Sets

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140
University of Washington

Sets

* Mathematical set: a collection of values, without duplicates
or order

* Order does not matter
{1,2,3}=={3,2,1}

* No duplicates
{3l 1’4I1I5}=={5I4’311}

* For every data structure, ask:
— How to create
— How to query (look up) and perform other operations
* (Canresultin a new set, or in some other datatype)
— How to modify
Answer: http://docs.python.org/2/library/stdtypes.html#set

Two Ways to Create a Set

1. Direct mathematical syntax:

odd = { 1, 3, 5}
prime = { 2, 3, 5}

Cannot express empty set: “{}” means something else ®

2. Construct from a list:

odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

Python always prints using this syntax above

Set Operations

odd = {1, 3, 5}
= {

prime 2, 3, 5}

* membership € Python: in 4 in prime = False

e union U Python: | odd | prime ={1,2,3,5}
e intersection N Python: & odd & prime ={3,5}

» difference \ or - Python: - odd - prime ={1}

Think in terms of set operations,
not in terms of iteration and element operations

— Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order
for item in myset:

But we cannot index into a set to access a specific element. .

Modifying a Set

* Add one element to a set:

myset.add (newelt)
myset = myset | { newelt }

* Remove one element from a set:
myset.remove (elt) #elt must beinmyset orraiseserr
myset.discard(elt) #nevererrs
myset = myset - { elt }

What would this do?
myset = myset - elt

* Choose and remove some element from a set:
myset.pop ()

Practice with Sets

{5,6,7,8}
{1,2,3,"foo",1,5}
=z &y

=z |y

=y -z

.add (9)

N B8 u & K N
|

List vs. Set Operations (1)

Find the common elements in both listl and list2:
outl =]
foriin list2:
if iin list1:
outl .append(i)

We will learn about list comprehensions later
outl =[iforiinlist2 ifiin list1]

Find the common elements in both setl and set2:
setl & set2

Much shorter, clearer, easier to write!

List vs. Set Operations (2)

Find the elements in either list1 or list2 (or both) (without duplicates):

out2 = list(list1) # make a copy
foriin list2:
if i notin list1: # don’t append elements already in out2

out2.append(i)

OR
out2 = list1+list2
foriin outl: # outl (from previous example), common
elements in both lists
out2.remove(i) # Remove common elements

Find the elements in either setl or set2 (or both):
setl | set2

List vs. Set operations (3)

Find the elements in either list but not in both:

out3 =]
foriin list1+list2:
if i notin listl ori notin list2:

out3.append(i)

Find the elements in either set but not in both:

setl A set2

Not Every Value may be Placed in a Set

* Set elements must be immutable values
— int, float, bool, string, tuple
— not: list, set, dictionary

* Goal: only set operations change the set
— after “myset.add(x)”, x in myset=> True
— y in myset always evaluates to the same value
Both conditions should hold until myset itself is changed

* Mutable elements can violate these goals

listl = ["a", "b"]

list2 = listl

list3 = ["a", "b"]

myset = { listl } < Hypothetical; actually illegal in Python

listl in myset = True

list3 in myset = True

list2.append("c") < not modifying myset “directly”
listl in myset = ??? modifying myset “indirectly” would
1list3 in myset = ??? lead to different results

