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Sets

* Mathematical set: a collection of values, without duplicates
or order

* Order does not matter
{1,2,3}=={3,2,1}

* No duplicates
{3l 1’4I1I5}=={5I4’311}

* For every data structure, ask:
— How to create
— How to query (look up) and perform other operations
* (Canresultin a new set, or in some other datatype)
— How to modify
Answer: http://docs.python.org/2/library/stdtypes.html#set

Two Ways to Create a Set

1. Direct mathematical syntax:

odd = { 1, 3, 5}
prime = { 2, 3, 5}

Cannot express empty set: “{}” means something else ®

2. Construct from a list:

odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

Python always prints using this syntax above

Set Operations

odd = {1, 3, 5}
= {

prime 2, 3, 5}

* membership € Python: in 4 in prime = False

e union U Python: | odd | prime ={1,2,3,5}
e intersection N Python: & odd & prime ={3,5}

» difference \ or - Python: - odd - prime ={1}

Think in terms of set operations,
not in terms of iteration and element operations

— Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
# iterates over items in arbitrary order
for item in myset:

But we cannot index into a set to access a specific element. .




Modifying a Set

* Add one element to a set:

myset.add (newelt)
myset = myset | { newelt }

* Remove one element from a set:
myset.remove (elt) #elt must beinmyset orraiseserr
myset.discard(elt) #nevererrs
myset = myset - { elt }

What would this do?
myset = myset - elt

* Choose and remove some element from a set:
myset.pop ()

Practice with Sets

{5,6,7,8}
{1,2,3,"foo",1,5}
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List vs. Set Operations (1)

Find the common elements in both listl and list2:
outl =]
foriin list2:
if iin list1:
outl .append(i)

# We will learn about list comprehensions later
outl =[iforiinlist2 ifiin list1]

Find the common elements in both setl and set2:
setl & set2

Much shorter, clearer, easier to write!

List vs. Set Operations (2)

Find the elements in either list1 or list2 (or both) (without duplicates):

out2 = list(list1) # make a copy
foriin list2:
if i notin list1: # don’t append elements already in out2

out2.append(i)

OR
out2 = list1+list2
foriin outl: # outl (from previous example), common
# elements in both lists
out2.remove(i) # Remove common elements

Find the elements in either setl or set2 (or both):
setl | set2




List vs. Set operations (3)

Find the elements in either list but not in both:

out3 =]
foriin list1+list2:
if i notin listl ori notin list2:

out3.append(i)

Find the elements in either set but not in both:

setl A set2

Not Every Value may be Placed in a Set

* Set elements must be immutable values
— int, float, bool, string, tuple
— not: list, set, dictionary

* Goal: only set operations change the set
— after “myset.add(x)”, x in myset=> True
— y in myset always evaluates to the same value
Both conditions should hold until myset itself is changed

* Mutable elements can violate these goals

listl = ["a", "b"]

list2 = listl

list3 = ["a", "b"]

myset = { listl } < Hypothetical; actually illegal in Python

listl in myset = True

list3 in myset = True

list2.append("c") < not modifying myset “directly”
listl in myset = ??? modifying myset “indirectly” would
1list3 in myset = ??? lead to different results




