such thing as a "born programmer"
 - Work hard
 - Follow directions
 - Be methodical
 - Think before you act
 - Try on your own, then ask for help
 - Start early

Integrated Development Environment (IDE)

There are many!

Our Recommendation: PyCharm

Python Version

 Whatever IDE you choose to work with, always stick to Python version 2.7.10

Always use this version to code your assignments.

Books

• There are many!

Our Recommendation for Books

- <u>The Python Tutorial</u>, available from the Python website.
 - This is good for explaining the nuts and bolts of how Python works.
- Think Python, 2nd edition
 - Freely available online in HTML and PDF.
 - Also available for purchase as a printed book, but don't buy the first edition.
 - This book introduces more conceptual material, motivating computational thinking.
- There is an <u>interactive version of "How to Think Like a Computer Scientist"</u> (the first edition of "Think Python"), which lets you type and run Python code directly while reading the book.

Introduction to Python and Programming

BBM 101 - Introduction to Programming I

Hacettepe University Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

1. Python is a calculator

3. Different types cannot be compared

2. A variable is a container

4. A program is a recipe

1. Python is Like a Calculator

You Type Expressions. Python Computes Their Values.

- 5
- 3+4
- 44/2
- 2**3
- 3*4+5*6
 - If precedence is unclear, use parentheses
- (72 32) / 9 * 5

An Expression is Evaluated From the Inside Out

How many expressions are in this Python code?

Another Evaluation Example

```
(72 - 32) / (9.0 * 5)
(40) / (9.0 * 5)
40 / (9.0 * 5)
40 / (45.0)
40 / 45.0
.888
```

2. A Variable is a Container

Variables Hold Values

Recall variables from algebra:

```
- \text{ Let } x = 2 ...
- \text{ Let } y = x ...
```

To assign a variable, use "varname = expression"

```
pi = 3.14
pi
var = 6*10**23
22 = x  # Error!
```

Not all variable names are permitted

No output from an

assignment statement

Changing Existing Variables ("re-binding" or "re-assigning")

```
x = 2
x
y = 2
y
x = 5
x
```

- "=" in an assignment is not a promise of eternal equality
 - This is different than the mathematical meaning of "="
- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one

How an Assignment is Executed

- 1. Evaluate the right-hand side to a value
- 2. Store that value in the variable

x: 2 y: 2

z: 3

Printed output:

To visualize a program's execution: http://pythontutor.com

More Expressions: Conditionals (value is True or False)

```
22 > 4
             # condition, or conditional
22 < 4
             # condition, or conditional
22 == 4
x == 100
             # Assignment, not conditional!
22 = 4 # Error!
x >= 5
x >= 100
                         Numeric operators: +, *, **
x >= 200
                         Boolean operators: not, and, or
not True
                         Mixed operators: <, >=, ==
not (x >= 200)
3<4 and 5<6
4<3 or 5<6
temp = 72
water is liquid = (temp > 32 and temp < 212)</pre>
                                                         11
```

More Expressions: strings

A string represents text

```
'Python'
myString = "BBM 101-Introduction to Programming"
```

Empty string is not the same as an unbound variable

"" and " are the same

Operations:

• Length:

```
len (myString)
```

Concatenation:

```
"Hacettepe" + " " + ' University'
```

Containment/searching:

```
`a' in myString
"a" in myString
```

3. Different Types cannot be Compared

```
anInt = 2
aString = "Hacettepe"
anInt == aString # Error
```


Types of Values

- Integers (int): -22, 0, 44
 - Arithmetic is exact
 - Some funny representations: 12345678901L
- Real numbers (float, for "floating point"): 2.718,
 3.1415
 - Arithmetic is approximate, e.g., 6.022*10**23
 - Some funny representations: 6.022e+23
- Strings (str): "I love Python", ""
- Truth values (bool, for "Boolean"):
 True, False

George Boole

Operations Behave differently on Different Types

```
3.0 + 4.0

3 + 4.0

"3" + "4" # Concatenation

3 + "4" # Error

3 + True # Error
```

Moral: Python only *sometimes* tells you when you do something that does not make sense.

Operations on Different Types

```
15.0 / 4.0
15 / 4
15.0 / 4
15 / 4.0
Type conversion:
  float(15)
  int(15.0)
  int(15.5)
  int("15")
  str(15.5)
  float(15) / 4
```

A Program is a Recipe

Design the Algorithm Before Coding

- We should think (design the algorithm) before coding
- Algorithmic thinking is the logic. Also, called problem solving
- Coding is the syntax
- Make this a habit
- Some students do not follow this practice and they get challenged in all their courses and careers!

What is a Program?

- A program is a sequence of instructions
- The computer executes one after the other, as if they had been typed to the interpreter
- Saving your work as a program is better than re-typing from scratch

```
x = 1
y = 2
x + y
print(x + y)
print("The sum of", x, "and", y, "is", x+y)
```

The print() Statement

- The print statement always prints one line
 - The next print statement prints below that one
- Write 0 or more expressions after print, separated by commas
 - In the output, the values are separated by spaces
- Examples:

```
x=1
y=2
print(3.1415)
print(2.718, 1.618)
Print()
print(20 + 2, 7 * 3, 4 * 5)
print("The sum of", x, "and", y, "is", x+y)
```

Exercise: Convert Temperatures

- Make a temperature conversion chart as the following
- Fahrenheit to Centigrade, for Fahrenheit values of: -40, 0, 32, 68, 98.6, 212
- $C = (F 32) \times 5/9$
- Output:

```
Fahrenheit Centigrade
-40 -40.0
0 -17.7778
32 0.0
68 20.0
98.6 37.0
212 100.0
```

- You have created a Python program!
- (It doesn't have to be this tedious, and it won't be.)

Expressions, Statements, and Programs

• An expression evaluates to a value

A statement causes an effect

```
pi = 3.14159
print(pi)
```

Expressions appear within other expressions and within statements

```
(fahr - 32) * (5.0 / 9)
print(pi * r**2)
```

• A statement may *not* appear within an expression

```
3 + print(pi) # Error!
```

- A program is made up of statements
 - A program should do something or communicate information

print() Function

```
print(3 * 2)
      print(3 * "abc")
      print (True)
      print (False)
      print (None)
Run e main
         C:\Python34\python.exe C:/Users/Vahid/PycharmProjects/untitled/main.py
        abcabcabc
        True
    <u>4-5</u>
         False
None
```

1. Python is a calculator

3. Different types cannot be compared

2. A variable is a container

4. A program is a recipe

Programming Languages

- A programming language is a "language" to write programs in, such as Python, C, C++, Java
- The concept of programming languages are quite similar

```
    Python: print("Hello, World!")
```

```
    Java: public static void main(String[] args) {
        System.out.println("Hello, World");
    }
```

Python is simpler! That's why we are learning it first ©

Evolution of Programming Languages

Most Popular Coding Languages of 2015

http://blog.codeeval.com/codeevalblog/2015