Cultural Areas (Ist ¢.BC)
Belgae [
Celtae [
Aquitani [

Debugging

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2015

Fuat Akal, Aykut Erdem, Erkut Erdem, Vahid Garousi

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140
University of Washington

Example: Write a Function

Write a function that will return the set of a
user’s friends with a particular user removed
from that set.

The Problem

There is a bug!

What you want What your program does
your program to do ’

What is Debugging?

ixv ’

* Grace Hopper was one of U.S.’s first programmers.

* She found a moth in the Mark | computer, which was
causing errors, and called it a computer “bug”

* Thus, the word debugging is coined ©

/4

0w Onkam >w {/d?uo ?.032 gyy 0L5

/000 . s = onhom P4 G.087 §YC 995 <ok
TIPSR S 7415 725055(-3)

033 PRO > 2. (3oya0yiS
L Cons ok 2./50276”::/ .
Fdons G- =~ 033 ful] : ‘T"J ook
{m “« friw 4‘v¢ 3
=7 (5 b} o/&”a)bi

(AL _)’Iﬁ,\rfr—J - C_Dét'V\: ’RR (Sl'hc f-—‘\cck)

IS 25 vhoscted AN wit s r'ﬁ;ci.j:?: Test

IVl @e\m*?o (Pq,\g‘ F

' U\r\ofﬂlnv\ ("-Z\QU\
: Lodml e R R
* Fic. 1. The first computer bug ThF /0 e e o‘{ bq‘l be in‘ {O\MJ\'

ye /

Cnchamnd stands].

Debugging Tools

Python error message

assert

print

Python interpreter

Python Tutor (http://pythontutor.com)

Pyvthon debugger
Best tool:

Cultural Areas (Ist ¢.BC)
Belgae [
Celtae [

Aquitani

Two Key Ideas

1. The scientific method
2. Divide and conquer

If you master those, you will find debugging
easy, and possibly enjoyable ;-)

The Scientific Method

1. Create a hypothesis
2. Design an experiment to test that hypothesis
— Ensure that it yields insight

3. Understand the result of your experiment

— If you don’t understand, then possibly suspend your main line of
work to understand that

Tips:
* Be systematic
— Never do anything if you don't have a reason
— Don’t just flail
* Random guessing is likely to dig you into a deeper hole
 Don’t make assumptions (verify them)

Example Experiments

1. An alternate implementation of a function
— Run all your test cases afterward

2. A new, simpler test case

— Examples: smaller input, or test a function in
isolation

— Can help you understand the reason for a failure

Your Scientific Notebook

Record everything you do
e Specific inputs and outputs (both expected and actual)

e Specific versions of the program
— If you get stuck, you can return to something that works
— You can write multiple implementations of a function

What you have already tried

What you are in the middle of doing now
— This may look like a stack!

What you are sure of, and why

Your notebook also helps if you need to get help or reproduce
your results

Read the Error Message

First function that was
called (<module>

Traceback (most recent call last): means the interpreter)

File "nx error.py", line 41, in <module>

print friends of friends(rj, myval) Second function
File "nx_error.py", line 30, in friends_pf_friend;l~//////'Huﬂ\Nasca“ed
f = friends(graph, user) _J

— Call stack or traceback
File "nx error.py", line 25, in friends

return set(graph.neighbors (user))#

File "/Library/Frameworks/../graph.py",|line 978, in neighbors
return list(self.adj[n])

TypeError: unhashable type: 'list'

Last function that
was called (this one
suffered an error)

List of all exceptions (errors): The error message:
http://docs.python.org/2/library/exceptions.html#bltin-exceptions daunting but useful.

Two other resources, with more details about a few of the errors: You need to understand:
http://inventwithpython.com/appendixd.html * the literal meaning of
http://www.cs.arizona.edu/people/mccann/errors-python the error

e the underlying
problems certaiqo
errors tend to suggest

Common Error Types

AssertionError

— Raised when an assert statement fails.

IndexError
— Raised when a sequence subscript is out of range.

KeyError

— Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt
— Raised when the user hits the interrupt key (normally Control-C or Delete).

NameError

— Raised when a local or global name is not found.

SyntaxError

— Raised when the parser encounters a syntax error.

IndentationError
— Base class for syntax errors related to incorrect indentation.

TypeError

— Raised when an operation or function is applied to an object of inappropriate type.

11

Cultural Areas (Ist ¢.BC)

Divide and Conquer

Where is the defect (or “bug”)?
Your goal is to find the one place that it is
Finding a defect is often harder than fixing it

Initially, the defect might be anywhere in your program
— It is impractical to find it if you have to look everywhere

Idea: bit by bit reduce the scope of your search

Eventually, the defect is localized to a few lines or one line
— Then you can understand and fix it

4 ways to divide and conquer:
— In the program code
— In test cases
— During the program execution

— During the development history
12

Divide and Conquer in the Program Code

Localize the defect to part of the program
— e.g., one function, or one part of a function
Code that isn’t executed cannot contain the defect

3 approaches:

Test one function at a time

Add assertions or print statements

— The defect is executed before the failing assertion (and maybe after a
succeeding assertion)

Split complex expressions into simpler ones
Example: Failure in
result = set({graph.neighbors (user)})

Change it to
nbors = graph.neighbors (user)
nbors set = {nbors}

result = set(nbors_ set)
The error occurs on the “nbors_set = {nbors}" line

13

Divide and Conquer in Test Cases

* Your program fails when run on some large input
— It’s hard to comprehend the error message
— The log of print statement output is overwhelming

* Try a smaller input

— Choose an input with some but not all characteristics of
the large input

— Example: duplicates, zeroes in data, ...

14

Divide and Conquer in Execution Time
via Print (or “logging”) Statements

* Asequence of print statements is a record of the
execution of your program

* The print statements let you see and search
multiple moments in time

* Print statements are a useful technique, in moderation
* Be disciplined
— Too much output is overwhelming rather than informative

— Remember the scientific method: have a reason (a
hypothesis to be tested) for each print statement

— Don’t only use print statements

15

Divide and Conquer
in Development History

The code used to work (for some test case)
The code now fails
The defect is related to some line you changed

This is useful only if you kept a version of the
code that worked (use good names!)

This is most useful if you have made few changes

Moral: test often!
— Fewer lines to compare
— You remember what you were thinking/doing recently

16

A Metaphor About Debugging

If your code doesn’t work as
expected, then by definition you
don’t understand what is going on.

* You’'re lost in the woods.

* You're behind enemy lines.

e All bets are off.

* Don’t trust anyone or anything.

Don’t press on into unexplored
territory -- go back the way you
came!

(and leave breadcrumbs!)

You’re trying to “advance the front lines,” not “trailblaze”

17

Time-Saving Trick:
Make Sure You are Debugging the Right Problem

e The game is to go from “working to working”
* When something doesn’t work, STOP!

— It’s wild out there!

* FIRST: Go back to the last situation that worked properly.

— Rollback your recent changes and verify that everything still works as
expected.

— Don’t make assumptions — by definition, you don’t understand the code
when something goes wrong, so you can’t trust your assumptions.

— You may find that even what previously worked now doesn’t

— Perhaps you forgot to consider some “innocent” or unintentional change,
and now even tested code is broken

18

A Bad Timeline

A works, so celebrate a little

Now try B

B doesn’t work

C
C
C

nange B anc
nange B anc

nange B anc

try again
try again
try again

19

A Better Timeline

A works, so celebrate a little
Now try B

B doesn’t work

Rollback to A

Does A still work?

— Yes: Find A’ that is somewhere between A and B

— No: You have unintentionally changed something else, and there’s no
point futzing with B at all!

These “innocent” and unnoticed changes happen more than you would think!
* You add a comment, and the indentation changes.

* You add a print statement, and a function is evaluated twice.

* You move a file, and the wrong one is being read

* You are on a different computer, and the library is a different version

20

Once You are on Solid Ground You can
Set Out Again

* Once you have something that works and something
that doesn’t work, it is only a matter of time

* You just need to incrementally change the working
code into the non-working code, and the problem will
reveal itself.

e Variation: Perhaps your code works with one input, but
fails with another. Incrementally change the good
input into the bad input to expose the problem.

21

Simple Debugging Tools

print
— shows what is happening whether there is a problem or
not

— does not stop execution

assert
— Raises an exception if some condition is not met
— Does nothing if everything works
— Example: assert len(rj.edges()) == 16
— Use this liberally! Not just for debugging!

22

