Sorting

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140
University of Washington

Sorting

hamlet = "to be or not to be that is the
question whether tis nobler in the mind to
suffer" .split()

print "hamlet:", hamlet

print "sorted(hamlet) :", sorted(hamlet)
print "hamlet:", hamlet

print "hamlet.sort():", hamlet.sort()
print "hamlet:", hamlet

e Lists are mutable —they can be changed
— including by functions

Sorting

hamlet = "to be or not to be that is the question whether tis nobler in the mind to suffer".split()
print ("hamlet:", hamlet)

print ("sorted(hamlet) :", sorted(hamlet))
print ("hamlet:", hamlet)

print ("hamlet.sort():", hamlet.sort())
print("hamlet:", hamlet)

Run ¢ main
’ C:\Python34\python.exe C:/Users/Vahid/PycharmProjects/untitled/main.py
hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is', 'the', 'question', 'whether', 'tis', 'nobler’',

I 2 'in', 'the', 'mind', 'to', 'suffer']
il . sorted (hamlet): ['be', 'be', 'in', 'is', 'mind', 'nobler', 'not', 'or', 'question', 'suffer', 'that', 'the',
I "the', 'tis', 'to', 'to', 'to', 'whether']
%’ B hamlet: ['te', 'be', 'or', 'not', 'te', 'be', 'that', 'is', 'the', 'question', 'whether', 'tis', 'nobler’',

= 'in', 'the', 'mind', 'to', 'suffer']

0}

ﬁ hamlet.sort(): None

hamlet: ['be', 'be', 'in', 'is', 'mind', 'nobler', 'not', 'or', 'question', 'suffer', 'that', 'the', 'the’,
'tis', 'to', 'to', 'to', 'whether']

.\,x‘(;’

Process finished with exit code 0

Customizing the Sort Order

Goal: sort a list of names by last name

names = ["Isaac Newton'", "Albert Einstein", '"Niels
Bohr", "Marie Curie", "Charles Darwin'", "Louis
Pasteur", "Galileo Galilei", "Margaret Mead"]

print "names:", names

This does NOT work:

print "sorted(names) :", sorted(names)
When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

Sort Key

A sort key is a different value that you use to sort a list,
instead of the actual values in the list

def last name(str):
return str.split(" ") [1]

print 'last name ("Isaac Newton"):',
last name ("Isaac Newton")

Two ways to use a sort key:

1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function

1. Use a Sort Key to Create a New List

Create a different list that contains the sort key, sort it, then extract the relevant part:

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
keyed names is a list of [lastname, fullname] lists

keyed names = []

for name in names: — 1) Create the new list.
B !

keyed names.append([last name (name), name])

Take a look at the list you created, it can now be sorted:

print "keyed names:", keyed names

print "sorted(keyed names):", sorted(keyed names)
print "sorted(keyed names, reverse = True):"

print sorted(keyed names, reverse = True)

(This works because Python compares two elements that are lists elementwise.)

sorted keyed names = sorted(keyed names, reverse = True) 4 2 st e o neey (15

sorted names = []

for keyed name in sorted keyed names:

sorted names.append (keyed name[1]) " 3) Extract the relevant part.

print "sorted names:", sorted names

2. Use a Sort Key as the Key Argument

Supply the key argument to the sorted function or the sort function

def last name(str):
return str.split (" ") [1]
names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
print "sorted(names, key = last name) :"
print sorted(names, key = last name)

print "sorted(names, key = last name, reverse = True):"
print sorted(names, key = last name, reverse = True)

print sorted(names, key = len)

def last name len (name):
return len(last name (name))

print sorted(names, key = last name len)

itemgetter is a Function
that Returns a Function

import operator All: (*m', 'i', 'k', ‘'e')
print (operator.itemgetter (2, 7, 9, 10) ("dumbstricken"))
operator.itemgetter(2, 5, 7, 9) ("homesickness")

operator.itemgetter (2, 7, 9, 10) ("pumpernickel")

7) ("seminaked")

~

9
operator.itemgetter (2, 3, 6
operator.itemgetter(l, 2, 4, 5) ("smirker")
operator.itemgetter (9, 7, 6, 1) ("beatnikism")
operator.itemgetter (14, 13, 5, 1) ("Gedankenexperiment'")

operator.itemgetter (12, 10, 9, 5) ("mountebankism'")

Using itemgetter

from operator import itemgetter

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter (1) (student score) = 8

student scores =
[('Robert', 8), ('Alice',6 9), ('Tina', 7)]

e Sort the list by name:
sorted (student scores, key=itemgetter (0)

e Sort the list by score

sorted (student scores, key=itemgetter(1l))

Two Ways to Import 1 temgetter

from operator import itemgetter
student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter(l) (student score) = 8

Or

import operator
student score = ('Robert', 8)
operator.itemgetter (0) (student score) = “Robert”

operator.itemgetter(l) (student score) = 38

10

Sorting Based on Two Criteria

Two approaches:
Approach #1: Use an itemgetter with two arguments
Approach #2: Sort twice (most important sort last)

student scores = [('Robert', 8), ('Alice',6 9),
('Tina', 10), ('James', 8)]

Goal: sort based on score;
if there is a tie within score, sort by name

Approach #1:

sorted (student scores, key=itemgetter(1l,0))

Approach #2:

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by score = sorted(sorted by name, key=itemgetter(l))

11

Sort on Most Important Criteria LAST

e Sorted by score (ascending), when there is a
tie on score, sort using name

from operator import itemgetter

student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10),
('James', 8)]

sorted by name = sorted(student_scores, key=itemgetter (0))
>>> sorted by name

[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]
sorted by score = sorted(sorted by name, key=itemgetter(l))
>>> sorted by score

[('James', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]

12

More Sorting Based on Two Criteria

If you want to sort different criteria in different directions, you
must use multiple calls to sort or sorted

student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10),
('James', 8)]

Goal: sort score from highest to lowest; if there is a tie within score,
sort by name alphabetically (= lowest to highest)

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by hi score = sorted(sorted by name,
key=itemgetter (l) , reverse=True)

13

Sorting: strings vs. numbers

e Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])

[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

14

Different sorting algorithms

3.1 Simple sorts
3.1.1 Insertion sort
3.1.2 Selection sort

3.2 Efficient sorts
3.2.1 Merge sort
3.2.2 Heapsort
3.2.3 Quicksort

3.3 Bubble sort and vanants
3.3.1 Bubble sort
3.3.2 Shell sort
3.3.3 Comb sort

3.4 Distribution sort
3.4.1 Counting sort
3.4.2 Bucket sort
3.4.3 Radix sort

€ - C @ https://enwikipedia.org/wiki/Sorting_algorithm

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help

Article Talk

Sorting algorithm

From Wikipedia, the free encyclopedia

A sorting algorithm is an algorithm that puts elements of a list in a certi
which require input data to be in sorted lists; it is also often useful for cat

1. The output is in nondecreasing order (each element is no smalle
2. The output is a permutation (reordering) of the input.

Further, the data is often taken to be in an array, which allows random a

Since the dawn of computing, the sorting problem has attracted a great.
comparison sorting algorithms is that they require linearithmic time — O(!

15

Insertion sort

e |dea:
5| (2 6 1 3
\Q

2 ‘@ 3
2 IQ 13

=
\2\4 5 éj}ljz

o

l Done !

16

Insertion sort

C' | [} interactivepython.org/courselib/static/pythonds/SortSearch/ThelnsertionSort.htm|

Problem Solving with Algorithms and Data Structures

1def 1
A fo
3

4

5

6

7

8

9
10
11
12
12 alist
14 inserx
15 print
16

nserticonScrt(alist):
r index in range(l,len(alist)):

currentvalue = alist[index]

position = index
while position>0 and alist[position-l]>current
alist[position]=alist[position-1]

position = position-1
alist[position]=currentvalue
= [54,26,93,17,77,31,44,55,20]

tionSort(alist)
(alist)

4|

[17, 20, 26, 31, 44, 54, 55, 77, 93]

17

Bubble Sort

It repeatedly steps through the list to be
sorted,

compares each pair of adjacent items and
swaps them if they are in the wrong order.

The pass through the list is repeated until no
swaps are needed, which indicates that the
list is sorted.

The algorithm, which is a comparison sort, is
named for the way smaller elements
"bubble" to the top of the list.

18

Bubble Sort

def bubbleSort(alist):
for passnum in range(len(alist)-1,0,-1):
for i in range (passnum) :
if alist[i]>alist[i+1]:
temp = alist[i]
alist[i] = alist[i+1]
alist[i+l] = temp

alist = [54,26,93,17,77,31,44,55,20]
bubbleSort (alist)
print (alist)

~ = C' [J www.sorting-algorithms.com

Sorting Algorithm Animations

Algorithm: Insertion - Selection - Bubble - Shell - Merge - Heap - Quick - Quick3

Initial Condition: Random - Nearly Sorted - Reversed - Few Unique

|2

e

Insertion

e

Bubble

©

Quick

12

Quick3

12

e

Nearly Sorted

e

Reversed

Few Unique

I -..II|||||”” |||||||||l||.. -||‘n‘||||“|- 5
@ @

o

o

=}

)
4

