
Debugging	

BBM	101	-	Introduc/on	to	Programming	I	
	

Hace7epe	University		
Fall	2015	

	
Fuat	Akal,	Aykut	Erdem,	Erkut	Erdem,	Vahid	Garousi	

	

1	Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140	
University	of	Washington	

Example:	Write	a	Func5on	

Write	a	func/on	that	will	return	the	set	of	a	
user’s	friends	with	a	par/cular	user	removed	
from	that	set.	

2	

The	Problem	

What	you	want	
your	program	to	do	

What	your	program	does	

Not	the	same!	

3	

There	is	a	bug!	

What	is	Debugging?	

•  Grace	Hopper	was	one	of	U.S.’s	first	programmers.	
•  She	found	a	moth	in	the	Mark	I	computer,	which	was	
causing	errors,	and	called	it	a	computer	“bug”	

•  Thus,	the	word	debugging	is	coined	J	

4	

Debugging	Tools	

•  Python	error	message	
•  assert
•  print
•  Python	interpreter	
•  Python	Tutor	(h7p://pythontutor.com)	
•  Python	debugger	
•  Best	tool:			

5	

Two	Key	Ideas	
1.  The	scien/fic	method	
2.  Divide	and	conquer	
	
If	you	master	those,	you	will	find	debugging	
easy,	and	possibly	enjoyable	;-)		

6	

The	Scien5fic	Method	
1.  Create	a	hypothesis	
2.  Design	an	experiment	to	test	that	hypothesis	

–  Ensure	that	it	yields	insight	
3.  Understand	the	result	of	your	experiment	

–  If	you	don’t	understand,	then	possibly	suspend	your	main	line	of	
work	to	understand	that	

Tips:	
•  Be	systema/c	

–  Never	do	anything	if	you	don't	have	a	reason	
–  Don’t	just	flail	

•  Random	guessing	is	likely	to	dig	you	into	a	deeper	hole	
•  Don’t	make	assump/ons	(verify	them)	

7	

Example	Experiments	

1.  An	alternate	implementa/on	of	a	func/on	
– Run	all	your	test	cases	aferward	
	

2.  A	new,	simpler	test	case	
– Examples:		smaller	input,	or	test	a	func/on	in	
isola/on	

– Can	help	you	understand	the	reason	for	a	failure	

8	

Your	Scien5fic	Notebook	
Record	everything	you	do	
•  Specific	inputs	and	outputs	(both	expected	and	actual)	
•  Specific	versions	of	the	program	

–  If	you	get	stuck,	you	can	return	to	something	that	works	
–  You	can	write	mul/ple	implementa/ons	of	a	func/on	

•  What	you	have	already	tried	
•  What	you	are	in	the	middle	of	doing	now	

–  This	may	look	like	a	stack!	
•  What	you	are	sure	of,	and	why	
	
Your	notebook	also	helps	if	you	need	to	get	help	or	reproduce	
your	results	

9	

Read	the	Error	Message	
Traceback (most recent call last):
 File "nx_error.py", line 41, in <module>
 print friends_of_friends(rj, myval)
 File "nx_error.py", line 30, in friends_of_friends
 f = friends(graph, user)
 File "nx_error.py", line 25, in friends
 return set(graph.neighbors(user))#
 File "/Library/Frameworks/…/graph.py", line 978, in neighbors
 return list(self.adj[n])
TypeError: unhashable type: 'list'
	
	
List	of	all	excep/ons	(errors):	
h7p://docs.python.org/2/library/excep/ons.html#bl/n-excep/ons	
Two	other	resources,	with	more	details	about	a	few	of	the	errors:	
h7p://inventwithpython.com/appendixd.html	
h7p://www.cs.arizona.edu/people/mccann/errors-python	
	

Call	stack	or	traceback	

First	func/on	that	was	
called	(<module>
means	the	interpreter)	

Second	func/on	
that	was	called	

Last	func/on	that	
was	called	(this	one	
suffered	an	error)	

The	error	message:	
daun/ng	but	useful.	
You	need	to	understand:	
•  the	literal	meaning	of	

the	error	
•  the	underlying	

problems	certain	
errors	tend	to	suggest	

10	

Common	Error	Types	
•  Asser/onError	

–  Raised	when	an	assert	statement	fails.	

•  IndexError	
–  Raised	when	a	sequence	subscript	is	out	of	range.	

•  KeyError	
–  Raised	when	a	mapping	(dic/onary)	key	is	not	found	in	the	set	of	exis/ng	keys.	

•  KeyboardInterrupt	
–  Raised	when	the	user	hits	the	interrupt	key	(normally	Control-C	or	Delete).		

•  NameError	
–  Raised	when	a	local	or	global	name	is	not	found.		

•  SyntaxError	
–  Raised	when	the	parser	encounters	a	syntax	error.		

•  Indenta/onError	
–  Base	class	for	syntax	errors	related	to	incorrect	indenta/on.	

•  TypeError	
–  Raised	when	an	opera/on	or	func/on	is	applied	to	an	object	of	inappropriate	type.	 11	

Divide	and	Conquer	
•  Where	is	the	defect	(or	“bug”)?	
•  Your	goal	is	to	find	the	one	place	that	it	is	
•  Finding	a	defect	is	ofen	harder	than	fixing	it	

•  Ini/ally,	the	defect	might	be	anywhere	in	your	program	
–  It	is	imprac/cal	to	find	it	if	you	have	to	look	everywhere	

•  Idea:		bit	by	bit	reduce	the	scope	of	your	search	
•  Eventually,	the	defect	is	localized	to	a	few	lines	or	one	line	

–  Then	you	can	understand	and	fix	it	

•  4	ways	to	divide	and	conquer:	
–  In	the	program	code	
–  In	test	cases	
–  During	the	program	execu/on	
–  During	the	development	history	

12	

Divide	and	Conquer	in	the	Program	Code	

•  Localize	the	defect	to	part	of	the	program	
–  e.g.,	one	func/on,	or	one	part	of	a	func/on	

•  Code	that	isn’t	executed	cannot	contain	the	defect	

3	approaches:	
•  Test	one	func/on	at	a	/me	
•  Add	asser/ons	or	print	statements	

–  The	defect	is	executed	before	the	failing	asser/on	(and	maybe	afer	a	
succeeding	asser/on)	

•  Split	complex	expressions	into	simpler	ones	
Example:	Failure	in	
 result = set({graph.neighbors(user)})
Change	it	to	
 nbors = graph.neighbors(user)
 nbors_set = {nbors}
 result = set(nbors_set)
The	error	occurs	on	the	“nbors_set	=	{nbors}"	line	

13	

Divide	and	Conquer	in	Test	Cases	

•  Your	program	fails	when	run	on	some	large	input	
–  It’s	hard	to	comprehend	the	error	message	
–  The	log	of	print	statement	output	is	overwhelming	
	

•  Try	a	smaller	input	
–  Choose	an	input	with	some	but	not	all	characteris/cs	of	
the	large	input	

–  Example:		duplicates,	zeroes	in	data,	…	

14	

Divide	and	Conquer	in	Execu5on	Time	
via	Print	(or	“logging”)	Statements	

•  A	sequence	of		print		statements	is	a	record	of	the	
execu/on	of	your	program	

•  The		print		statements	let	you	see	and	search	
mul/ple	moments	in	/me	

•  Print	statements	are	a	useful	technique,	in	modera/on	
•  Be	disciplined	
–  Too	much	output	is	overwhelming	rather	than	informa/ve	
–  Remember	the	scien/fic	method:		have	a	reason	(a	
hypothesis	to	be	tested)	for	each	print	statement	

–  Don’t	only	use	print	statements	

15	

Divide	and	Conquer	
in	Development	History	

•  The	code	used	to	work	(for	some	test	case)	
•  The	code	now	fails	
•  The	defect	is	related	to	some	line	you	changed	

•  This	is	useful	only	if	you	kept	a	version	of	the	
code	that	worked	(use	good	names!)	

•  This	is	most	useful	if	you	have	made	few	changes	
•  Moral:		test	ofen!	
–  Fewer	lines	to	compare	
–  You	remember	what	you	were	thinking/doing	recently	

16	

A	Metaphor	About	Debugging	
If	your	code	doesn’t	work	as	
expected,	then	by	defini/on	you	
don’t	understand	what	is	going	on.	
	
•  You’re	lost	in	the	woods.	
•  You’re	behind	enemy	lines.			
•  All	bets	are	off.			
•  Don’t	trust	anyone	or	anything.	
	
Don’t	press	on	into	unexplored	
territory	--	go	back	the	way	you	
came!	
(and	leave	breadcrumbs!)	
	

You’re	trying	to	“advance	the	front	lines,”	not	“trailblaze”	
17	

Time-Saving	Trick:		
Make	Sure	You	are	Debugging	the	Right	Problem	

•  The	game	is	to	go	from	“working	to	working”	
•  When	something	doesn’t	work,	STOP!	

–  It’s	wild	out	there!	
•  FIRST:	Go	back	to	the	last	situa/on	that	worked	properly.	

–  Rollback	your	recent	changes	and	verify	that	everything	s/ll	works	as	
expected.		

–  Don’t	make	assump/ons	–	by	defini/on,	you	don’t	understand	the	code	
when	something	goes	wrong,	so	you	can’t	trust	your	assump/ons.	

–  You	may	find	that	even	what	previously	worked	now	doesn’t	
–  Perhaps	you	forgot	to	consider	some	“innocent”	or	uninten/onal	change,	

and	now	even	tested	code	is	broken	
	

18	

A	Bad	Timeline	

•  A	works,	so	celebrate	a	li7le	
•  Now	try	B	
•  B	doesn’t	work	
•  Change	B	and	try	again	
•  Change	B	and	try	again		
•  Change	B	and	try	again	
…	

19	

A	BeSer	Timeline	
•  A	works,	so	celebrate	a	li7le	
•  Now	try	B	
•  B	doesn’t	work	
•  Rollback	to	A	
•  Does	A	s/ll	work?			

–  Yes:	Find	A’	that	is	somewhere	between	A	and	B	
–  No:	You	have	uninten=onally	changed	something	else,	and	there’s	no	

point	futzing	with	B	at	all!	

These	“innocent”	and	unno/ced	changes	happen	more	than	you	would	think!			
•  You	add	a	comment,	and	the	indenta/on	changes.			
•  You	add	a	print	statement,	and	a	func/on	is	evaluated	twice.	
•  You	move	a	file,	and	the	wrong	one	is	being	read	
•  You	are	on	a	different	computer,	and	the	library	is	a	different	version	

20	

Once	You	are	on	Solid	Ground	You	can	
Set	Out	Again	

•  Once	you	have	something	that	works	and	something	
that	doesn’t	work,	it	is	only	a	ma7er	of	/me	
	

•  You	just	need	to	incrementally	change	the	working	
code	into	the	non-working	code,	and	the	problem	will	
reveal	itself.	
	

•  Varia/on:	Perhaps	your	code	works	with	one	input,	but	
fails	with	another.		Incrementally	change	the	good	
input	into	the	bad	input	to	expose	the	problem.	

21	

Simple	Debugging	Tools	

print	
–  shows	what	is	happening	whether	there	is	a	problem	or	
not	

–  does	not	stop	execu/on	
assert	
–  Raises	an	excep/on	if	some	condi/on	is	not	met	
–  Does	nothing	if	everything	works	
–  Example:			assert len(rj.edges()) == 16
–  Use	this	liberally!		Not	just	for	debugging!		

	

22	

